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Reflection of THz Radiation by a Superlattice
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Nonlinear THz reflection by a superlattice is calculated using an effective dielectric function.
Oscillations of the reflection coefficient with the electric field amplitude signifies dynamic electron
localization. The nonlinear connection between the incident and internal fields leads to a reflection
coefficient exhibiting hysteresis as a function of the incident field. [S0031-9007(97)04415-3]

PACS numbers: 73.61.—r, 78.66.—w

The dynamics of a charged particle in a superlatticesponse to THz fields ignore where the electric field comes
under the action of an external electric field has beerfrom and how it gets into the superlattice. The transfor-
the subject of intense research [1-6]. Under differenmation between the field in the sample and the field out-
conditions, an electron is predicted to reveal a varietyside is highly nonlinear, and leads, as we shall see, to a
of time-dependent phenomena such as Bloch oscillationsighly multistable behavior of the electronic response.

[1], Zener tunneling [2], self-induced transparency [3], Dipole moment—In a superlattice of period/, we
miniband collapse [4], negative differential conductivity, consider motion only in the growth direction. For a single
and absolute negative conductance in photon-assistediniband of bandwidthA, the energy dispersion with
tunneling experiments [5], and other effects. In particularyespect to wave vectdr is of the tight-binding form:

the phenomenon of dynamic localization [6] is quite A

interesting. In the presence of a high frequency electric €, = —— cogkd). @
field E(r) = E coqwt) along the growth direction of a o 2

superlattice of period, an electron in a single miniband The thernal elgctrlc field couples to the electron through
is predicted in general to drift off. However when the the dlpole_ matrix element which can be shown to be of
parameter® = ¢Ed/hiw is a root of the zeroth order the following form:

Bessel function, the electron is predicted to oscillate with 9

a finite amplitude (in all of the following, we shall skt= pkk') = ie ox O - (2)

1) Such a bounded motion at certain discrete parame_telrhis form, identical to that for a bulk semiconductor, will

values can bg understo.od_ln the foI!owmg simple Way- Mhever be directly evaluated. In any integral involving
each half-period of the incident ac field, the electron tnesit no confusion will arise with taking the continuous

to execute Bloch osc_lllat_lons. It it complgtes an Integelyerivative of the Kronecker delta function. With these
number of Bloch oscillations before the sign of the field

switches, the electron is localized, else it drifts off. definitions, the effective Hamiltonian for noninteracting

This sharp change in transport properties of the ele miniband electrons in a time-dependent electric field

tron should be expected to show up in easily measurablg codwt) is

optical properties. So far, the only observations of dy- A o PRI |

namic localization have been in photon-assisted tunneling H= g excrcx — Ecodwr) % plkk)eee . (3)
experiments [5], where one observes the appearance of

sidebands with intensity?(®), and in the parametric sup- Here c,f (cx) are the conventional electron creation (de-
pression of dc current in the presence of an ac field [7]struction) operators.

However, it is difficult to directly measure transport prop- Central to our approach is the electric-field-driven
erties because one cannot simply attach electrical contadigne evolution of the density matrix in terms of the
to the superlattice and apply a voltage at THz frequenciesienter of mass momentui = (k + k’)/2 and relative
The only realistic way of applying THz frequency fields momentumg = k — k'

to a superlattice is to place the superlattice in the path of — /% _ /.t

a propagating THz pulse. This argues for a more direct Nicg = Nig) = (Chrq/26k-4/2) ()
measurement of the optical properties of the superlatticeve assume that the density matrix tends to relax to an
at THz frequencies. With this in mind, we propose in thisequilibrium valueN,%q with a relaxation timer. We
paper an optical experiment where one measures the THipD not consider the detailed process by which electrons
reflection coefficient of the superlattice. We predict os-populate the conduction miniband (doping, photoexcita-
cillations in the reflection coefficient as a function of thetion). We simply start with an electron population in
electric field amplitude arising out of dynamic electronthe conduction miniband having an initial distribution
localization. Previous theoretical studies of electronic rethat is uniform between quasimomentakr, given by
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N20 = nw/kp[0(K + kp) — (K — k)], where 0 is ) ' "Superlattice
the Heaviside step function andis the density of elec- 1.0 1 M alHz
trons in the conduction miniband. Our equations of mo- = |
tion then give us [0} —= A
ONk, s 08 .
ot = _i[€K+q/2 - GKfq/Z]NKq % i I_I 1
N N B NO 8 0 6 | Detector n
Kq Kq Kq
eE(r) oK . ) (5) g L (\ 1
We compute the time-dependent dipole moment T 0.4 |
wu(t) = Tr(aN) from Eq. (5) and that for the dipole 2 Rok-t
moment derived from itdu/ot + u/7 = e > x vk Nko, IGIJ 02 |
where vy = deg/dK is the velocity of the electrons. :
Note that the equation for the dipole moment requires [
only the value ofNg, atg = 0. We then get an expres- 0.0 0 1'0 2'0
sion for the dipole moment in terms of the dimensionless 30
electric field amplitudé® = e¢Ed/w [8]: © =eEd/o
i FIG. 1. Predicted reflection coefficient of a superlattice in a
n(t) = —@Jo(@)) Z Mcoi@m + Dowt]. THz field, plotted vs the dimensionless eIectrig field ampli-
w m—o 2m * 1 tude at the site of the electrooEd/w, for wp/w = 8. At

(6) high fields, the electronic contribution to the reflection coef-

. ficient vanishes, while at low fields, the field is screened by
At those values of® where Jo(©) =0, the time- the plasmons since the incident frequenayis less than the

dependent dipole moment vanishes. For a different initiablasma frequencyw,. There is a window of low reflection
condition, such as a steady-state current, at the zeros obefficient in the low-field regime. Whedy(eEd/w) = 0,

Jo(®) = 0 the dipole moment has bounded oscillations.the reflection coefficient reaches the background vatye=

These are both examples of dynamic localization of /& — /(€ + DI* because the electrons dynamically lo-
electrons calize, and do not radiate. Inset: Schematics of the proposed

. . . . . THz optical experiment. The superlattice is sandwiched be-
Reflection coefficient-The inset in Fig. 1 shows a tween substrates of GaAs and the incident THz radiation is
possible experimental setup: Incident THz radiation ispolarized along the growth direction. The reflected radiation is

polarized along the growth direction of the superlattice collected using a partially transmitting mirror and analyzed for
and the reflected beam is examined for signatures crgnatures of dynamic localization.
dynamic localization of electrons. Consider the idealized

problem of a monochromatic incident wave propagatingyith gynamic localization. Three special features of this
monochromatically into a superlattice infinitely extendedcomputed reflection coefficient are worth noting: (1) The

along the growth direction. We_ neglect the fact that inuga.induced transparency” effect [3] actually corre-
an actual geometry, the spot size is usually a hundred,,,qq 1 5 vanishing of thelectronic contribution to

tlmes_larger 'Fhan the superlattice length along the growthhe THz reflection coefficient at the Bessel roots—the
direction, which means that a large part of the monitoreqy, .y 4round contribution still remains. At nearby values

reflection arises out of the substrate rather than thg¢ @ "the background reflection coefficient destructively
superlattice itself [9]. _ , interferes with the electronic part and the total reflection
By omitting the higher harmonics generated in Eq. (6)cqefficient actually drops below the dc value; (2) the
[10]’_We can define an_effectlve dielectric function 8Soscillatory behavior of the reflection coefficient and
obtained from the coefficient of casr): (3) the sharp drop in its value for low fields. Fhw
_ L wp Jo(0)J1(0) electric fields the system is expected to behave like a
Eeff(®) = €y 1 2 B —® . (7) . . . .
metal, the electrons executing plasma oscillations which
Here ¢, is the static (dc) dielectric constant of the screens the field, sinaep > w. The predicted reflection
superlattice £ 12.4 for GaAs), andwp = /4mne?/m*ey  coefficient is unity over a range of low’s, but there
is the plasma frequency of the electrons with an effectivés a sharp drop in reflection coefficient in the middle of
massm* = A/2d?. For low values of®, this reduces this range near the first Bessel root, where the electrons
to the dielectric constant for plasmons, vizg|®| =  dynamically localize. Atlarge values of the field am-
el — wp/w?]. plitude, the electric field overcomes plasmon screening,
Figure 1 shows the reflection coefficient resulting fromand the reflection coefficient is controlled essentially by
a straightforward application of this effective dielectric the dc dielectric constargy, since the Bessel functions
function [11]. W.ith respect to the background (dashedn Eg. (7) vanish for large values of their arguments.
line in Fig. 1), the reflection coefficient is zero at the Thus the THz reflection coefficient reaches the dc value
same values of the electric field previously identifiedR, = |(\/eo — 1)/(V€o + 1)I*.

3495



VOLUME 79, NUMBER 18 PHYSICAL REVIEW LETTERS 3 MVEMBER 1997

Actual field in the sample-Figure 1, however, does

. . . —-— propagating, unstable
not give us the complete picture. Relevant experimental

- propagating, stable

prediction requires reflection coefficient as a function not 15 o ggggmg ‘s’gﬁ;b'e P

of the electric fieldE at the site of the electron, but , o, >

rather the external fieldZ; incident on it. Before we [ ,/Seff=0/86ff=1 =
4

make experimental predictions, we need to perform a g ST /

I
transformation of variables frol®@s = eEgd/w to O = = 10 ,/ ,,’ T -
eE;d/w, Es being the field amplitude in the sample. This @y FE /T’/
transformation causes the reflection coefficient to exhibit /’ !

. ; I [ / 3
hysteretic behavior. 2 /_#__’—/:I)
The variablesEs and E; are connected via boundary @ 5 g /

v P
conditions atc = 0, viz., / A (
| [/ R “
®[ - ®R|X:0 = ®S|x:0, (8) l’i:;//
[P
0 a@S o | L4 r 2 . 1 N
—(0; -6 x=0 — . Ix=0, 9
(01 = Op) Lo = =2 | © 0 10 20 30

where®p = ¢Exd/w, with Ex being the reflected field 6, =eEd/®

amplltudg at the bo_undary. Here is the direction of FiG. 2. Change of variables from field at the boundary inside
propagation of the incident wave. We now need thesample(Es) to field outside(E;). There are two branches cor-

x dependence of the boundary val@;, to substitute responding to propagating and decaying fields in the sample.
in Eq. (8) (and to know the electronic contributions to When the propagating branch crosses the straight line corre-

. . e - sponding toe.;; = 1, the reflection coefficient drops to zero.
the reflection from different positions). The position The transformation is nonunique, owing to a highly nonlinear

dependence of the fields is obtained by solving the electronic response. The curves are bounded on one side by
wave equation in the sample. Ignoring higher harmonicsthe line corresponding te.;; = 0. The propagating branch

the wave equation can be written as asymptotically reaches the line correspondingde = €.

2 2
PO 1051 % Os(). (10

In Eqg. (10), we emphasize that; depends only on the
modulus of the amplitude of the field. This imposes a 1.0 = 5
self-consistency condition on (10), because the dielectric
function in the equation depends on the solution to the
equation. We identify two main types &fdependences:
(A) propagating: |®s(x)] = const, which holds for
eer[|Os(x)[] > 0; and (B) decaying: |05(x)| = Os(x),
with 00g(x)/dx|,=o < 0, for f((;)S(X) eert(y)ydy <O.

Figure 2 shows the two branches (A) and (B), in a
conversion plot between the variabl@s and ®,. For
a given value ofE; there are several possible values of
Es and thus of the reflection coefficient. The oscillations
in the propagating branch of the figure arise directly
out of the Bessel oscillations ig.(0s) [Eq. (7)]. The Y ) )
experimentally controlled parameter 8;,. We get a 0 10 20 30
strongly_ multlstab'le electrpnlc response merely because @, = eEd/w
we monitor reflection coefficient in terms of the parameter
0, instead of®¢, and the transformation between the twoFIG. 3. THz reflection coefficient of a superlattice plotted
is controlled by the highly nonlinear effective dielectric vs the dimensionless incident electric field at the boundary
function e.;. 0, = ¢E;d/w. The stable (solid line) and unstable (dot-

Ei 3 sh the effect of th i ¢ f dashed line) branches have been indicated on the graph.
Igure S5 shows the efliect of the nonlinear ransiorma-rpere gre prominent oscillations which are skewed versions of

tion of Fig. 2 on the reflection coefficient in Fig. 1, with those in Fig. 1. As®, is increased from zero, the reflection
O replaced by®s. The reflection coefficient exhibits coefficient starts off from unity, till it drops sharply to the
pronounced structure, with switchings between branche®ackground value and follows the sawtooth shape indicated

; F by the hollow arrows. On decreasing; from high values,
The sawtooth form of the resultant reflection coefficient ISthe reflection coefficient follows a different sawtooth indicated

a clgar signature of d_ynamlc Io_callzathn. Owing to theb the filled arrows. This behavior is a direct consequence
nonlinear transformation associated with the penetratiogf dynamic localization and strong multistability arising out of

of the field into the superlattice, dynamic localization doeshighly nonlinear electronic response.

Reflection Coefficient

unstable
stable
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not occur at the Bessel roots of the incident field, as one

17, 2216 (1976).

may naively expect. The switchings between the branched4] M. Holthaus, Phys. Rev. Letg9, 351 (1992).

occur at different values oFE; depending on whether
the incident field amplitude is increasing or decreasing,
yielding hysteresis loops. Also note a sharp switch in

reflection coefficient from unity taRy, which is a drop
that should be easily measurable.

In the above calculations, we have completely ignored
the effect of any electron-electron interaction (by setting
w7 — ) and considered a strict cosine dispersion of our

(5]

(6]
[7]

miniband. Corrections to the dispersion rule are not ex-[8]
pected to change the qualitative features of the reflection

coefficient [12]. Within a relaxation-time approximation,

collisions change our results only @(1/w?7?) and the

dynamic localization points are shifted. Finally, reintro-
ducing the higher harmonics merely produces high fre-

quency oscillations atop those in Fig. 3.

We have addressed the problem of a plane THz wave
reflecting off an infinitely long superlattice. We see that
the realistic means by which the field penetrates the su-
perlattice is important, and in fact leads to a bistable/
multistable response. We demonstrate that dynamic lo-
calization of electrons leads to dramatic features in th¢10]
optical properties of the superlattice, at input fields that
are related to dynamic localization conditions by a nonlin-

ear transformation.
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