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Reflection of THz Radiation by a Superlattice
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Nonlinear THz reflection by a superlattice is calculated using an effective dielectric funct
Oscillations of the reflection coefficient with the electric field amplitude signifies dynamic elect
localization. The nonlinear connection between the incident and internal fields leads to a refle
coefficient exhibiting hysteresis as a function of the incident field. [S0031-9007(97)04415-3]
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The dynamics of a charged particle in a superlattic
under the action of an external electric field has bee
the subject of intense research [1–6]. Under differe
conditions, an electron is predicted to reveal a varie
of time-dependent phenomena such as Bloch oscillatio
[1], Zener tunneling [2], self-induced transparency [3]
miniband collapse [4], negative differential conductivity
and absolute negative conductance in photon-assis
tunneling experiments [5], and other effects. In particula
the phenomenon of dynamic localization [6] is quite
interesting. In the presence of a high frequency electr
field Estd ­ E cossvtd along the growth direction of a
superlattice of periodd, an electron in a single miniband
is predicted in general to drift off. However when the
parameterQ ­ eEdyh̄v is a root of the zeroth order
Bessel function, the electron is predicted to oscillate wit
a finite amplitude (in all of the following, we shall seth̄ ­
1). Such a bounded motion at certain discrete parame
values can be understood in the following simple way: i
each half-period of the incident ac field, the electron trie
to execute Bloch oscillations. If it completes an intege
number of Bloch oscillations before the sign of the fiel
switches, the electron is localized, else it drifts off.

This sharp change in transport properties of the ele
tron should be expected to show up in easily measurab
optical properties. So far, the only observations of dy
namic localization have been in photon-assisted tunneli
experiments [5], where one observes the appearance
sidebands with intensityJ2

nsQd, and in the parametric sup-
pression of dc current in the presence of an ac field [7
However, it is difficult to directly measure transport prop
erties because one cannot simply attach electrical conta
to the superlattice and apply a voltage at THz frequencie
The only realistic way of applying THz frequency fields
to a superlattice is to place the superlattice in the path
a propagating THz pulse. This argues for a more dire
measurement of the optical properties of the superlatti
at THz frequencies. With this in mind, we propose in thi
paper an optical experiment where one measures the T
reflection coefficient of the superlattice. We predict os
cillations in the reflection coefficient as a function of the
electric field amplitude arising out of dynamic electron
localization. Previous theoretical studies of electronic re
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sponse to THz fields ignore where the electric field com
from and how it gets into the superlattice. The transfo
mation between the field in the sample and the field ou
side is highly nonlinear, and leads, as we shall see, to
highly multistable behavior of the electronic response.

Dipole moment.—In a superlattice of periodd, we
consider motion only in the growth direction. For a singl
miniband of bandwidthD, the energy dispersion with
respect to wave vectork is of the tight-binding form:

ek ­ 2
D

2
cosskdd . (1)

The external electric field couples to the electron throug
the dipole matrix element which can be shown to be o
the following form:

m̂skk0d ­ ie
≠

≠k
dkk0 . (2)

This form, identical to that for a bulk semiconductor, wil
never be directly evaluated. In any integral involving
it, no confusion will arise with taking the continuous
derivative of the Kronecker delta function. With these
definitions, the effective Hamiltonian for noninteracting
miniband electrons in a time-dependent electric fie
E cossvtd is

Ĥ ­
X

k

ekc
y
k ck 2 E cossvtd

X
kk0

m̂skk0dcy
k ck0 . (3)

Here c
y
k sckd are the conventional electron creation (de

struction) operators.
Central to our approach is the electric-field-drive

time evolution of the density matrix in terms of the
center of mass momentumK ; sk 1 k0dy2 and relative
momentumq ; k 2 k0:

NKq ; kN̂Kql ; kcy
K1qy2cK2qy2l , (4)

We assume that the density matrix tends to relax to
equilibrium value N0

Kq with a relaxation timet. We
do not consider the detailed process by which electro
populate the conduction miniband (doping, photoexcita
tion). We simply start with an electron population in
the conduction miniband having an initial distribution
that is uniform between quasimomenta6kF, given by
© 1997 The American Physical Society
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N0
K0 ­ npykFfusK 1 kFd 2 usK 2 kFdg, where u is

the Heaviside step function andn is the density of elec-
trons in the conduction miniband. Our equations of m
tion then give us

≠NKq

≠t
­ 2ifeK1qy2 2 eK2qy2gNKq

2 eEstd
≠NKq

≠K
2

NKq 2 N0
Kq

t
. (5)

We compute the time-dependent dipole mome
mstd ; Trsm̂Nd from Eq. (5) and that for the dipole
moment derived from it:≠my≠t 1 myt ­ e

P
K yK NK0,

where yK ; ≠eKy≠K is the velocity of the electrons.
Note that the equation for the dipole moment requir
only the value ofNKq at q ­ 0. We then get an expres-
sion for the dipole moment in terms of the dimensionle
electric field amplitudeQ ; eEdyv [8]:

mstd ­ 2
edD

v
J0sQd

X̀
m­0

J2m11sQd
2m 1 1

cosfs2m 1 1dvtg .

(6)

At those values ofQ where J0sQd ­ 0, the time-
dependent dipole moment vanishes. For a different init
condition, such as a steady-state current, at the zeros
J0sQd ­ 0 the dipole moment has bounded oscillation
These are both examples of dynamic localization
electrons.

Reflection coefficient.—The inset in Fig. 1 shows a
possible experimental setup: Incident THz radiation
polarized along the growth direction of the superlattic
and the reflected beam is examined for signatures
dynamic localization of electrons. Consider the idealize
problem of a monochromatic incident wave propagatin
monochromatically into a superlattice infinitely extende
along the growth direction. We neglect the fact that
an actual geometry, the spot size is usually a hundr
times larger than the superlattice length along the grow
direction, which means that a large part of the monitor
reflection arises out of the substrate rather than t
superlattice itself [9].

By omitting the higher harmonics generated in Eq. (
[10], we can define an effective dielectric function a
obtained from the coefficient of cossvtd:

eeffsQd ­ e0

∑
1 2 2

v
2
P

v2

J0sQdJ1sQd
Q

∏
. (7)

Here e0 is the static (dc) dielectric constant of the
superlattice (,12.4 for GaAs), andvP ;

p
4pne2ympe0

is the plasma frequency of the electrons with an effecti
massmp ; Dy2d2. For low values ofQ, this reduces
to the dielectric constant for plasmons, viz.eeffjQj ­
e0f1 2 v

2
Pyv2g.

Figure 1 shows the reflection coefficient resulting from
a straightforward application of this effective dielectri
function [11]. With respect to the background (dashe
line in Fig. 1), the reflection coefficient is zero at th
same values of the electric field previously identifie
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FIG. 1. Predicted reflection coefficient of a superlattice in
THz field, plotted vs the dimensionless electric field amp
tude at the site of the electroneEdyv, for vPyv ­ 8. At
high fields, the electronic contribution to the reflection coe
ficient vanishes, while at low fields, the field is screened
the plasmons since the incident frequencyv is less than the
plasma frequencyvP . There is a window of low reflection
coefficient in the low-field regime. WhenJ0seEdyvd ­ 0,
the reflection coefficient reaches the background valueR0 ­
jspe0 2 1dyspe0 1 1dj2 because the electrons dynamically lo
calize, and do not radiate. Inset: Schematics of the propo
THz optical experiment. The superlattice is sandwiched b
tween substrates of GaAs and the incident THz radiation
polarized along the growth direction. The reflected radiation
collected using a partially transmitting mirror and analyzed f
signatures of dynamic localization.

with dynamic localization. Three special features of th
computed reflection coefficient are worth noting: (1) Th
“self-induced transparency” effect [3] actually corre
sponds to a vanishing of theelectronic contribution to
the THz reflection coefficient at the Bessel roots—th
background contribution still remains. At nearby value
of Q, the background reflection coefficient destructive
interferes with the electronic part and the total reflectio
coefficient actually drops below the dc value; (2) th
oscillatory behavior of the reflection coefficient an
(3) the sharp drop in its value for low fields. Forlow
electric fields the system is expected to behave like
metal, the electrons executing plasma oscillations wh
screens the field, sincevP . v. The predicted reflection
coefficient is unity over a range of lowQ’s, but there
is a sharp drop in reflection coefficient in the middle o
this range near the first Bessel root, where the electro
dynamically localize. Atlarge values of the field am-
plitude, the electric field overcomes plasmon screenin
and the reflection coefficient is controlled essentially b
the dc dielectric constante0, since the Bessel functions
in Eq. (7) vanish for large values of their argument
Thus the THz reflection coefficient reaches the dc val
R0 ­ j

°p
e0 2 1

¢
y
°p

e0 1 1
¢
j2.
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Actual field in the sample.—Figure 1, however, does
not give us the complete picture. Relevant experimen
prediction requires reflection coefficient as a function n
of the electric fieldE at the site of the electron, but
rather the external fieldEI incident on it. Before we
make experimental predictions, we need to perform
transformation of variables fromQS ; eESdyv to QI ;
eEI dyv, ES being the field amplitude in the sample. Thi
transformation causes the reflection coefficient to exhib
hysteretic behavior.

The variablesES and EI are connected via boundary
conditions atx ­ 0, viz.,

QI 2 QRjx­0 ­ QS jx­0 , (8)

≠

≠x
sQI 2 QRd jx­0 ­

≠QS

≠x
jx­0 , (9)

whereQR ; eERdyv, with ER being the reflected field
amplitude at the boundary. Herex is the direction of
propagation of the incident wave. We now need th
x dependence of the boundary valueQS , to substitute
in Eq. (8) (and to know the electronic contributions t
the reflection from different positionsx). The position
dependence of the fieldES is obtained by solving the
wave equation in the sample. Ignoring higher harmonic
the wave equation can be written as

≠2QSsxd
≠x2

­ 2eefffjQSsxdjg
v2

c2
QSsxd . (10)

In Eq. (10), we emphasize thateeff depends only on the
modulus of the amplitude of the field. This imposes
self-consistency condition on (10), because the dielect
function in the equation depends on the solution to th
equation. We identify two main types ofx dependences:
(A) propagating: jQSsxdj ­ const, which holds for
eefffjQSsxdjg . 0; and (B) decaying: jQSsxdj ­ QSsxd,
with ≠QSsxdy≠xjx­0 , 0, for

RQSsxd
0 eeffsydy dy , 0.

Figure 2 shows the two branches (A) and (B), in
conversion plot between the variablesQS and QI . For
a given value ofEI there are several possible values o
ES and thus of the reflection coefficient. The oscillation
in the propagating branch of the figure arise direct
out of the Bessel oscillations ineeffsQSd [Eq. (7)]. The
experimentally controlled parameter isQI . We get a
strongly multistable electronic response merely becau
we monitor reflection coefficient in terms of the paramete
QI instead ofQS, and the transformation between the tw
is controlled by the highly nonlinear effective dielectric
functioneeff.

Figure 3 shows the effect of the nonlinear transform
tion of Fig. 2 on the reflection coefficient in Fig. 1, with
Q replaced byQS . The reflection coefficient exhibits
pronounced structure, with switchings between branch
The sawtooth form of the resultant reflection coefficient
a clear signature of dynamic localization. Owing to th
nonlinear transformation associated with the penetrati
of the field into the superlattice, dynamic localization doe
3496
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FIG. 2. Change of variables from field at the boundary insid
samplesESd to field outsidesEI d. There are two branches cor-
responding to propagating and decaying fields in the samp
When the propagating branch crosses the straight line cor
sponding toeeff ­ 1, the reflection coefficient drops to zero.
The transformation is nonunique, owing to a highly nonlinea
electronic response. The curves are bounded on one side
the line corresponding toeeff ­ 0. The propagating branch
asymptotically reaches the line corresponding toeeff ­ e0.

FIG. 3. THz reflection coefficient of a superlattice plotted
vs the dimensionless incident electric field at the bounda
QI ­ eEIdyv. The stable (solid line) and unstable (dot-
dashed line) branches have been indicated on the grap
There are prominent oscillations which are skewed versions
those in Fig. 1. AsQI is increased from zero, the reflection
coefficient starts off from unity, till it drops sharply to the
background value and follows the sawtooth shape indicate
by the hollow arrows. On decreasingQI from high values,
the reflection coefficient follows a different sawtooth indicated
by the filled arrows. This behavior is a direct consequenc
of dynamic localization and strong multistability arising out of
highly nonlinear electronic response.
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not occur at the Bessel roots of the incident field, as o
may naively expect. The switchings between the branch
occur at different values ofEI depending on whether
the incident field amplitude is increasing or decreasin
yielding hysteresis loops. Also note a sharp switch
reflection coefficient from unity toR0, which is a drop
that should be easily measurable.

In the above calculations, we have completely ignore
the effect of any electron-electron interaction (by settin
vt ! `) and considered a strict cosine dispersion of o
miniband. Corrections to the dispersion rule are not e
pected to change the qualitative features of the reflecti
coefficient [12]. Within a relaxation-time approximation
collisions change our results only toOs1yv2t2d and the
dynamic localization points are shifted. Finally, reintro
ducing the higher harmonics merely produces high fr
quency oscillations atop those in Fig. 3.

We have addressed the problem of a plane THz wa
reflecting off an infinitely long superlattice. We see tha
the realistic means by which the field penetrates the s
perlattice is important, and in fact leads to a bistabl
multistable response. We demonstrate that dynamic
calization of electrons leads to dramatic features in th
optical properties of the superlattice, at input fields th
are related to dynamic localization conditions by a nonlin
ear transformation.

This work was supported by the Office of Nava
Research.
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