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We investigate the depinning transition in a dirty periodic medium considering a model of layer
charge density waves as a prototype system. We find that depinning from strong disorder occurs v
two stage process where, first, the pinned system experiences a continuous transition into a plasti
sliding state and undergoes a second sharp hysteretic transition into a coherently moving 3D sta
higher drives. In the weakly disordered system the depinning into a coherently sliding state rema
continuous. [S0031-9007(97)04405-0]

PACS numbers: 71.45.Lr, 74.60.Ge, 74.60.Jg
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Depinning of periodic structures such as charge dens
waves (CDW), vortex and domain wall lattices, an
Wigner crystal from a random pinning potential unde
the influence of an external driving force is one of th
paradigms of condensed matter physics. All of the
systems share one thing in common: many elastica
coupled degrees of freedom interacting with a quench
random environment. In this Letter we report analyti
results on the nature of the depinning transition in dirt
periodic media using CDW dynamics as a prototyp
model and discuss possible extensions to other system

Two types of depinning have been observed: a smoo
nonhysteretic transition with a unique pinning thresho
and transport switching characterized by an abrupt hy
teretic transition into a sliding state [1,2]. Smooth depin
ning described in terms of critical behavior [3] follows
from the description of the above systems as a classi
field associated with the distortions of the system. Muc
of the switching behavior is explained by the possibilit
of plastic deformations allowing the amplitude of CDW to
vanish along certain surfaces within the system [4,5]. R
cent experimental and numerical studies [6–9] of vorte
transport in high temperature superconductors (HTS) ha
demonstrated that the depinning of the vortex lattice c
also be accompanied by plastic effects.

These latter findings suggest that plastic effects can p
an essential role in the depinning and that the noneq
librium steady state near the transition resembles fluidli
motion. However, at very high velocities well above th
depinning transition the influence of disorder on the d
namics is suppressed, and one can expect coherent mo
of an almost perfect solid periodic system. A problem o
separation of these two different driven regimes has be
addressed in [9] in the context of vortex transport. It wa
proposed that the driven periodic medium subject to su
ficiently strong disorder undergoes a sharp hystereticdy-
namictransition from coherent motion with almost perfec
structure to fluidlike plastic dynamics upon decreasing th
drive at a second critical forceFf well above the pinning
thresholdFT . This was calleddynamic freezing. Upon
0031-9007y97y79(18)y3471(4)$10.00
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increasing the driving force from the pinned state, the vo
tex lattice starts to slide atF ­ FT , this depinning being
followed by the multiple plastic effects, and elastic motio
recovers atF ­ Ff . FT . This concept received strong
support both from earlier observations of plastic effects [6
and from the subsequent transport measurements on Mo
superconducting films [10].

The prediction of the possibility of a dynamical phas
transition in the driven state [9] was later expanded b
nice scaling arguments onto three-dimensional CDW
[11]. The properties of the driven coherent phase we
examined and discussed in [12–16]. Yet a number
unresolved problems remains. The fundamental iss
is the nature of the depinning transition (continuous v
switching), and the question is under what condition
either type occurs. How would dynamic freezing evolv
with decreasing strength of the disorder? What are t
conditions for the existence of the plastic flow regime a
the state intermediate between the pinned and coheren
moving states? Is it possible to have depinning directly
a coherently moving state?

In this Letter we address these questions using CD
transport as an example system. We consider a mo
of an anisotropic CDW [17] and develop a nonperturba
tive self-consistent description of the dynamic transition
in driven dirty systems. We find that, if disorder is suf
ficiently strong, depinning occurs in two stages: Firs
the CDW depins in a driven decoupled state, where 2
CDWs in each layer slide independently; and, secon
upon further increasing the driving force, the system exp
riences a second transition into a coupled coherently mo
ing 3D phase. This “sequential depinning” correspond
to a dynamic freezing transition scenario proposed in [9
where the periodic system first depins into a plastical
moving state and then, upon further increase of the driv
experiences a transition into a coherently moving dynam
state. In the system with weak disorder, decoupling do
not occur.

This Letter is organized as follows. First we describ
the model and derive a self-consistent equation for th
© 1997 The American Physical Society 3471
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shear modulus. Then we analyze the cases of we
and strong pinning, and determine the disorder induc
dynamic decoupling (the instability point) as the curren
at which the onset /disappearance of the coupling occu
In conclusion, we construct the general dynamic pha
diagram for periodic structures driven through quenche
disorder.

The overdamped dynamics of an anisotropic layere
CDW are governed by the equation (CDW moves alon
thex direction),

l Ùfisx, td ­ g=2fisx, td

1 gm0fsinsfi11 2 fid 1 sinsfi21 2 fidg

1 F 1 gV sinffi 2 aisxdg . (1)

Heref is a CDW phase (displacement field),l is a fric-
tion coefficient,y is the average velocity of CDW,g is
the elastic constant,m0 is the anisotropy parameter char
acterizing layer coupling,V is the strength of the random
potential,asxd is a random phase,i is a layer index, and
x is a D-dimensional vector in the layer. In the CDW
models,a comes from the backscattering part of the im
purity potential:aisxd ­ 2kFsx 1 z0iad, wherekF is the
Fermi vector andr ­ sx, z0iad is the coordinate of the
impurity (z0 is the unit vector in thez direction). Since
the in-plane pinning correlation length exceeds the imp
rity spacing the random phasea is commonly considered
as a random variable homogeneously distributed in the
terval f0, 2pg [1].

If the anisotropy parameterm0 is large one recovers
the continuous limit, theni ! z and the term in brackets
becomes simply≠2fy≠z2. The related Hamiltonian has
the form,

H ­ g
Z

dDx
dz
a

3

∑
1
2

s=fd2 1
1
2

m0s≠zfd2 1 V sx, z, fd
∏

, (2)

where we seta ­ 1. This sD 1 1d-dimensional system
experiences a continuous depinning transition at critic
force Fc,d ­ gsV 4ym0d1ys42dd, m0 ¿ 1, and the pinning
correlation length isjc,d ­ sV 4ym0d21y2s42dd, d ­ D 1

1. If m0 ! 0 the decoupling transition occurs in a stati
3D system atm0 , mmin ­ V 2. Note that in a decoupled
limit the equation of motion (1) becomes isotropic an
m0 ! 1, d ! D.

To obtain a coarse-grained description in terms of
slowly varying f, part of the phase, we integrate ou
its fast componentf ­

1
t0

Rt0

0 fstddt, t0 ­ lyy; l is
the CDW period (hereafter we will drop the bar). Th
coarse-graining procedure is straightforward in case
weak (as compared to coupling) disorder,m0 ¿

p
V ,

where phase variations from layer to layer are sma
and sinsfi11 2 fid ø sfi11 2 fid. Going over to a
continuous description, one arrives at the coarse-grain
equation of motion for the slowly varying part of the
3472
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phase,

l Ùfsx, zd ­ gs=2 1 m≠2
zdf 2 ly≠xf 1 Fpsx, zd , (3)

where m ø m0 and Fp is the effective random force
(random mobilitylike term) originating from the random
sin field (analogous to [18]) with the correlator defined
as kFpsx, zdFpsx0, z0dl ­ Dsyddsx 2 x0ddsz 2 z0d with
[15,16]

Dsyd ­

8<:
sVgd4

slyd2 , y ¿ g
p

myl ,
V 4slyd2

m2 , y ø g
p

myl .
(4)

We omitted the coarse-grained pinning potential term
fpsfd and the disorder-induced KPZ term: It can be
shown [18] that in the perturbative high velocity limit
those terms are irrelevant.

We are interested, however, in the strong disorde
regime where the static CDW is decoupled. In this cas
the coarse-graining procedure is more subtle. To car
it out, note that in the high-velocity case,y ¿ g

p
myl,

Dsyd does not depend on the elastic constantsg and
the anisotropy parameterm (provided the strength of
disorder gV is fixed). This reflects that fact that at
high velocitiesDsyd is controlled by the dissipative part
1yily of the response function and enables us to car
out the coarse-graining procedure also in the case
weak anisotropym0 ø

p
V [i.e., when a replacement

of sinsfi11 2 fid by fi11 2 fi is not possible]. The
coarse-grained equation of motion readssy ¿ g

p
myld

l Ùfisxd ­ g=2fisxd

1 gm0fsinsfi11 2 fid 1 sinsfi21 2 fidg

2 ly≠xfi 1 Fp,isxd . (5)
It is convenient to rewrite Eq. (5) in the form,X

j

G21
ij fj ­ gm0fsinsfi11 2 fid 1 sinsfi21 2 fidg

2 gmffi11 1 fi21 2 2fig

1 Fp,isxd 1 ´isxd (6)
with

G21
ij std ­ sl≠t 1 ly≠x 2 g=2 1 2gmddij

2 gmsdi,i11 1 di,i21d ,
where´isxd denotes a source term, which will be sent to
zero at the end of the calculations. One can now solv
Eq. (6) iteratively, generating an infinite number of tree
diagrams with eitherFp,isxd or ´isxd at the ends of each
branch and averaging subsequently over the random for
keeping only the linear iń isxd terms. To find the self-
consistent equation form we note that the self-consistency
condition requires that the phase-containing terms on t
right-hand side of Eq. (6) cancel each other. After tha
we obtain in the lowest order inm0 the following:

m ­ m0 expf2 1
2 ksssfsx, z, td 2 fsx, z 1 a, tdddd2lg . (7)

Note also that since the correlations ofFp,isxd are
Gaussian, the higher order cumulants do not appear with
this scheme.
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The correlation function in the exponent is calculated with the Hamiltonian from (2) witha ­ 1:

Csssỹ, m, Dsydddd ­ ksssfsx, z, td 2 fsx, z 1 a, tdddd2l

­
1

g2

Z d3k
s2pd3

Dsyd s1 2 coskzad
sk2

x 1 k2
y 1 mk2

z d2 1 l2y2k2
xyg2 . (8)
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The main contribution comes from the maximalkz ;
therefore, we can replacekz ! pya in the integrand.
Then in the 3D case, one arrives at

Csssỹ, m, Dsydddd ­
Dsyd

s4pd3g2m3y2 fsỹ2 1 4p2md1y2 2 ỹg ,

(9)

whereỹ ­ lyyg. Outside the critical regioñy ø Fyg,
and within the critical regioñy . sF 2 Fcd12s42ddy6yg

[19]. Note that, in the limit of very large velocities
Eq. (8) provides the expected behaviorm ! m0, and the
system always remains coupled.

Now comes the central point of our discussion: solvin
the self-consistent equation form. The disappearance o
the solution to Eq. (7) implies decoupling of the system
To capture the transition we will be seeking for th
moment of the first disappearance of the solution. For t
sake of simplicity we can replace the expression in squ
brackets in (9) by2p2my

p
ỹ2 1 4p2m, which gives the

same asymptotics in the limit of small and large velocitie
As we will shortly see, in the case of strong disorder th
decoupling transition occurs at large velocities, where
in the weak disorder case there is no decoupling.

Strong disorderV 2 . m0.—In the limit of large ve-
locities Eq. (7) assumes the form,

m ­ m0 exp

√
2

V 4

32pỹ3m1y2

!
. (10)

To find the point mc of the disappearance of the
solution we derivate both sides of (10), obtaining th
conditionV 4 ­ 64pỹ3m1y2, and find

mc ­ m0ye2, ỹc ­

√
e

64p

V 4

p
m0

!1y3

. (11)

The last task to complete our calculation is to veri
that the critical decoupling velocity indeed falls into
large velocity interval. To this end, note that the large v
locity conditionỹc ¿

p
m reduces at the instability point

to V 2 ¿ 8
p

p m0ye2, which is just the condition of the
strong disorder assumed, and therefore our assump
is justified (one has to bear in mind that, in our dime
sionless units,m ø V 2 ø 1). The critical velocity (11)
agrees with the result of [11] suggested by nice scali
arguments if one substitutesDsyd from (4) instead of the
unspecified mean squared pinning strengthg of [11].

To understand the meaning of the obtained res
let us construct theF-y dependence starting with the
ascending branch. Below the 2D critical forceF2D

c
the decoupledsystem remains pinned. AtF ­ F2D

c the
system undergoes a smooth depinning transition into
,
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plastically moving state in which the system remain
decoupled and each layer moves independently. Up
further increase of the drive, the mean velocity of th
CDW reaches the critical value, and the system ge
coupled into a 3D moving state. Note that since, in the 3
regime pinning force experienced by the moving CDW
F3D

p syd is less then the corresponding pinning force in
the 2D regime,F3D

p syd . F2D
c sydy

p
L'syd , F2D

p syd,
where L'syd is the (velocity dependent) correlation
length across the layers, the pinning correction to th
3D velocity is smaller than the corresponding correction
to the 2D velocity. As a result, the 3D branch of the
F-y dependence liesabove the y2DsFd curve, and the
transition from the plastic to the coupled elastic motio
at y ­ yc upon increasing drive acquires anabrupt
switching character(see Fig. 1). Going down from the
high velocities, the system follows first the elastic 3D
behavior withm ø m0 and then, as velocity decreases to
y ­ yc, the system decouples and jumps down to the 2
branch corresponding to the plastic motion (see Fig. 1)
F ­ Fcsdownd , Fcsupd. Therefore in the limit of strong
pinning the transition from plastic to elastic motion is a
switching hysteretic transition.

An immediate reservation regarding the proposed sc
nario is in order. The above picture suggests that the re
uniqueF-y characteristic describing the dynamic behavio
of the system is the S-shape-like curve, and, according
up and down switchings occur at the instability point
where jdyydFj ­ `. To derive rigorously this kind of
ysFd dependence, a careful analysis in the vicinity of th
critical point yc, accounting for the interaction between

FIG. 1. y-F transport characteristic for the strong pinning a
T ­ 0. The straight diagonal line displays viscous behavio
in the absence of pinning. Inset: dynamic phase diagra
for periodic medium driven through strong disorder. The
dashed line denotes the critical depinning forcejcsT d at which
crossover from creep plastic flow takes place. The solid lin
denotes the switchinglike freezing transition atjf sT d.
3473
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FIG. 2. y-V phase diagram: the system recovers coupling
y . ycsV d, the large velocity dependence ofycsV d is given by
Eq. (11).

the 2D and 3D modes and nonlinear pinning effects,
needed. Leaving the detailed derivation for a forthcomin
publication, we point out that the related scenario, whe
the critical points merge andysFd retains only the inflec-
tion point neary ­ yc, is also possible. In this degen-
erate case the plastic-elastic dynamic transition becom
nonhysteretic and can be detected by the position of t
inflection point inysFd dependence.

Turning now to the case ofweak disorder, V ,

m2, one can easily verify that in this case there wi
always be a nonzero solution form (note that, for weak
disorder, F3D

c ­ V 4ym , F2D
c ­ V 2). Combining this

observation with Eq. (11), we conjecture they-V diagram
shown in Fig. 2.

Our discussion was restricted toT ­ 0, but the form
of the F-y curve (S shape, for example) is determine
by the intrinsic dynamic properties of the system and
stable with respect to thermal effects (as long as the lat
leave the periodic structure intact). Another point is tha
although our consideration was focused on an anisotro
CDW model, the form of the coarse-grained rando
force we used is not specific to CDWs but seems to
generic for any periodic structure subject to quenche
disorder [16,18]. We expect therefore that the above ide
apply to a general case of periodic media driven throu
quenched disorder at finite temperatures. In particula
one can view the “strong depinning” switching scenari
as the “zero-temperature projection” of the sequenti
depinning or nonequilibrium freezing transition in the
vortex system subject to strong disorder as propos
in [9]. The instability force transcribes into a freezing
force introduced for a moving vortex lattice, and th
independent layered motion of 2D CDWs maps on
a regime of plastic flow at the intermediate curren
jc , j , jf (see inset in Fig. 1). The details of the
finite temperature behavior, as well as the quantitati
transcription of the ideas developed for the anisotrop
CDW onto a general case of periodic driven media, w
be presented elsewhere.

In conclusion, we described the depinning behavior
the driven periodic structures using the model of the la
3474
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ered CDW as a prototype system. We have found th
in the case of strong disorder where the static state
decoupled the depinning occurs via a two stage proces
First, the pinned system experiences a continuous dep
ning into a plastically sliding state and at higher drives
undergoes a second sharp hysteretic transition into a c
herently moving 3D state. The second transition is ident
fied with the freezing transition proposed in [9]. For weak
disorder, depinning occurs in a coupled state.
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