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Critical Temperature of Bose-Einstein Condensation of Hard-Sphere Gases
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We determine the critical temperature of a 3D homogeneous system of hard-sphere bosons by p
integral Monte Carlo simulations and finite-size scaling. In the low density limit, we find that the critic
temperature is increased by the repulsive interactions, asDTCyT0 , sna3dg , whereg ­ 0.34 6 0.03.
At high densities the result for liquid helium, namely, a lower critical temperature than in th
noninteracting case, is recovered. We give a microscopic explanation for the observed behav
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The observation of Bose-Einstein condensation
atomic vapors [1], at temperatures of a few hundre
of nK by evaporative cooling, has revived interest
the theoretical investigation of this phenomenon. In th
Letter we study hard-sphere bosons of diametera confined
in a cubic box of volumeL3. The hard-sphere diamete
a corresponds to thes-wave scattering length of a rea
interatomic potential in a model which is valid at low
densities and even yields reasonable results for relativ
dense systems such as liquid helium [2].

We determine the critical temperatureTC of this sys-
tem for various number densitiesn and compare it to the
critical temperatureT0 of the ideal gas [3]. The literature
provides contradictory results stemming from analytic
studies, even with regard to the sign ofDTC ­ TC 2 T0:
A negative sign is predicted by Hartree-Fock theory [4
and a renormalization group (RG) calculation [5]; high
critical temperatures, but with different low density asym
totic behaviors, were the result of Ref. [6],DTCyT0 ,
sna3d1y2, Ref. [7],DTCyT0 , sna3d1y3, and a recent renor-
malization group calculation [8], which goes beyond th
one-loop expansion of Ref. [5], and for which approx
matelyDTCyT0 , sna3d1y6 [9].

We have used a path-integral Monte Carlo method
obtain our results. In 3D Bose systems both superfluid
and Bose-Einstein condensation are believed to occu
the same critical temperature. We determine this transit
temperature by making use of the scaling properties of
superfluid fractionrsyr [10,11]. From the hypothesis tha
close to the bulk transition point thermodynamic quantiti
in finite systems depend on temperature only through
ratio of a characteristic system sizeL in our case and the
bulk correlation lengthjstd, the following scaling form can
be obtained:

rsyrstd ­ L2wynQsssLyjstdddd , (1)

with

t ­
T 2 TC

TC
ø 1 . (2)
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In Eq. (1),QsssLyjstdddd is an analytic function ofrsyr for
finite L. w and2n are the bulk critical exponents of the
superfluid fraction and the correlation length, respectively
their ratio has been measured in helium [12] and calculat
with renormalization group techniques [13]; the result
are consistent withw ­ n. At the transition point the
correlation length diverges, so thatQsssLyjstdddd becomes
independent ofL. This feature allows us to deduce the
transition point for the infinite system from simulations
of finite-size samples: curves of the scaled superflu
fraction Lrsyrstd obtained from different sized systems
will intersect att ­ 0.

In our path-integral Monte Carlo simulation we measur
the “stiffness” of the system against twisting the phase o
the wave function, when a particle is displaced across th
periodic boundary conditions, by means of the windin
number distribution. From that we deduce the superflu
fraction [14]. We use the high-temperature approximatio
for the hard-sphere propagator derived in Ref. [15]. Typ
cally five time-slices were used for the calculations nea
TC. (We found that the use of the “image propagator
[16] converged much slower at low density.)

Figure 1 shows the scaled quantity

N1y3rsyrsT d (3)

as a function of temperature for four different particle
numbersN ­ 27, 64, 125, and 216. Here the dimension
lessN1y3 has replaced the lengthL.

Equation (1) implies that the four graphs should interse
at the transition point. However, because of the statistic
noise in our data, an accurate estimate of this point
difficult. (The same reason prevented us from using fo
an estimator the scaled twist free energy as in Ref. [11
Since N1y3rsyr is analytic, we fit our values of this
quantity (for 4 values ofN and 10 different temperatures
close to the transition point) to a function of the form

QsssLyjsT ddddjT!TC ­ Qs0d 1 qN1ys3ndsT 2 TCdyTC ,
(4)
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FIG. 1. Scaled superfluid fraction
N1y3rsyr in function of temperature
T as determined by our simulations for
na3 ­ 5 3 1023 and N ­ 27, 64, 125,
and 216. T0 is the critical temperature
of the noninteracting system. The
temperature where the four lines are
crossing is to be identified with the critical
temperature. A quantitative estimate for
this temperature is obtained by fitting the
values for everyN with a straight line and
determining the point of intersection for
the fitted curves.
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and determine the parametersQs0d, q, n, andTC. In this
way we obtain a quantitative estimate forTC. Further-
more, we can check the results by comparing our valu
for Qs0d and the critical exponentn to results obtained
elsewhere. Assuming that the interacting Bose gas fa
into the same universality class as theXY model, we ex-
pect that

T0

TC

z s 3
2 d2y3

2p
Qs0d ­ universal constant. (5)

We find values between 0.29 and 0.33 for the system d
sities we considered. This is different from the value
0.49 6 0.01 obtained in [17]. For the critical exponent o
the correlation length, our calculations yield an estima
2n ­ 20.68 6 0.28, which is in agreement with analyti-
cal results [18] and simulations [19] for the 3DXY model,
as well as experimental data which give2n ­ 20.67. As
a matter of fact, the values forTC depend only slightly on
n: Results obtained withn fixed to the experimental value
differ at most about 0.2% from the ones obtained with le
ting n be a free parameter. Figure 2 shows a typical fit

Figure 3 shows the results of our calculations, the re
tive change of the critical temperature as a function of t
density. We distinguish two regimes: At low densities th
critical temperature for the interacting gas ishigher than
that for the noninteracting system. With increasing de
sity the critical temperature attains a broad maximum (ne
na3 ø 0.01) before decreasing and coming to its minimu
value for the highest densities we have used in our simu
tions. For comparison, we include in our diagram high
densities experimental and simulation results obtained
liquid helium [11,20]. This system is well described by
hard-sphere model with an effective hard-sphere diame
of a ­ 2.2033 Å [21]. Superfluid helium exists only for
a limited range of densities before it freezes at a density
na3 ø 0.24 [2].

We have fit the change in transition temperature f
densities5 3 1026 # na3 # 5 3 1023 with
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DTC

T0
­ c0sna3dg , (6)

and obtainedc0 ­ 0.34 6 0.06 and g ­ 0.34 6 0.03.
Assumingg ­

1
3 , the enhancement ofTC is linear in the

scattering lengtha. This exponent is also the result of
the analytical study in Ref. [7], which yields, however, a
value of c0 which is about 14 times larger. When mas
renormalization is included, it is possible that the RG
calculation in Ref. [8] may also yield this exponent [9].

In order to understand our findings on a microscop
level, recall the Feynman picture of superfluidity [22]. Th
partition functionZ of the system can be written as a sum
over all states accessible to distinguishable particles:

Z ­ Tr
Boltzmann states

hSe2bH j , (7)

whereS symmetrizes with respect to the particle labels
We can expand the symmetrizerS into a sum over ex-
change cycles. At high temperatures the only signifi
cant contribution comes from the identity operator (cycl
length 1) andZ reduces to the partition function for a
classical system. At lower and lower temperatures, how
ever, the importance of the contribution of exchange cycl
of macroscopic length grows. The statistical correlation
extend over longer and longer distances, until—at the tra
sition point—a macroscopic structure, identified as supe
fluid component, is established.

A necessary condition for these exchange cycles to a
pear is that the particles must be close together (sep
rated by distances of the order of the thermal waveleng
lT ­ 2p h̄2ymkBT). In an ideal gas, spatial density fluc-
tuations are important, and particle clusters are likely to a
pear. This creates regions of lower density at other plac
in the system, which obstruct the formation of macroscop
exchange cycles. On the other hand, in the case of a m
erately dense interacting gas, the particles tend to be m
homogeneously distributed throughout the whole volum
of the system. Analogously to a percolation problem
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FIG. 2. Result of our fit to the data
from Fig. 1. t ­ sT 2 TCdyTC ; TC is
the critical temperature for the interacting
system and2n is the critical exponent of
the correlation length, both as obtained b
our fit. We find a critical temperature of
TCyT0 ­ 1.057 6 0.002.
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it is more likely for every atom to find a neighbor at
a suitable distance if there is a repulsive potential, s
that the exchange cycles can more easily propagate fr
one region to the next. Superfluidity is hence “easier” t
achieve, meaning that it can occur at higher temperatur

In order to quantify this understanding of the shift o
the critical temperature, we have determined the tw
body distribution functiongsrd. In Fig. 4 we have plotted
gsrd for different densities at the bulk superfluid transition
temperature for a system of 125 particles. It can be se
that at higher densities the “exchange bump” of the ide
gas decreases and, because of the hard-sphere boun
condition, the distribution tends to become homogeneou
Another way to see that the interactions suppress the spa
density fluctuations is to integrategsrd over subvolumes
of the simulation cell which gives the fluctuation of the
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FIG. 3. Critical temperatureTC of an in-
teracting Bose gas versus density:a is
the hard-sphere diameter andT0 is the
critical temperature of the noninteracting
gas. Two different scales are used fo
the vertical axis: For temperatures abov
T0 the left scale applies and for values
below T0 the right scale applies. For
comparison, experimental and simulatio
results [11,20] obtained for helium (at
densitiesna3 ­ 0.235 and 0.25) are also
included. The dashed curve at low den
sities presents a fit of the data points be
tween na3 ­ 5 3 1026 and 5 3 1023 to
1 1 c0sna3dg , yielding g ­ 0.34, the dot-
ted curve is a guide to the eye (note th
change of scale atTC ­ T0). At zero tem-
perature the hard-sphere system freezes
a density of aboutna3 ­ 0.25 [2].
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particle number in these subvolumes [23]. We find th
the number of particles in subspheres of radius compara
to lT fluctuates about 30% more in the case of an ideal g
than for an interacting gas of density5 3 1022a23.

At higher densities the atoms cannot exchange w
each other without dragging other particles along. T
effective mass becomes greater than unity, and the criti
temperature is decreased asTC , 1ymp [4,22].

The results obtained in our case of an isotropic sy
tem are different from the ones obtained in a harmon
external potential [24,25], where the repulsive intera
tions decrease the critical temperature at low densiti
In a trap, interactions give rise to two competing effect
The critical temperature is increased by the suppress
of density fluctuations (even if those are already smal
than in the isotropic case because of the confineme
3551
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FIG. 4. Two-body distribution function
gsrd versus particle distancer in units of
the thermal wavelengthlT for different
densitiesna3 at the bulk critical tempera-
ture. For the sake of visibility, the single
curves are shifted vertically by 0.5. The
hard-sphere boundary condition change
the short-distancesr ! 0d behavior dra-
matically. However, for the “percolation-
like” theory of superfluidity, the behavior
for r ø lT is more important, and here
the functions for the ideal and the low den-
sity gas both feature the appearance of th
“exchange bump” forr & lT : In the non-
interacting gas or gases of lower density
many particles cluster together at distance
less than the thermal wavelength. In a
denser system the interactions are com
pensating this statistical attraction and the
particles fill the system volume homoge-
neously. This allows for superfluidity to
appear at higher temperatures.
s

On the other hand, the central density is lowered a
the condensate wave function is broadened. Both term
are linear in the scattering length; hence, whetherTC is
suppressed or increased depends on details of the sys
such as the number of particles, the trapping frequencyv,
and the particle mass [26].

To conclude, the effect of repulsive interactions i
different for low and high densities: At low densities, the
“density homogenization” effect prevails so thatTC is
increased; at high densities, the exchange motion of t
atoms—which are behind the Bose-Einstein condensati
phenomenon—are hindered by the hard cores so that
critical temperature is decreased. Since, in the experime
on alkali gases, the value ofna3 in the center of the trap
does not exceed1025, the shifts inTC remain small (about
1%), but may be observable in larger traps.
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