VOLUME 79, NUMBER 19 PHYSICAL REVIEW LETTERS 10 NVEMBER 1997

Critical Temperature of Bose-Einstein Condensation of Hard-Sphere Gases
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We determine the critical temperature of a 3D homogeneous system of hard-sphere bosons by path-
integral Monte Carlo simulations and finite-size scaling. In the low density limit, we find that the critical
temperature is increased by the repulsive interaction®&s/T, ~ (na’)?, wherey = 0.34 *+ 0.03.

At high densities the result for liquid helium, namely, a lower critical temperature than in the
noninteracting case, is recovered. We give a microscopic explanation for the observed behavior.
[S0031-9007(97)04438-4]
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The observation of Bose-Einstein condensation inn Eq. (1), 0(L/£&(¢)) is an analytic function op,/p for
atomic vapors [1], at temperatures of a few hundreddinite L. ¢ and—w» are the bulk critical exponents of the
of nK by evaporative cooling, has revived interest insuperfluid fraction and the correlation length, respectively;
the theoretical investigation of this phenomenon. In thigheir ratio has been measured in helium [12] and calculated
Letter we study hard-sphere bosons of diameteonfined  with renormalization group techniques [13]; the results
in a cubic box of volume.?. The hard-sphere diameter are consistent withp = ». At the transition point the
a corresponds to the-wave scattering length of a real correlation length diverges, so thax(L/£(r)) becomes
interatomic potential in a model which is valid at low independent of.. This feature allows us to deduce the
densities and even yields reasonable results for relativelyansition point for the infinite system from simulations
dense systems such as liquid helium [2]. of finite-size samples: curves of the scaled superfluid

We determine the critical temperatufe of this sys- fraction Lp,/p(¢) obtained from different sized systems
tem for various number densiti@sand compare it to the will intersect atr = 0.
critical temperaturd, of the ideal gas [3]. The literature  In our path-integral Monte Carlo simulation we measure
provides contradictory results stemming from analyticalthe “stiffness” of the system against twisting the phase of
studies, even with regard to the sign&fc = Tc — Ty:  the wave function, when a particle is displaced across the
A negative sign is predicted by Hartree-Fock theory [4],periodic boundary conditions, by means of the winding
and a renormalization group (RG) calculation [5]; highernumber distribution. From that we deduce the superfluid
critical temperatures, but with different low density asymp-fraction [14]. We use the high-temperature approximation
totic behaviors, were the result of Ref. [BAT¢/Ty ~  for the hard-sphere propagator derived in Ref. [15]. Typi-
(na®)'/2, Ref. [7],AT¢/Ty ~ (na®)'/?, and arecentrenor- cally five time-slices were used for the calculations near
malization group calculation [8], which goes beyond theT.. (We found that the use of the “image propagator”
one-loop expansion of Ref. [5], and for which approxi- [16] converged much slower at low density.)

matelyAT¢/Ty ~ (na’)'/¢ [9]. Figure 1 shows the scaled quantity
We have used a path-integral Monte Carlo method to 13
obtain our results. In 3D Bose systems both superfluidity N ps/p(T) (3)

and Bose-Einstein condensation are believed to occur g a function of temperature for four different particle
the same critical temperature. We determine this transitionympersv = 27, 64, 125, and 216. Here the dimension-

temperature by making use of the scaling properties of thgygsn1/3 has replaced the lengih

superfluid fractiorp,/p [10,11]. Fromthe hypothesisthat  £quation (1) implies that the four graphs should intersect
close to the bulk transition point thermodynamic quantitiesyt the transition point. However, because of the statistical
in finite systems depend on temperature only through thggise in our data, an accurate estimate of this point is
ratio of a characteristic system sizein our case and the ifficult. (The same reason prevented us from using for
bulk correlation lengtfg (¢), the following scaling form can 5, estimator the scaled twist free energy as in Ref. [11].)

be obtained: Since N'3p,/p is analytic, we fit our values of this
ps/p(t) = L9 Q(L/£(®1)), (1) quantity (for 4 values oV and 10 different temperatures
with close to the transition point) to a function of the form
(=< @  QU/ET)lrr. = Q0) + NI — Te)/Tc ,(4)
C
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FIG. 1. Scaled superfluid fraction
T N'3p,/p in function of temperature
T as determined by our simulations for
i na> =5 x 1073 and N = 27, 64, 125,
and 216. T, is the critical temperature
of the noninteracting system. The
temperature where the four lines are
crossing is to be identified with the critical
T temperature. A quantitative estimate for
this temperature is obtained by fitting the
- values for everyV with a straight line and
06 R determining the point of intersection for
the fitted curves.
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and determine the paramet&p$0), g, v, andT¢. In this ATc = ¢o(nd®)?, (6)
way we obtain a quantitative estimate fbg. Further- Ty

more, we can check the results by comparing our valueg,q obtainedey = 0.34 + 0.06 and y = 0.34 =+ 0.03.
for 0(0) and the cr!tical expone_nzt/ to r(_esults obtained Assumingy = % the enhancement @ is linear in the
elsewhere. Assuming that the interacting Bose gas fa"§cattering lengthz. This exponent is also the result of

into the same universality class as i& model, we ex- e anaiytical study in Ref. [7], which yields, however, a
pect that 3\2/3 value of ¢y which is about 14 times larger. When mass

To M 0(0) = universal constant (5) renormalization is included, it is possible that the RG

Te 27 calculation in Ref. [8] may also yield this exponent [9].
We find values between 0.29 and 0.33 for the system den- In order to understand our findings on a microscopic
sities we considered. This is different from the value oflevel, recall the Feynman picture of superfluidity [22]. The
0.49 *+ 0.01 obtained in [17]. For the critical exponent of partition functionZ of the system can be written as a sum
the correlation length, our calculations yield an estimateover all states accessible to distinguishable particles:

—v = —0.68 = 0.28, which is in agreement with analyti- 7 = Tr {Se"”{} 7)
cal results [18] and simulations [19] for the 3T¥ model, Boltzmann states ’
as well as experimental data which giver = —0.67. As  where S symmetrizes with respect to the particle labels.

a matter of fact, the values fd@i- depend only slightly on We can expand the symmetriz8rinto a sum over ex-
v: Results obtained with fixed to the experimental value change cycles. At high temperatures the only signifi-
differ at most about 0.2% from the ones obtained with let-cant contribution comes from the identity operator (cycle
ting » be a free parameter. Figure 2 shows a typical fit. length 1) andZ reduces to the partition function for a
Figure 3 shows the results of our calculations, the relaelassical system. At lower and lower temperatures, how-
tive change of the critical temperature as a function of thever, the importance of the contribution of exchange cycles
density. We distinguish two regimes: At low densities theof macroscopic length grows. The statistical correlations
critical temperature for the interacting gashigiherthan  extend over longer and longer distances, until—at the tran-
that for the noninteracting system. With increasing densition point—a macroscopic structure, identified as super-
sity the critical temperature attains a broad maximum (neaftuid component, is established.
na’® =~ 0.01) before decreasing and coming to its minimum A necessary condition for these exchange cycles to ap-
value for the highest densities we have used in our simulgpear is that the particles must be close together (sepa-
tions. For comparison, we include in our diagram higherated by distances of the order of the thermal wavelength
densities experimental and simulation results obtained foA; = 27/#%/mkgT). In an ideal gas, spatial density fluc-
liquid helium [11,20]. This system is well described by atuations are important, and particle clusters are likely to ap-
hard-sphere model with an effective hard-sphere diametgrear. This creates regions of lower density at other places
of a = 2.2033 A [21]. Superfluid helium exists only for inthe system, which obstruct the formation of macroscopic
a limited range of densities before it freezes at a density oéxchange cycles. On the other hand, in the case of a mod-

na®* =~ 0.24 [2]. erately dense interacting gas, the particles tend to be more
We have fit the change in transition temperature fohomogeneously distributed throughout the whole volume
densitiess X 107° = na® = 5 X 1073 with of the system. Analogously to a percolation problem,
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= from Fig. 1. + = (T — T¢)/Tc; Tc is
& the critical temperature for the interacting
< 1 . system and-v is the critical exponent of
Z, the correlation length, both as obtained by

our fit. We find a critical temperature of

08 . Tc/Ty = 1.057 = 0.002.
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it is more likely for every atom to find a neighbor at particle number in these subvolumes [23]. We find that
a suitable distance if there is a repulsive potential, sdahe number of particles in subspheres of radius comparable
that the exchange cycles can more easily propagate froto A fluctuates about 30% more in the case of an ideal gas
one region to the next. Superfluidity is hence “easier” tathan for an interacting gas of densityx 1072a 3.
achieve, meaning that it can occur at higher temperatures. At higher densities the atoms cannot exchange with
In order to quantify this understanding of the shift of each other without dragging other particles along. The
the critical temperature, we have determined the twoeffective mass becomes greater than unity, and the critical
body distribution functiorg(r). In Fig. 4 we have plotted temperature is decreaseds ~ 1/m" [4,22].
g(r) for different densities at the bulk superfluid transition The results obtained in our case of an isotropic sys-
temperature for a system of 125 particles. It can be seetem are different from the ones obtained in a harmonic
that at higher densities the “exchange bump” of the ideaéxternal potential [24,25], where the repulsive interac-
gas decreases and, because of the hard-sphere boundtions decrease the critical temperature at low densities.
condition, the distribution tends to become homogeneousn a trap, interactions give rise to two competing effects.
Another way to see that the interactions suppress the spati@he critical temperature is increased by the suppression
density fluctuations is to integraigr) over subvolumes of density fluctuations (even if those are already smaller
of the simulation cell which gives the fluctuation of the than in the isotropic case because of the confinement).
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FIG. 3. Critical temperaturé&: of an in-
teracting Bose gas versus densityi is
the hard-sphere diameter ariy is the
critical temperature of the noninteracting
gas. Two different scales are used for
the vertical axis: For temperatures above
T, the left scale applies and for values
below T, the right scale applies. For
comparison, experimental and simulation
results [11,20] obtained for helium (at
densitiesna® = 0.235 and 0.25) are also
included. The dashed curve at low den-
sities presents a fit of the data points be-
tweenna® =5 X 107 and 5 X 1073 to

1 + co(na?)?, yielding y = 0.34, the dot-
ted curve is a guide to the eye (note the
change of scale &l = T;). At zero tem-
perature the hard-sphere system freezes at
a density of abouta® = 0.25 [2].
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FIG. 4. Two-body distribution function
g(r) versus particle distance in units of
the thermal wavelength; for different
densitiesna® at the bulk critical tempera-
ture. For the sake of visibility, the single
curves are shifted vertically by 0.5. The
hard-sphere boundary condition changes
the short-distancér — 0) behavior dra-
matically. However, for the “percolation-
like” theory of superfluidity, the behavior
for r = Ar is more important, and here
the functions for the ideal and the low den-
sity gas both feature the appearance of the
“exchange bump” for < Ar: In the non-
interacting gas or gases of lower density,
many particles cluster together at distances
less than the thermal wavelength. In a
denser system the interactions are com-

pensating this statistical attraction and the

! particles fill the system volume homoge-

18 neously. This allows for superfluidity to
appear at higher temperatures.
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