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Fluctuations of the Particle Number in a Trapped Bose-Einstein Condensate
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We develop a reliable procedure for calculating the microcanonical fluctuations of the ground state
occupation number for harmonically trapped ideal Bose gases, and show that these fluctuations vanish
uniformly when the temperature approaches zero. The key point is the precise determination of the
number of microstates from theanonical partition sum, thus avoiding a failure of the usual saddle
point method. We also demonstrate why the magnitude of the condensate fluctuations does not depend
on the total particle number. [S0031-9007(97)04478-5]
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The ideal Bose gas, though intensely studied for decadds a first attempt to study the fluctuations for the more re-
[1,2], continues to serve as an important paradigm o#listic case of a three-dimensional ideal Bose gas trapped
guantum statistical mechanics. After the dramatic progresy an isotropic harmonic potential, Gajda andaRayski
that has been made in the preparation and investigatioobtained a startling result. According to their calculation
of Bose-Einstein condensates of alkali atoms [3], thgll], the fluctuations remain comparatively high even at
emphasis has been shifted from the traditional textbookairly low temperatures, which seems to require that there
example of the homogeneous gas in the thermodynamiexists a certain temperature where the fluctuations bend
limit [4,5] to systems consisting of large, but finite numberssharply down in order to reach the proper zero-temperature
of Bose particles trapped by an external potential. Suclimit. However, as we shall show in this paper, this is not
a potential drastically alters the properties of the gas: fothe case. Although there actually exists a distinguished
instance, Bose-Einstein condensation occurs as a two-stégmperature below the condensation temperature, namely,
process in highly anisotropic potentials [6]. therestriction temperatur@y below which the thermody-

One of the most demanding questions that the theory afiamics of the trapped Bose gas becomes exactly equivalent
an ideal, trapped Bose gas has to answer concerns the fluo-that of a gas of massless excitation quanta of a system
tuations 6N, of the mean ground state occupation num-of distinguishable, i.e., Boltzmannian oscillators, the tem-
ber Ny. Apart from their intrinsic theoretical interest, perature dependence of the fluctuations does not change
such fluctuations should play a major role in experimentat Tx. We will develop and test a reliable procedure for
with Bose-Einstein condensates at honzero temperaturesalculating the microcanonical fluctuatiofd/y, and show
The difficulty to calculate the precise magnitude of thesehat these fluctuations approach zero imnéform way.
fluctuations stems from the fact that this problem falls We consider a gas of noninteracting Bosons confined in
outside the scope of the conventional grand canonical treatt dimensions by the potential of a harmonic oscillator;
ment. Within a grand canonical setting, i.e., when thefor d > 1 we assume the potential to be isotropic.
system exchanges both energy and particles with a resdnrtroducing the variablec = exp(—/Aw/kgT), where o
voir, the mean square fluctuations of are given by denotes the oscillator frequency akglis the Boltzmann
(8Ny)*> = No(Ny + 1) [4,5], implying that6 N, becomes constant, the grand canonical partition sum pertaining to
of order N when the temperature approaches zero. Howthis system can be written in the form

ever, a Bose gas in a trap can neither exchange energy nor o0 y
particles with a reservoir, so that the actuaicrocanon- ZW(z,x) = l_[ N Z zNZ( )(x), (2)
ical fluctuations of the ground state occupation number Jj=0 (1 = zxl)®

have to vanish with vanishing temperature.
Although this problem has been realized some time
ago [7], methods for computing microcanonical bosonic

where z is the fugacity,g; is the degree of degeneracy
f thejth single-particle state [hengg =1, (j + 1), 0

ground state fluctuations begin to emerge only now [8]. A( D (j +2)/2ford = 1,2, or 3, respectively], and
system that can be treated analytically is a gakl &ose (d) 1A (d)
particles in aone-dimensiondtarmonic potential. For this Z x"QEnlN) (3

. o ) =0
model system the fluctuations 6#V, vanish linearly with "

temperatureT if Tis small compared to the temperature are the canonicaN-particle sums. We use the symbol

To whereNo becomes appreciable [9,10]: Q@ (n|N) to denote the number of possibilities to distrib-
ute n excitation quanta oveN particles, subject to Bose
SN kT for T < T(l) ho N 1 symmetry, which is the number of microstates that are ac-
0= V6 hw or - kB InN " 1) cessible when the excitation energy equalisv. Hence,
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IN[Q @ (n|N)] gives the microcanonical entropy for &k tyre Téd) = (hw/kg)[N/(d)]V4, we have
particle Bose gas. T(d) )/ |

To determine the number of microsta@$§” (n|N) is a R ¢(d) (9)
difficult enterprise. However, the problem simplifies con- 7y [dg(d + D]V Ni/adsn
siderably whenn does not exceed/: When enumerat-

ing the accessible microstates, one then does not have ga=2 £(z) denotes the Rlemarzg zeta function. - In

) L ! ; _ e i ©) - -1/12
consider the restriction that arises from the fact that th@articular, ford = 3 this givesTx /Ty ~ 0.792N /
number of particles is finite, and can proceed as if oné° that the restriction temperature is about 25% of the

could distribute then quanta over infinitely many par- condensation temperature for a gas tG (r@al) particles,
ticles. Consequently)@(n|N) does not depend oy Well within the reach of present experiments. .
for n = N. We will denote the number of microstates by __The oscillator system (8) has been studied already in
Q@ (n) in this case. 1951 by N?nda [13], who derived the asymptotic expres-
It is thus of interest to compute the canonical partitionSion for @ (n). Nanda's formula can be used to check
sum Z(x), which will correctly describe the thermody- the standard procedure for estimatiiig” (n|N): Analyt-
namics of the Bose gas for temperatures lower than the r&ally continuing the grand canonical partition sum (2) and

striction temperaturér,gd), the latter being determined by fﬁggz'%glggsgﬁé% I‘Z rr]gyfe;haetcgcg;rdsv;ﬂg rc()enrr?r:\ri]ni(;:
the condition that: = N. In the one-dimensional case, P ¢p f P y: 9

this canonical partition sum is just the generating functionW'thm the unit circle, one has the identity

pertaining to the unrestricted linear partitions of an integer ., ) _ 1 f y{ Z9(z,x)
n [12,13]: Q@I =G = e @0
7ZW(x) = l‘[ ! - (4) thatcan be evaluated approximately, for betk= N and
i e n > N, with the help of the saddle point method [11].

In Fig. 1 we compare the entropy of the actual Bose gas
ford = 3 andN = 10* as obtained from the saddle point
- 1 < ", - 2, c 3 approximation (full line) to the corresponding entropy of
U 1 —x/ Z_ * Z_ * Z_ ., (B our gas of excitation quanta (dashed), as obtained from
j=1 n;=0 n,=0 n3=0 . . . .
o _ _ Nanda’'s formula [13]. The inset highlights the regime
we see that the coefficient of” in the expansion of ,/N < 1, whereQ® (n|N) is actually equal ta2® (n),
Z{)(x) equals the number of solutions to the equation  and confirms the validity of the approximation. But the full
figure reveals an even more important fact: The entropy
n=mny +2ny+ 3n3 + ... @ln; =0), (6) of the excitation gas provides a fair approximation to the

which is the number of unrestricted partitions @ofinto  entropy of the Bose gas even abcm%), namely, right up
positive integers [12]. Since; can be interpreted as the to the condensation temperature, even though the number
number of oscillators that are in thgth excited state, this of exitation quanta per particle becomes significantly larger
number coincides with))(n). To find the analogous than unity. Expressed in a microcanonical language,
expression foz@)(x) for arbitraryd, we merely have to
revert to this line of reasoning: Since each oscillator level

Namely, if we expand the geometric series,

now is g;-fold degenerate, Eq. (6) is replaced by ' -
© 8 ////
n=>j>nx (@lny=0). (7)
j=1 k=1
The number of solutions to this equation, which is the 31

0.2

number Q@ (n) of microstates accessible at the energy
nhw, equals the coefficient of* in the expansion of

In(€) / N

0.1

9 o 8j 9
l_[< Z xjnj) - l_[ m = Z:ECd)(x) : (8) 0.0
j=1\n;=0 j=1

= ) 0.0 0.5 1.0

This is just the canonical partition sum of an infinite num- 0 50 100
ber of distinguishable harmonic oscillatorg; of them n/N

having the frt(e{guencyw(j = 1). Below the restriction Fig. 1. _Entropy of the Bose gas faf =3 and N = 10*
temperaturel; ', the thermodynamical properties of the as obtained from the saddle point approximation to Eq. (10)

“yaQh full line), compared to the entropy of the gas of excitation
trapped Bose gas therefore equal those of a "gas” of exc‘duanta described by Eg. (8) (dashed). The arrow marks the

) ) ) ()
tation quanta of this oscillator system. NOrma“Z'ﬁé condensation point. Both entropies appear to coincide perfectly
with respect to the (approximate) condensation temperan the ranged = n/N =< 1 (inset).
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the restriction on the number of accessible microstatequanta can then be distributed libitumover j of thesek
stemming from the fact thaV is finite has only a minor excited oscillators. Hence we have the recursion relation

effect below the condensation point. min(n—k.k)
A very accurate estimate d®@(n|N) is a necessary QValy = > QVn - kl)) (12)
prerequisite for determining both the ground state occu- j=1

pation number of an isolated Bose gas and its fluctuatiofhat can be evaluated numerically for moderate values of
[9-11]. SinceQ ! (n|Ne) is the number of possibilities , andN, so that theexactdistribution p{) (N ) is avail-

to distributen quanta ovemt mostNe, particles, the dif-  able. The full line in Fig. 2 depicts the resulting exact
ference Q@ (n|Nex) — Q@ (n|Nex — 1) gives the num-  fluctuations of the ground state occupation numbag, —

ber of microstates with quanta distributed ovegxactly  ((N3) — (Np)?)'/2, for d = 1 andN = 1000 versus (mi-

N of the N particles, so that crocanonical) temperature, determined by T~ '(n) =
@ QD(nIN,) — QD n|Ny, — 1) kg In[QY(n|N)/QD(n — 1|N)]. The straight line beau-
Pex’ (Nex|n) = Q@ (n[N) (11)  tifully confirms the linear law (1). But the saddle point

) - ) . ) approach to Eg. (10) fails. Although this technique still
gives the probability to findve, excited particles when yje|gs quite good approximations to the first moments of
there aren excitation quanta present in th€-particle  he gistributions (11), the corresponding fluctuations (long
system. Since the remaininy — Nex particles are in - gashes) are overestimated, and do not appear to vanish
the ground statey — (Nex) = (No) is the microcanonical - yroperly with temperature. The reason for this failure lies
expectation value for the ground state occupation numbefy the fact that below the onset of condensation the saddle
The symbolN,) denotes, of course, the first moment of point lies very close to the first singularity of B (z, x)
the dist_ribution (11); its second moment.yields the desireqsee Ref. [2], p. 227), so that a condition for the applica-
fluctuations of the ground state occupation number. bility of the saddle point approximation is violated.

It is worthwhile to stress that the numerator on the cgn one circumvent this pitfall?  If one knew the
rlg(g)t hand side of Eq. (11) comparé®”(n|Nex) and  canonical partition sums and could work within a fixed
O (n|Nex — 1), not merely their logarithms. Even y_hadicle sector right from the outset, one could do
though the saddle point approximation to Eq. (10) yleldsa\,\,ay with one of the contour integrals in Eq. (10) and

accurate entropies (see Fig. 1), it does not follow auyetermine the numbe® @ (n|N) from the identity
tomatically that it also yields the numbef3@ (n|Ne)

(d)
themselves with an accuracy that is sufficient to determine QD (n|N) = L j{ ZN (x)_ (13)
pD(NexIn). It is therefore advisable to subject the 2mwi J,y xntl

saddle point approximation to a more stringent testin fact, the canonicaN-particle partition functioris well
Such is easily done fod = 1: We obviously have known ford = 1 [14,15]:

QD[ =1 and QY(n|n) =1 for all n. If we then N
want to distributern quanta over exactly oscillators ZV(x) = ]_[ - (14)
(n = k > 1), we first needk quanta to make sure that j=1 1= x

all of these oscillators are excited; the remaining— k) \hich is nothing but the generating function for the linear
partitions of an integer into exactlyN parts [12]. This
0.10 - - allows us to calculat€)V(z|N) by means of the saddle
e point approximation to the single contour integral (13);
Ve this approximation rests on a fairly solid mathematical
e basis [16]. The short-dashed line in Fig. 2 shows the
resulting fluctuation$ Ny /N for the example considered
0.05 | ] above: The agreement with the exact data could hardly
‘ be any better.
The attempt to extend this procedure to higtidiinges
on the problem that no closed expressions are known for

the patrtition functionszl(f)(x), which, after all, embody
0.00 . all the exchange correlations. However, there exists a
0.0 0.2 0.4 general recursion relation that links ARparticle partition
T/TO function at a certain temperaturé to all k-particle
FIG. 2. Exact fluctuation$N,/N of the ground state occu- partition functions withk < N’ at the samd’, and to the

pation number ford = 1 and N = 1000 (full line), compared single-particle partition function at temperatu@st [17—

to the data that result from the saddle point approximation tol9]. Applied to the isotropic oscillator, this relation reads
Eqg. (10) (long dashes). The short-dashed line has been ob- X

tained from the saddle point approximation to the single con- Z,(\[;j)(x) = — Z Zid)(xk)Z,(\?) L (x), (15)
tour integral refers to (13). N o

N, /N

-
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30 ' true condensate fluctuations of weakly interacting, iso-
lated Bosons will have to be computed microcanonically.
The present work, providing the first accurate results on

20 | ] microcanonical, ideal condensate fluctuations in three-
° dimensional traps, may serve as a starting point for such a
prd development.
7S]
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