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Hysteretic Depinning of Anisotropic Charge Density Waves
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We investigate the depinning transition in a dirty periodic medium considering a model of layered
charge density waves as a prototype system. We find that depinning from strong disorder occurs via a
two stage process where, first, the pinned system experiences a continuous transition into a plastically
sliding state and undergoes a second sharp hysteretic transition into a coherently moving 3D state at
higher drives. In the weakly disordered system the depinning into a coherently sliding state remains
continuous. [S0031-9007(97)04405-0]

PACS numbers: 71.45.Lr, 74.60.Ge, 74.60.Jg

Depinning of periodic structures such as charge densitincreasing the driving force from the pinned state, the vor-
waves (CDW), vortex and domain wall lattices, andtex lattice starts to slide @ = Fr, this depinning being
Wigner crystal from a random pinning potential underfollowed by the multiple plastic effects, and elastic motion
the influence of an external driving force is one of therecovers aF = F; > Fr. This concept received strong
paradigms of condensed matter physics. All of theseupport both from earlier observations of plastic effects [6]
systems share one thing in common: many elasticalland from the subsequent transport measurements on MoGe
coupled degrees of freedom interacting with a quencheduperconducting films [10].
random environment. In this Letter we report analytic The prediction of the possibility of a dynamical phase
results on the nature of the depinning transition in dirtytransition in the driven state [9] was later expanded by
periodic media using CDW dynamics as a prototypenice scaling arguments onto three-dimensional CDWs
model and discuss possible extensions to other systems[11]. The properties of the driven coherent phase were

Two types of depinning have been observed: a smoothxamined and discussed in [12—16]. Yet a number of
nonhysteretic transition with a unique pinning thresholdunresolved problems remains. The fundamental issue
and transport switching characterized by an abrupt hyss the nature of the depinning transition (continuous vs
teretic transition into a sliding state [1,2]. Smooth depin-switching), and the question is under what conditions
ning described in terms of critical behavior [3] follows either type occurs. How would dynamic freezing evolve
from the description of the above systems as a classicalith decreasing strength of the disorder? What are the
field associated with the distortions of the system. Muctconditions for the existence of the plastic flow regime as
of the switching behavior is explained by the possibilitythe state intermediate between the pinned and coherently
of plastic deformations allowing the amplitude of CDW to moving states? Is it possible to have depinning directly to
vanish along certain surfaces within the system [4,5]. Rea coherently moving state?
cent experimental and numerical studies [6—9] of vortex In this Letter we address these questions using CDW
transport in high temperature superconductors (HTS) havigansport as an example system. We consider a model
demonstrated that the depinning of the vortex lattice cawof an anisotropic CDW [17] and develop a nonperturba-
also be accompanied by plastic effects. tive self-consistent description of the dynamic transitions

These latter findings suggest that plastic effects can plai driven dirty systems. We find that, if disorder is suf-
an essential role in the depinning and that the nonequficiently strong, depinning occurs in two stages: First
librium steady state near the transition resembles fluidlikehe CDW depins in a driven decoupled state, where 2D
motion. However, at very high velocities well above theCDWs in each layer slide independently; and, second,
depinning transition the influence of disorder on the dy-upon further increasing the driving force, the system expe-
namics is suppressed, and one can expect coherent motinances a second transition into a coupled coherently mov-
of an almost perfect solid periodic system. A problem ofing 3D phase. This “sequential depinning” corresponds
separation of these two different driven regimes has beeto a dynamic freezing transition scenario proposed in [9],
addressed in [9] in the context of vortex transport. It waswhere the periodic system first depins into a plastically
proposed that the driven periodic medium subject to sufmoving state and then, upon further increase of the drive,
ficiently strong disorder undergoes a sharp hystedtic experiences a transition into a coherently moving dynamic
namictransition from coherent motion with almost perfect state. In the system with weak disorder, decoupling does
structure to fluidlike plastic dynamics upon decreasing theot occur.
drive at a second critical forcé; well above the pinning This Letter is organized as follows. First we describe
threshold F7. This was calleddynamic freezing Upon the model and derive a self-consistent equation for the
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shear modulus. Then we analyze the cases of wegbhase,

and strong pinning, and determine the disorder induced) ; = (V2 + wddd — \vo.db + F 3
dynamic decoupling (the instability point) as the current $(x.2) = 7( H Z_)d) v x¢_ p(x:2), (3)

at which the onset/disappearance of the coupling occur®/here u = uo and ), is the effective random force
In conclusion, we construct the general dynamic phas&@ndom mobilitylike term) originating from the random
diagram for periodic structures driven through quenche@in field (analogous to [18]) with the correlator defined

disorder. as (F,(x,2)F,(x',z')) = A(v)8(x — x/)8(z — z/) with
The overdamped dynamics of an anisotropic Iayere(ﬁ15’16]
CDW are governed by the equation (CDW moves along % v >y u/A,
the x direction), A(w) = VA'(JAU)Z (4)
. 5 @ s v < ’y\/ﬁ/)l.
Adi(x,1) = YV i(x,1) We omitted the coarse-grained pinning potential term
+ yuolsin(disy — bi) + sin(éi—, — ¢:)]  fp(#) and the disorder-induced KPZ term: It can be
) shown [18] that in the perturbative high velocity limit
+F+yVsing - ai(x)]. (1) those terms are irrelevant.
Here ¢ is a CDW phase (displacement field),is a fric- We are interested, however, in the strong disorder

tion coefficient,v is the average velocity of CDWy is  regime where the static CDW is decoupled. In this case,
the elastic constanjy, is the anisotropy parameter char- the coarse-graining procedure is more subtle. To carry
acterizing layer couplingV is the strength of the random it out, note that in the high-velocity case,> y.,/u/A,
potential,a(x) is a random phasé,is a layer index, and A(v) does not depend on the elastic constaptand

x is a D-dimensional vector in the layer. In the CDW the anisotropy parametet (provided the strength of
models,a comes from the backscattering part of the im-disorder yV is fixed). This reflects that fact that at
purity potential:a;(x) = 2kr(x + zpia), wherek isthe  high velocitiesA(v) is controlled by the dissipative part
Fermi vector andr = (x, zpia) is the coordinate of the 1/iAv of the response function and enables us to carry
impurity (zo is the unit vector in the direction). Since out the coarse-graining procedure also in the case of
the in-plane pinning correlation length exceeds the impuweak anisotropyu, < +/V [i.e., when a replacement
rity spacing the random phaseis commonly considered of sin(¢;+; — ¢;) by ¢;+1 — @; is not possible]. The
as a random variable homogeneously distributed in the incoarse-grained equation of motion regds> y./u/A)

terval [0, 27r] [1]. Api(x) = yV2oi(x)
If the anisotropy parameten, is large one recovers . .
the continuous limit, them — z and the term in brackets + yuolsin(pi+1 — ¢i) + sin(di—1 — ¢i)]
becomes simply?¢/dz>. The related Hamiltonian has — \d i + Fpi(x). (5)
the form, It is convenient to rewrite Eq. (5) in the form,
d _ . .
H = ydex ;Z Z Gii'dj = yumolsin(gis1 — ) + sin(di—1 — )]
1 , 1 , ! — yuldivi + dio1 — 264]
X | = + — LD+ V(x,z,d) |,
|5 V0P + 3 ooV + Vixz )|, @ b Fox) + i) ©
where we set = 1. This (D + 1)-dimensional system With B )
experiences a continuous depinning transition at critical G;; (1) = (A, + Avd, — yV° + 2yu)é;;
force Foqy = y(V*/uo)/*=9, uo > 1, and the pinning — (et + Siis1)

H H — 4 —1/2(4—d) — . i
correlation length i s = (V*/ o) d =D+ whereg;(x) denotes a source term, which will be sent to

CI%Dg lsLt(ZerrTaO thidecqur;hr‘l/gz tr?\lr:;g“t)r?a??r::;ﬁ;;oi sltsgc zero at the end of the calculations. One can now solve
oL Sy Ko < fmin = V. . Ip Eq. (6) iteratively, generating an infinite number of tree
limit the equation of motion (1) becomes isotropic anddiagrams with eitheF, ;(x) or &;(x) at the ends of each

mo—1,d = D. . o branch and averaging subsequently over the random force,
To obtain a coarse-grained description in terms of ggening only the linear im;(x) terms. To find the self-

slowly varying ¢~ part of thtf phase, we integrate out .nqjstent equation fqx we note that the self-consistency

its fast componenty = ;- o ¢(1)dt, 1o =1/v; LIS condition requires that the phase-containing terms on the

the CDW period (hereafter we will drop the bar). The ight-hand side of Eq. (6) cancel each other. After that,

coarse-graining procedure is straightforward in case ofye gbtain in the lowest order in, the following:

weak (as compared to coupling) disordery > /V, 1 5

where phase variations from layer to layer are small # = #o€XH—3{(¢(x,z.1) = ¢(x,z + a,0)7)]. (7)

and sii¢;+1 — ¢;) = (di+1 — ¢i). Going over to a Note also that since the correlations &f,;(x) are

continuous description, one arrives at the coarse-graine@aussian, the higher order cumulants do not appear within

equation of motion for the slowly varying part of the this scheme.
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The correlation function in the exponent is calculated with the Hamiltonian from (2)awith1:
C@, w, AW)) = (p(X,2,1) = p(x,z + a,1))*)

_ 1 d’k A(v) (1 — cosk.a)
y2 ) Q@) (k3 + k) + wk2)? + A0k /v

(8)

The main contribution comes from the maximal; ! plastically moving state in which the system remains
therefore, we can replack, — 7 /a in the integrand. decoupled and each layer moves independently. Upon

Then in the 3D case, one arrives at further increase of the drive, the mean velocity of the
A(v) CDW reaches the critical value, and the system gets
C(v, u,Av)) = @iy i [(5> + 472w)'/?> — #],  coupled into a 3D moving state. Note that since, in the 3D

regime pinning force experienced by the moving CDW,

(©) FP(v) is less then the corresponding pinning force in
whered = Av/y. Outside the critical regios ~ F/vy, the 2D regimg,FgD(v) = F?D(v)/\/LL(v) < Ff,D(v),_
and within the critical regiors = (F — F,)!"¢=9/°/y  \where L, (v) is the (velocity dependent) correlation
[19]. Note that, in the limit of very large velocities, length across the layers, the pinning correction to the
Eq. (8) provides the expected behavjor— uo, and the 3D velocity is smallerthan the corresponding correction
system always remains coupled. to the 2D velocity. As a result, the 3D branch of the

Now comes the central point of our discussion: solvingF-v dependence lieabovethe v,p(F) curve, and the
the self-consistent equation far. The disappearance of transition from the plastic to the coupled elastic motion
the solution to Eq. (7) implies decoupling of the system.at v = v. upon increasing drive acquires ambrupt
To capture the transition we will be seeking for theswitching character(see Fig. 1). Going down from the
moment of the first disappearance of the solution. For théigh velocities, the system follows first the elastic 3D
sake of simplicity we can replace the expression in squarbehavior withu =~ uo and then, as velocity decreases to
brackets in (9) by272u//9? + 472 u, which gives the v = v, the system decouples and jumps down to the 2D
same asymptotics in the limit of small and large velocitiesbranch corresponding to the plastic motion (see Fig. 1) at
As we will shortly see, in the case of strong disorder theF = F (gown) < Fcup). Therefore in the limit of strong
decoupling transition occurs at large velocities, whereapinning the transition from plastic to elastic motion is a

in the weak disorder case there is no decoupling. switching hysteretic transition.
Strong disorderV? > uo.—In the limit of large ve- An immediate reservation regarding the proposed sce-
locities Eq. (7) assumes the form, nario is in order. The above picture suggests that the real
V4 uniqueF'-v characteristic describing the dynamic behavior
Mm= po€XpP — W (10)  of the system is the S-shape-like curve, and, accordingly,

up and down switchings occur at the instability points
To find the point . of the disappearance of the where|dv/dF| = ». To derive rigorously this kind of
solution we derivate both sides of (10), obtaining thev(F) dependence, a careful analysis in the vicinity of the

conditionV* = 64793 '/2, and find critical point v., accounting for the interaction between
VA \13
2 o e
= , === . 11
Mc /-LO/E Ve (6477 m) ( )
B . . \ movin
The last task to complete our calculation is to verify ol
that the critical decoupling velocity indeed falls into a st flow
large velocity interval. To this end, note that the large ve- sy~

locity conditiond. > ./ reduces at the instability point
to V2 > 8./7 uo/e*, which is just the condition of the
strong disorder assumed, and therefore our assumption Ve
is justified (one has to bear in mind that, in our dimen-
sionless unitsy < V? <« 1). The critical velocity (11)

agrees with the result of [11] suggested by nice scaling 2D Fe
arguments if one substitutés(v) from (4) instead of the ¢
unspecified mean squared pinning strengtif [11]. FIG. 1. v-F transport characteristic for the strong pinning at

To understand the meaning of the obtained resull = 0. The straight diagonal line displays viscous behavior
let us construct theF-v dependence starting with the in the absence of pinning. Inset: dynamic phase diagram

. o for periodic medium driven through strong disorder. The
D
ascending branch. Below the 2D critical forde? dashed line denotes the critical depinning foyc€l’) at which

the decoupledsystem remains pinned. At = F;° the  crossover from creep plastic flow takes place. The solid line
system undergoes a smooth depinning transition into théenotes the switchinglike freezing transitionja7).
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ered CDW as a prototype system. We have found that
v ve(V) in the case of strong disorder where the static state is
decoupled the depinning occurs via a two stage process.
First, the pinned system experiences a continuous depin-
ning into a plastically sliding state and at higher drives
coupled undergoes a second sharp hysteretic transition into a co-
decoupled herently moving 3D state. The second transition is identi-
fied with the freezing transition proposed in [9]. For weak
\Y disorder, depinning occurs in a coupled state.
‘/ﬁ It is a great pleasure to thank I|. Aranson and
S. Scheidl for many useful discussions, and G. Crabtree
FIG. 2. v-V phase diagram: the system recovers coupling afor critical reading of the manuscript. This work was
v > v.(V), the large velocity dependence of(V) is given by  supported by the Argonne National Laboratory through
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needed. Leaving the detailed derivation for a forthcomingNo. DMR91-20000 Science and Technology Center for
publication, we point out that the related scenario, wheré&uperconductivity.
the critical points merge and(F) retains only the inflec-
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nonhysteretic and can be detected by the position of the
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