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Instability and Depletion of an Excited Bose-Einstein Condensate in a Trap
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We present an analytical method to calculate the depletion of a Bose-Einstein condensate excited in
a time dependent harmonic trap. We identify a regime where the motion of the condensate is unstable
and show that this instability leads to an exponentially fast population of noncondensed modes. As
these modes are concentrated on the surface of the condensate this is observable in the particle density.
[S0031-9007(97)04428-1]
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Recently Bose-Einstein condensation has been demom¢herep is the chemical potential. We choose an isotropic
strated in dilute atomic gases [1]. Very low temperatureharmonic trapping potential with time dependent frequency
condensates with up t®’ condensed particles can be pre- w(¢). The coupling constang is related to thes-wave
pared in magnetic traps. In this regime the interaction bescattering lengtla, > 0 by ¢ = 47 h?a,/m. Initially the
tween the particles plays a significant role and has to beystem is prepared in thermal equilibrium at temperature
included in a theoretical treatment. The most widely used” much lower than the critical temperature. The state of
approach is a Hartree-Fock mean field approach which dehe condensate is given by the lowest eigensi®g of
scribes the state of the condensate by the Gross-Pitaevskiie time independent GPE, i.& (r = 0)Dy(7) = 0.
equation (GPE) [2]. The GPE neglects the possible con- The time evolution of the noncondensed particles is
tribution of noncondensed particles. An estimate of thegenerated by
fraction of noncondensed particles is possible with the AG AG
Bogoliubov—de Gennes method [2]. For dilute gases ih&,(AT(r; ) > = L(t)(AT(r; ) ) 3
at thermal equilibrium with temperatures well below the (7. 1) (7.1)
critical temperature the fraction of noncondensed particlesshere A is the lowest order approximation td\e
is very small. In some nonequilibrium situations it may,and £ a partial differential operator reminiscent of the
however, increase exponentially with time. Studying howBogoliubov—de Gennes operator [4]:
instability sets in when the condensate is driven hard as N
done in recent experiments [3] may help illuminate the on- £ = <}[ + Ng*ng)le }[NgQCI)z*Q PP >
set of irreversibility in a quantum gas. We find that in- ~NgQ"®TQ — — NgQ'|®FQ
stability sets in for an atomic velocity on the order of the (4)
sound velocity. This is reminiscent of the destruction of () — 1 — |d(1))(d(1)| projects orthogonally teb.

Sl_Jperquidity in liquid he!ium .When the velocity of the lig- "~ Ag shown in [4] the dynamics of the noncondensed par-

uid relative to the container is too large [2]. _ ticles is closely linked to the evolution generated by the
We consider a system witN particles. The existence Gpg: A deviations® from @ will evolve according to

of a macroscopically occupied state, the condensate, motine |inearized GPE; remarkably the spin@®,,s®7),

vates splitting the atomic field operatdr as where 5®, = Q(1)6® is the deviation orthogonal to

V(r, 1) = O (7, e, + 8V(F1), (1) @, solves the same Eq. (4) as does, At). We can

where @, is the exact condensate wave function and therefore determine the dynamics of the noncondensed

ag,, annihilates a particle in stat.,. The fact that the particles from a linear stability analysis of the GPE; in

I’emainderﬁ\l’(?,t) aCting on the noncondensed partiCIeSparticular we W|” Study the mean density Of noncon-

has matrix elements /N times smaller than those 6f,_ densed particle&s ¥ 1 (7)5¥ (7)) given to lowest order by

suggests an expansion in powers of the fraction of non- - Ats A=

condensed particles. In [4] we derive such an expansion Sp(F,1) = (AT(F, DA, 1)). (5)

of the equations of motion of both the wave functidg, For an arbitraryw (r) two scenarios can occur:

describing the dynamics of the condensed particles and the (1) The wave function®(s) is a stable solution of

field operatorA o, = ﬁf’&xb“i’ describing the dynamics Eq. (2). The deviations® , (r) and thereforeA grow

of the noncondensed particles [5]. The lowest ordemat most polynomially with time in the case of marginal

approximationd to &, satisfies the time dependent GPE: stability; 6 p in Eq. (5) will follow the same type of law:

iid,®(F, 1) = H(@DPF, 1), No fast depletion of the condensate is expected.
BA mal(n)r? (2) The wave function®(¢) is unstable. This is in
H) = — + + Ng|q>(?,;)|2 particular theA case for chaotic motion of the condensate.
2m 2 8®, (r) and A diverge exponentially with time and so
- M, (2) will 8p. For 6p « expl2ot), where o is a Liapunov
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exponent, this leads to significant depletion after a timéwo eigenvectors of £(0) which describe the lowest

~log(N)/o. isotropic excitation mode of the system [9]: the vector
Recent experiments [1] produce condensates wellith energy EQiso, [uiso(7,0), viso(7,0)] and its peer

within the Thomas-Fermi regimgu > hw(0)], where [vi,(7,0), ui5 (7, 0)] with opposite ‘energy. The operator-

one can neglect the kinetic energyd compared to the valued components of the operathron these vectors are

particle interaction [6]. The subsequent evolution for asuch that

time dependent frequeney(z) is approximated by a time Ao = * o=

dependent scaling and gauge transform dor[7,8] in <[<\T((r; 00))> = 1318(,(5%“’2; 8;) + EIJFSO(Z;?"E;’(?;)

Eg. (2), which absorbs the part of the interaction energy ’ 1S0RT 15057

converted into kinetic energy. This generates a family of + all other modes (12)

approximate solutions of Eq. (2): biso, b, annihilate/create an elementary excitation of the

B (F) = e 1B imrA)/28A0) /A0 ©) system V:/Ith freguencsﬂjfo [2,4(]1. _The bosonic t;]ommU-
/—/\(,)3 tation relation betweerb;;, and b;,, imposes the nor-

. malization (uis |#iso) — (Viso|Viso) = 1. This condition
We haveri3 = u[1/A* — 1] and for the scaling factok determinestllilg;fgzigoélffzgglsizld)o).
w2(0) ) For a time dependent(r) the time evolution of
Fra (DA (") Eq. (12) is obtained from Egs. (10),(11) with the initial
conditionsC(0) = 1,C(0) = —iQ;s [10]. For a system
The condensate wave function is a member of this famﬂy,mua”y in thermal equilibrium at temperatur@, the

that is, @ (1) = @), Wlth Ao(0) = 1 and A9(0) = 0 as  contribution of the isotropic mode tp at time is

we imposed(t = 0) = e 2 2

To study how the density of noncondensed partiélps 8pisalFr1) = (ltisalF. D + TvisaF. 1)) (bilobiso)
may grow in time we have to solve Eq. (3). To do so we + |viso (7, )2, (13)
consider a neighporing_solution @ (1) = Py Within - \where (b1 i) = (/BT — 1)=1 We note that a
the family Eq. (6); that is, a solutio(1) = ®a,m+sa0)  change indp;, is solely due to the time dependence of
with an arbitrarily small5A(). As stated above the Uiso, Viso-

time evolution of bothA and the orthogonal deviation — The explicit calculation ob p;s, requires from Eq. (10)
S® (1) = QD) [Pa+sac) = Payn] are generated by the evaluation ofn(r,r) and {(r,1), and therefore of
L (¢). Linearizing Eqg. (6) arounfido(r), Ao(z)] we get ®y(r) and ®{(r). In the Thomas-Fermi regime we get

. for ®}(7) an inverted parabola of spatial extensign=
<Ig$f8§> = 6A(t)<||7;7*((tt))>>> - 5A(t)< ||§*((tt))>>> (8) [2u/mw*(0)]V2. Finally, keeping only leading terms in

the limit u/hw(0) — «, we get atr = 0:
a linear combination of two time dependent spinors with 15 u 7 2
_ 8 piso(7,0) = Df ( )( -5 )
In(1)) = Q(2) (AP AD))) =1, » ©) 14 hQi 3r
1)) = Q1) (03| PA(DN)r=1, - [(bm o) + l} (14)

Equation (8) constitutes an explicit approximate solu- . 2
tion of Eq. (3). The time evolution of the coefficients and at a later time > 0:

A=

<
ONI\)

6 A(t), 5A(r) is obtained by linearizing Eq. (7) around. R [C()Ao(t) — C(1)Ao(0)]?
Equation (8) can be generalized to the following class S piso(F, 1) = 02
of approximate solutions to the time evolution generated 2150
by £ (1) in Eq. (3): » 3 piso(377-0) (15)
. 3
(10} = SOy, CO IO g A .
v(t) ) x \Un*) x \0y) Using Eg. (15) we investigate the growth 8&p;,,(r) for
different time dependent frequencies?):
As doesé A(r) the complexfunction C(z) fulfills In [3] the trapping frequency is modulated sinusoidally
) 402(0) with a resonant frequenc, = i, for a finite time
) = —[ oo wz(f)}CU)- 1) w@) = 0Ol +ssinQN]  (O<t<1) (16)

and is restored to its initial value for> r.. Therefore the
motion for the scaling factony(z) for ¢+ > r, conserves
the “breathing energy”

x is an (at this stage) arbitrary normalization factor.

We investigate first the known case of a time in-
dependent trapping 2potential. Theny(r) =1 and )
from Eq. (11) € + Q{,,C = 0 with Qi = /5 w(0). 1l @0 1, 5
The solutionsC(r) = exp(FiQist) give via Eq. (10) E 2 Ao 3A3 T 049 6 “ 0. 7)
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Consequently, the evolution ofy(z) for r > 1, is pe- whereC,(¢) solves the linear equation
riodic, with a period7(E). A neighboring trajectory

2
A7) + 8A(r) has a slightly different energf + SE Cult) = —[wz(t) + (1,1,—57(02(0)}%0) (20)
and will oscillate with a slightly different periog(E + Ao(1)
0E) = 7(E) + 7/(E)SE, so that its deviation fromo(#)  with the initial conditionsC,;(0) = 1,C,(0) = —iQ,;.
will incrgase linearly in time. Inthe limit — ¢, > 7(E)  The initial density 8p,,.(t = 0) is obtained from
we obtain (Uuim>vm) i @ way analogous to Egq. (13). Note
() ~ r— 1, (EVAo(t) (o€ = AoC) (). (18) that Egs. (19) and (20) reduce to Egs. (15) and (11)

7(E) for the moden = 1,/ = 0. The modesn = 0,] = 1,
The density in Eq. (15) diverges therefore only quadratiWith Qo1 = »(0) are the excitations of the center of
cally with time. Fore < 1 in Eq. (16), we find thaC(;) ~ Mass motion; this is why Eq. (20) then reduces to the
scales as?, leading to a pis, scaling as*r? [11]. motion of a particle in the harmonic trap. Equation (2_0)
We have found that the isotropic mode does not leadnvolves only the eigenfrequency of the mode, not its
to an exponential instability of the condensate for theSPatial dependence; in consequence, modes with the same
above excitation scenario. To achieve instability in thisifequency exhibit the same stability behavior [13].
mode, the most obvious scenario is a chaotic motion of The degree of instability of,; in Eq. (20) is quanti-
the scaling factor in Eq. (7) for whichA; thatis,C(s) and ~ fied by a Liapunov exponent,;, such thatC,, diverges
therefores pis in Eq. (15) will diverge exponentially in &S €Xi¢a7) whens — oo; the case of a polynomial diver-
time. In an isotropic trap chaotic motion can be obtained@®nce in time leads te,; = 0. For a time dependent
by permanentlymodulating the trap frequency with a trapping frequencyw(s) equal to its initial valuew(0)
strong amplitude, e.g., as(t) = w(0)[1 — sin(Q.)/2], fpr all t > ¢,, we Qetermlne numgrlcallynl as a func-
with a nonresonant frequendy,. For Q, = 0.917w(0) tion of the breathmg energy dgflned in Eq. (17) for
a Poincaré section for the motion §(z) exhibits regions ! > Z- The resultis shown in Fig. 1. For smdlnone

of stochastic motion [12]. For an evolution ting0): —  ©f the modes are unstable. For large enougiseveral
50 we find from Eq. (15) an increase 6f;s, by a factor modes are unstable, the modes with the larger Liapunov
of approximately10°. ‘ exponents being = 0,/ = 6. At the onset of instability

To get a complete understanding of the behavior of théhe local condensate velocity(7) = rAo/Ao reaches a
system one has to take into accoatitexcitation modes, Maximal value~w(0)ro which is close to the sound ve-
as each of them caa priori become unstable. For an locity ¢ = w(0)ro/v2 at7 = 0,1 = 0.
isotropic trap the complete set of modes is specified by In Fig. 2 we showép for different times withw(r)
the radial quantum number and the angular quantum varying as in Eg. (16); we neglect the contribution
numbers/, m. We restrict the discussion to modes for of modes with energy higher thap, for which the
which the Thomas-Fermi approximation of [9] applies.
The eigenfrequencies are then giveny, = hiw[2n* +
2nl + 3n + []'2. Up to now we considered only the
isotropic moden = 1,1 = 0 (Q19 = Qjs). To predict
the dynamics of other modes we have to use a different
approach. The idea is to directly solve the time evolution 0.15
of spinors[u(z), v(tr)] generated byL (r) from Eq. (3)
using the Thomas-Fermi approximation. First the unitary
transform linking®, to ®, in Eq. (6) is applied ta: and
v*. This transforms Eq. (3). In the resulting equation
the kinetic energy terms cannot be completely neglected,
contrarily to the case of the GPE, but have to be included
to first order. The detailed calculations will be presented
elsewhere; we give here only the result. 0

Consider the eigenvectou,;,, vu,) of L (0) with 0 2 4 6 8 10
the eigenenergyi(},;; the evolution of the density of E/w?(0)

noncondensed patrticles in this mode can be obtained from ] o
the generalization of Eq. (15): FIG. 1. For the evolutionafter the excitation phasés >
. . 5 t.,w(t) = w(0)] Liapunov exponent as a function of the

1Cur(D)Ao(8) = Cur()Ao(®)] breathing energyt for the modes of frequencw(0)¢'/2, ¢

le integer ranging from 1 to 20 corresponding to modes!)

7 with 2n2 + 2nl + 3n + 1 = q. The values ofg leading to
5Pnzm(m, 0) a nonvanishing Liapunov exponent are indicated in the figure.
/\(3)(t) ) (19)  The only modes corresponding tp= 6 are those withn =

0,/ = 6.
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FIG. 2. For a sinusoidal modulation @f(z) for five cycles
[Q, = 5'2w(0), 1, = 107/Q,, & = 0.15, leading to E =
3w?(0)], density of noncondensed particles at various time
for the initial temperaturézT = 10/ (0) and u = 20/ w(0).
The unit of length isrgA¢(r), the spatial radius of the
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In Eq. (12) only the mode functions evolve in time: As

L acts only on? dependent spinors the operatdrg, are

constants of motion [4].

condensate at time [11] The scalings*+> does not apply for arbitrarily smal::
The first correction to the Thomas-Fermi approximation
Eqg. (6) contains terms of ordet correcting 6®, by

Thomas-Fermi approximation does not apply. In the a term scaling aset; this term becomes negligible

long time limit, the dominant contribution comes from
the modes: = 0,/ = 6; as these are surface modes, they

lead to a peak in the density of noncondensed particlelsiZ]

close to the boundary of the condensate [14].
The above -calculations can be extended to the

anisotropic traps of [1]. The key property that we have[13]
used indeed is the existence of a scaling and gauge

transform generating the evolution of the condensate
wave function in the Thomas-Fermi limit. This property
holds for harmonic traps with fixed eigenaxes [7,8].

In conclusion, we have identified experimentally ac-
cessible regimes where the motion of the condensate

unstable. This instability leads to an exponentially fastﬁd']
depletion of the condensate; as mainly surface modes of

the condensate are then populated, this may result in ob
servable changes of the spatial density of the particles.

We are grateful to M. Lewenstein, Ch. Miniatura, and
M. Holzmann for useful discussions.

3556

in the Thomas-Fermi limit where Qs t. > 30(Qiso —

05/ Qi Where Q% is the exact resonance frequency
of the ground isotropic mode.

As those regions are not immediately accessible from the
initial conditions Ao = 1, A = 0, the sinusoidal modula-
tion of w is preceeded by a preparation phase.

For a finite value ofu/%w(0) the mode frequencies differ
from the valued},, given in the text valid in the Thomas-
Fermi limit u/fw(0) — . We have therefore performed

a numerical integration of Egs. (2),(3); a good agreement
with the analytical prediction from Eqgs. (19),(20) is
obtained only if(},; is replaced by the exact value of
the eigenfrequency in the calculation Gf; in Eq. (20).

As the directly measurable quantity is the total dengity
rather thand p, one should include the condensed fraction;
as shown in [4] the first order deviation df., from ®
contributes tgo to the same order a$p; this deviation is
expandable on mode functions with= 0 only, as®., is
isotropic, and therefore does not affect the peak of density
observed for long times in Fig. 2.



