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Electroneutrality and the Friedel Sum Rule in a Luttinger Liquid
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Screening in one-dimensional metals is studied for arbitrary electron-electron interactions. It is
shown that for finite-range interactions (Luttinger liquid) electroneutrality is violated. This apparent
inconsistency can be traced to the presence of external screening gates responsible for the effective
short-ranged Coulomb interactions. We also draw attention to the breakdown of linear screening for
wave vectors close to2kF . [S0031-9007(97)04370-6]

PACS numbers: 71.10.Pm, 71.45.Gm, 73.23.Ps
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Screening is one of the most important and useful co
cepts in condensed-matter physics [1,2]. If some e
ternal charge is brought into a conductor, the intern
charge carriers will reorganize with the new distributio
of charge eliminating the electric field at large distance
The screened potential set up by the external charge
gether with its screening cloud is then rather short range
Typically, one ends up with only weakly correlated sys
tems, despite originally long-range electrostatic forces.

Most theories employ linear screening as a working h
pothesis, where the effects of (possibly time-dependen
external test charges onto the conduction electrons a
determined by the linear response theory. Given the v
lidity of linear screening, the wave vector- and frequency
dependent dielectric functionesq, vd contains all relevant
information about screening. An important result of th
theory is the Friedel sum rule [3], which states that th
total electronic screening charge exactly compensates a
external (impurity) charge brought into the system. Th
charge neutrality requirement on large scales arises b
cause in equilibrium there can be no net electric field
large distances. The validity of the Friedel sum rule i
usually taken for granted, generally by referring to th
analysis in Ref. [4] where this was proven explicitly for
the Anderson model.

In this paper, we discuss screening and the Fried
sum rule for interacting electrons in one dimensio
(1D). At low energy scales, provided no lattice or spi
instabilities are present, the properties of 1D fermions ca
be described by the Luttinger liquid model [5] (or sligh
generalizations thereof; see below). The Luttinger liqui
is a strongly correlated 1D metal which does not suppo
the existence of Landau quasiparticles. It is of importanc
for a number of applications of current interest, e.g
quantum wires in semiconductor heterostructures in t
limit of one transport channel [6], transport in carbon
nanotubes [7], or quasi-1D organic conductors [8], t
mention a few. Here we show that in a Luttinger liquid
the screening charge does not balance the impurity char
Nevertheless, Friedel’s phase shift sum rule [3] remain
valid in terms of an adequately defined phase shift.
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Our investigation of screening in 1D is based on th
standard bosonization method [9]. From a comparis
with alternative techniques, this method is known to giv
a proper description of 1D fermions at low energy scal
(we consider zero temperature below). Since spin a
charge are decoupled in a Luttinger liquid, it is sufficien
to study only the spinless case in the following, wit
the same conclusions applying to spin-1

2 electrons. The
low-lying excitations in a spinless Luttinger liquid are
described by a bosonic phase fieldusxd, in terms of which
the electron density operator can be written in the form

rsxd 
kF

p
1

1
p

p
≠xusxd

1
kF

p
cosf2kFx 1

p
4p usxdg . (1)

The first term describes the mean charge density (which
supposedly neutralized by a positive background), the s
ond term gives long-wavelength (q . 0) fluctuations, and
the last term yields rapidly oscillatingsjqj . 2kF) contri-
butions. Puttingh̄  1, the Luttinger liquid Hamiltonian
is then given by [5,9]

H0 
yF

2

Z
dx fP2sxd 1 s≠xud2g

1
1

2p

Z
dx dx0 ≠xusxdUsx 2 x0d≠x0usx0d , (2)

where Psxd is the canonically conjugate momentum t
usxd and yF the Fermi velocity. The potentialUsxd
can describe either an unscreened Coulomb interacti
Usxd , 1yjxj, or an externally screened finite-range po
tential which arises due to the presence of mobile char
carriers close to the 1D metal, e.g., on screening ga
or other nearby chains. To simplify notation, we sha
make the inessential assumption thatUsxd is sufficiently
long ranged such that its Fourier transformeUsqd has
a very small component atq  2kF . Then electron-
electron backscattering can be neglected, as implied
Eq. (2). Even if this should not be the case, the bosoniz
tion technique can still be applied and yields qualitative
© 1997 The American Physical Society 3463
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the same results. The Luttinger liquid model in the stric
sense is obtained by effectively using a local interactio
Usxd  eUs0ddsxd. Here we shall employ the usual di-
mensionless Luttinger liquid interaction parameterg de-
fined as

g  f1 1 eUs0dypyFg21y2 (3)

for all finite-range interactions. Theng  1 is the
noninteracting limit, while for repulsive interactions we
have g , 1. In the absence of screening gates,g
approaches zero in an infinitely long system [5,9].

To study screening properties, we now consider som
external time-dependent charge distributioneQsx, td
brought into the system. The interaction with the 1D
metal reads

HQstd 
Z

dx dx0 Qsx, tdUsx 2 x0drsx0d . (4)

In view of the representation (1) for the electronic density
there are two contributions. The first comes from th
q . 0 component, and the second from theq . 2kF

part. We note that the interaction potentials in Eqs. (2
and (4) are the same because we deal with the interna
unscreened, microscopic interaction at this stage.

Let us first discuss the long-wavelength (jqj ø 2kF)
response of the electrons. Ignoring the2kF part in
Eq. (4), the now Gaussian Hamiltonian yields straightfo
wardly

krsq, vdl 
yF

p

q2 eUsqd
v2 2 v2sqd

Qsq, vd (5)

with the plasmon dispersion relation

vsqd  yF jqj

q
1 1 eUsqdypyF .

Apparently, in the long-wavelength limit, the Luttinger
liquid model implies linear screening

krsq, vdl  eUsqdxsq, vdQsq, vd

with the polarizability xsq, vd. The response of the
electrons toQsx, td is thus fully described by a dielectric
function. One finds from Eq. (5) and the definition [2]

e21sq, vd  1 1 eUsqdxsq, vd (6)

the small-q result

e21sq, vd  1 1
yF

p

q2 eUsqd
v2 2 v2sqd

.

In the static case,v  0, this yields

esqd  1 1 eUsqdypyF . (7)

We mention in passing that for large impurity charg
eQ the bosonization approach breaks down [10]. For in
stance, Eq. (5) would incorrectly predict that the electro
density becomes negative for sufficiently largeQ.

One can now define the internally screened inte
action potentialeUeffsqd  eUsqdyesqd which determines
3464
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the effective potential between two charges [2]. Fro
Eq. (7), its long-wavelength part iseUeffsqd  eUsqdyf1 1eUsqdypyFg, which gives for a finite-range interactioneUeffsqd  g2 eUsqd as q ! 0. For an externally un-
screened1yjxj interaction, one haseUsqd  2e2j lnsqddj,
whered is the width of the 1D channel [5]. Apart from
a hard core at small distances, this leads to the lar
distance behavior valid atjxj ¿ d

Ueffsxd ,
1

jxj ln jxydj
. (8)

Therefore the long-range character of the interaction is
significantly reduced. The only logarithmic suppressi
of the 1yjxj law explicitly demonstrates the very wea
screening in 1D.

The condition for perfect screening

e21sq ! 0, v  0d ! 0

is seen to be violated in any finite-range model. This fo
lows directly from Eq. (7) sinceesq ! 0d  1yg2. The
implications are best discussed for a point charge sitt
at x  0, i.e.,Qsx, td  Qdsxd. The corresponding long-
wavelength response is given in Eq. (5). For the to
screening charge,eQs  e

R
dxkrsxdl, this leads to the

strikingly simple result

Qs  2s1 2 g2dQ , (9)

whereg has been defined in Eq. (3). We stress that t
relation holds for any finite-range Coulomb interactio
Asserting that the2kF Friedel oscillation in the charge
density does not contribute to the total screening cha
(see below), we observe that only a fraction1 2 g2 , 1
of the external chargeQ is screened by the conductio
electrons. Therefore theelectroneutrality conditionfor
impurity plus screening charge,Qs 1 Q  0, is appar-
ently violated in models with a finite-range interaction
Of course, this reasoning carries over to lattice mod
with effectively short-ranged interactions, e.g., the 1
Hubbard model. For a long-range1yjxj interaction, the
parameterg effectively approaches zero, and electrone
trality is then seen to hold.

The result (9) can also be obtained by a phase s
consideration. Forward scattering due to a pointli
impurity chargeQdsxd in Eq. (4) can be eliminated by
the standard unitary transformation

U  exp

Ω
2i

p
p

Z
dx asxdfsxd

æ
,

wherefsxd is the dual field tousxd [9], and the Fourier
transform ofasxd is

easqd  2
eUsqdypyF

1 1 eUsqdypyF

Q . (10)
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Comparing with Eq. (5) forv  0, the induced electronic
density is simplykrsxdl  asxd. The unitary transforma-
tion U now leads to a phase shift appearing, e.g., in t
2kF part of Eq. (1), which takes the form

hsxd  p
Z

dx0 sgnsx 2 x0dasx0d .

Defining the asymptotic phase shifthF  hsx ! `d, we
find

Qs 
Z

dx asxd  hFyp . (11)

Despite the apparent violation of electroneutralit
Friedel’s phase shift sum rule [3] is seen to hold. Clearl
the phase shifthF characterizes some screened impuri
charge and not the bare chargeQ brought into the
system. Finally, using Eqs. (10) and (11), one may veri
Eq. (9) again.

We mention that the conventional Fermi liquid case
not directly included in Eq. (9) as the simple limitg ! 1.
For a Fermi liquid, one assumes that quasiparticles w
good screening exist and then adds a local poten
scatterer in order to derive the Friedel sum rule [3]. I
scattering strength is related to a phase shifthF, and
the screening charge isQs  hFyp as in Eq. (11). By
interpreting hFyp as the impurity charge, the Friede
sum rule is then in factimposedas a consistency relation
ensuring electroneutrality of the system. In contras
putting g  1 for the Luttinger liquid model would
imply a noninteracting system (Fermi gas) rather than
Fermi liquid.

The physical reason for the apparent failure of ele
troneutrality in finite-range models is due to induce
charges outside the 1D system, e.g., on external scre
ing gates, which cause the finite range of the interactio
These other conductors also contribute to the total scre
ing charge. To give a concrete example, consider t
gated 1D quantum wire shown in Fig. 1. For a wire o
width d, the presence of a two-dimensional gate at a d

FIG. 1. Schematic view of a 1D quantum wire with short
range Coulomb interaction due to the presence of a 2
screening gate located a distanceD away from the wire. The
bare impurity charge isQ, the direct screening charge within
the 1D system isQs  2s1 2 g2dQ [see Eq. (9)], and the
induced charge on the screening gate isQG .
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tanceD leads to a short-range interaction characterized by

g 

(
1 1

2e2

pyF
lns2Dydd

)21y2

.

The induced 1D charge density (integrated over they
direction) on the gate,erGsxd, is obtained as

rGsxd  2
D
p

Z
dx0 qsx0d

D2 1 sx 2 x0d2 ,

whereqsx0d is the total density in the wire (including the
impurity). Integration overx gives straightforwardly the
total induced charge on the gate

QG 
Z

dx rGsxd  2sQ 1 Qsd .

In effect, the electroneutrality condition in the form

Qs 1 Q 1 QG  0 (12)

is then restored for the total system including the screen
ing gates. Ignoring the screening gates implicitly used to
derive the Luttinger liquid model is thus responsible for
the modified condition (9) within the 1D system. Paren-
thetically, we note that if the chargeQ is not put directly
into the 1D system but some distance away, the screenin
chargeQs is not given by Eq. (9) anymore, yet Eq. (12)
will still hold.

The underscreening of an external charge brought into
the 1D system should also be experimentally observ-
able. If charge is injected into, e.g., a carbon nanotube
constituting a perfect experimental realization of a 1D
conductor [7], the resulting image charge on nearby exter-
nal screening gates can be detected by capacitance spe
troscopy [11] or by using highly sensitive single-electron
transistor (SET) electrometers on top of a scanning probe
tip [12].

So far we have discussed the long-wavelength part o
the electronic response only. Turning now to the2kF part
[13] and assuming linear screening, we have to compute
the polarizability x, which is essentially the double-
Fourier transformed density-density correlation function
of the unperturbed conductor

xsq, ivd  2
Z

dx dt e2ivt2iqxkTtrsx, tdrs0, 0dl .

(13)

Here Tt is the time-ordering operator in Euclidean time,
and one has to analytically continue Eq. (13) to real
frequencies,iv ! v 1 i01, in order to obtainxsq, vd
needed in Eq. (6). The2kF part of x for a Luttinger
liquid is found to read

xsq, ivd  2
Cg

pyF

X
p,s6

√
isv

yFkF
1

É
q
kF

2 2p

É !2g22

3 F

√
2 2 2g, 1 2 g; 2 2 g;

isv 2 yF jq 2 2pkF j

isv 1 yF jq 2 2pkF j

!
,
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whereF denotes the hypergeometric function andCg 
42gGs2 2 2gdyGsgdGs2 2 gd. In the static case, this
gives algebraic singularities

xsqd  2
C̄g

pyF

X
p6

É
q
kF

2 2p

É2g22

, (14)

with the numerical constant

C̄g 

p
pGs2 2 2gd

2GsgdGs3y2 2 gd
.

From these algebraic singularities one would infer
Friedel oscillation decaying askrsxdl , coss2kFxdx122g

and a similar contribution to the screened interactio
potentialUeffsxd. However, this represents only the firs
order in the perturbation expansion for the Friedel osc
lation and determines merely the short-distance behavi
while the long-distance behavior of the Friedel oscilla
tion necessitates a calculation in all orders of the im
purity strength [14,15]. An important implication is the
breakdown of linear screeningfor the 2kF electronic re-
sponse. This breakdown occurs for arbitrarily small im
purity chargeeQ at wave vectors close enough to2kF .
Following the results of Ref. [14], the singularity ex-
ponent 2g 2 2 for q ! 2kF in Eq. (14) is turned into
g 2 1. As a consequence, the effective screened p
tential as well as the Friedel oscillation asymptoticall
decay as,coss2kFxdx2g. Because of the intrinsically
nonlinear screening, the dielectric function is of rathe
limited use for wave vectors close to2kF .

The bosonization approach naturally separates the d
sity operator (1), and therefore also the electronic scree
ing response, into a slow and a fast2kF part. The total
screening charge is determined by theq  0 component
of the induced charge density, which in turn is exclusivel
given by the slow part (5). Therefore the Friedel oscilla
tion obtained from the bosonized2kF part of Eq. (1) does
not contribute to the total screening charge. In a micro
scopic calculation, one will in general not be able to sep
rate the slow and the fast components so nicely, but with
the bosonization approach, a quite simple derivation of th
total screening charge (9) is possible.

To conclude, we have investigated screening in on
dimension. We have shown that electroneutrality is n
obeyed in models with a finite-range (screened) Coulom
interaction. In a 1D metal, the total induced screenin
3466
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charge is given byQs  2s1 2 g2dQ, where Q is the
impurity charge andg the Luttinger liquid interaction
parameter. To resolve this apparent inconsistency, o
needs to take into account induced charges on screen
gates.
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