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Electroneutrality and the Friedel Sum Rule in a Luttinger Liquid
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Screening in one-dimensional metals is studied for arbitrary electron-electron interactions. It is
shown that for finite-range interactions (Luttinger liquid) electroneutrality is violated. This apparent
inconsistency can be traced to the presence of external screening gates responsible for the effectively
short-ranged Coulomb interactions. We also draw attention to the breakdown of linear screening for
wave vectors close t?kr. [S0031-9007(97)04370-6]

PACS numbers: 71.10.Pm, 71.45.Gm, 73.23.Ps

Screening is one of the most important and useful con- Our investigation of screening in 1D is based on the
cepts in condensed-matter physics [1,2]. If some exstandard bosonization method [9]. From a comparison
ternal charge is brought into a conductor, the internalvith alternative techniques, this method is known to give
charge carriers will reorganize with the new distributiona proper description of 1D fermions at low energy scales
of charge eliminating the electric field at large distances(we consider zero temperature below). Since spin and
The screened potential set up by the external charge t@harge are decoupled in a Luttinger liquid, it is sufficient
gether with its screening cloud is then rather short rangedo study only the spinless case in the following, with
Typically, one ends up with only weakly correlated sys-the same conclusions applying to sgirelectrons. The
tems, despite originally long-range electrostatic forces. |ow-lying excitations in a spinless Luttinger liquid are

Most theories employ linear screening as a working hydescribed by a bosonic phase fiéltk), in terms of which
pothesis, where the effects of (possibly time-dependenthe electron density operator can be written in the form
external test charges onto the conduction electrons are
determined by the linear response theory. Given the va- px) = ke + Laxg(x)
lidity of linear screening, the wave vector- and frequency- JT
dependent dielectric functiogn(g, ) contains all relevant
information about screening. An important result of the

theory is the Friedel sum rule [3], which states that theThe first term describes the mean charge density (which is

total electronic screening charge exactly compensates any, dl tralized b itive back d) th )
external (impurity) charge brought into the system. This pposedly neutralized by a positive background), the sec

. : . ond term gives long-wavelengtly & 0) fluctuations, and
charge neutrality requirement on large scales arises b

. o S he last term yields rapidly oscillati = 2kp) contri-
cause in equilibrium there can be no net electric field y picty 4| r)

ahutions. Puttingi = 1, the Luttinger liquid Hamiltonian
large distances. The validity of the Friedel sum rule is. ' g1 ' gertq

usually taken for granted, generally by referring to theIS then given by [5,9]
analysis in Ref. [4] where this was proven explicitly for _ VUF 2 2
the Xnderson mo[d]el. P Py Ho = 2 dx [IT(x) + (9:0)°)

In this paper, we discuss screening and the Friedel 1 . , .
sum rule for interacting electrons in one dimension +Efdx dx’ 0,0(x)U(x — x)av(x), (2)
(1D). At low energy scales, provided no lattice or spin
instabilities are present, the properties of 1D fermions catvhere I1(x) is the canonically conjugate momentum to
be described by the Luttinger liquid model [5] (or slight #(x) and vr the Fermi velocity. The potential/(x)
generalizations thereof; see below). The Luttinger liquidcan describe either an unscreened Coulomb interaction,
is a strongly correlated 1D metal which does not support/(x) ~ 1/lx|, or an externally screened finite-range po-
the existence of Landau quasiparticles. It is of importancéential which arises due to the presence of mobile charge
for a number of applications of current interest, e.g.carriers close to the 1D metal, e.g., on screening gates
quantum wires in semiconductor heterostructures in th@r other nearby chains. To simplify notation, we shall
limit of one transport channel [6], transport in carbonmake the inessential assumption tii&x) is sufficiently
nanotubes [7], or quasi-1D organic conductors [8], tolong ranged such that its Fourier transforti(g) has
mention a few. Here we show that in a Luttinger liquid a very small component a§y = 2kr. Then electron-
the screening charge does not balance the impurity chargelectron backscattering can be neglected, as implied in
Nevertheless, Friedel's phase shift sum rule [3] remain&g. (2). Even if this should not be the case, the bosoniza-
valid in terms of an adequately defined phase shift. tion technique can still be applied and yields qualitatively

+ k;Fcos[szx + Vam 6(x)]. (1)
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the same results. The Luttinger liquid model in the strictthe effective potential between two charges [2]. From
sense |s obtained by effectively using a local mteractlorEq (7), its long-wavelength part [geff(q) U(q) J[1 +
U(x) = U(0)5(x). Here we shall employ the usual di- U(q)/rrvp] which gives for a finite-range interaction

][ner:jsmnless Luttinger liquid interaction paramegede- Uett(q) = g2U(q) as ¢ — 0. For an externally un-
IN€d as o screenedl /|x| interaction, one ha#/(q) = 2¢%|In(¢d)|,
g =1[1+ U)/mvp]"? (3)  whered is the width of the 1D channel [5]. Apart from

a hard core at small distances, this leads to the large-

for all finite-range interactions. Them =1 is the distance behavior valid at| > d

noninteracting limit, while for repulsive interactions we
have ¢ < 1. In the absence of screening gates, 1
approaches zero in an infinitely long system [5,9]. Uerr(x) ~ m : (8)
To study screening properties, we now consider some
external time-dependent charge distributiarQ(x,t)  Therefore the long-range character of the interaction is not
brought into the system. The interaction with the 1Dsignificantly reduced. The only logarithmic suppression
metal reads of the 1/|x| law explicitly demonstrates the very weak
screening in 1D.
Hy(1) = f dxdx' Q(x,)U(x — x)p(x').  (4) The condition for perfect screening

In view of the representation (1) for the electronic density, e g—0,0=0)—0

there are two contributions. The first comes from the

g = 0 component, and the second from thge= 2k, IS seen to be violated in any finite-range model. This fol-

part. We note that the interaction potentials in Egs. (2Jows directly from Eq. (7) since(q — 0) = 1/g*. The

and (4) are the same because we deal with the internalljnplications are best discussed for a point charge sitting

unscreened, microscopic interaction at this stage. atx = 0,i.e.,Q(x,t) = Q8(x). The corresponding long-
Let us first discuss the long-wavelengtly|(< 2kz) ~ Wavelength response is given in Eg. (5). For the total

response of the electrons. Ignoring thér part in  Screening chargesQ, = e [ dx{p(x)), this leads to the

Eq. (4), the now Gaussian Hamiltonian yields straightfor-strikingly simple result

wardly ’
~ s — 1 - . 9
w2l 0. (1 -¢90 )

(plg.0)) = —=—3— wZ(Q)Q(q’w) ) Whereg has been defined in Eq. (3). We stress that this
. . . : relation holds for any finite-range Coulomb interaction.
with the plasmon dispersion relation Asserting that theky Friedel oscillation in the charge
0(q) = vrlql /1 n INJ(q)/m;F density does not contribute to the total screening charge
' (see below), we observe that only a fractibr- g2 < 1
Apparently, in the long-wavelength limit, the Luttinger of the external charg® is screened by the conduction
liguid model implies linear screening electrons. Therefore thelectroneutrality conditionfor
o~ impurity plus screening charg&®, + Q = 0, is appar-
{plg. )) = Ulq)x (g, )Q(g. ) ently violated in models with a finite-range interaction.
with the polarizability x(¢, w). The response of the Of course, this reasoning carries over to lattice models
electrons toQ(x, ¢) is thus fully described by a dielectric with effectively short-ranged interactions, e.g., the 1D
function. One finds from Eq. (5) and the definition [2]  Hubbard model. For a long-rangé|x| interaction, the

e g 0) =1+ 5(6])/\/(6]’ ) (6) parameterg effectively approaches zero, and electroneu-
trality is then seen to hold.
the smallg result N The result (9) can also be obtained by a phase shift
~1 _ v q*U(q) consideration. Forward scattering due to a pointlike
€ (qw) =1+ 7 0?2 — 0Xq)" impurity chargeQd(x) in Eq. (4) can be eliminated by

. L the standard unitary transformation
In the static casap = 0, this yields

elg) = 1 + Ulg)/mvr. (7) v = el i [ dxa@ow).
We mention in passing that for large impurity charge

¢Q the bosonization approach breaks down [10]. For inywhere ¢ (x) is the dual field tof(x) [9], and the Fourier
stance, Eq. (5) would incorrectly predict that the electronyansform ofa(x) is
density becomes negative for sufficiently lar@e ~

One can now define the internally screened inter- a(q) = — Ulg)/mvr

~ = ) 10
action potentialU.s(g) = U(q)/€(g) which determines 1 1+ Ulg)/mvr ¢ (10)
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Comparing with Eq. (5) fow = 0, the induced electronic tanceD leads to a short-range interaction characterized by
density is simpl¥p(x)) = a(x). The unitary transforma- 262 -1/2
tion U now leads to a phase shift appearing, e.g., in the g = ‘1 = In(ZD/d)] )
2kr part of Eq. (1), which takes the form TUF
The induced 1D charge density (integrated over the

n(x) = 77-[ dx'sgn(x — x)a(x'). direction) on the gatezps(x), is obtained as
— _2 d / Q(x/)
Defining the asymptotic phase shiff: = n(x — ), we pa(x) = - D2 x (x — x/)2°
find whereg(x’) is the total density in the wire (including the
_ _ impurity). Integration over gives straightforwardly the
Qs = f dx a(x) = np/m. A1) total induced charge on the gate

Despite the apparent violation of electroneutrality, 0c = [ dx pg(x) = —(0 + Q,) .
Friedel's phase shift sum rule [3] is seen to hold. Clearly, ¢ pe

the phase shift)r characterizes some screened impurityln effect, the electroneutrality condition in the form
charge and not the bare charge brought into the O, +0+06=0 (12)
sE);stt(eg.ag;?r?lly, using Egs. (10) and (11), one may Ve”fyis then restored for the total system including the screen-
We mentioh that the conventional Fermi liquid case ising gates. Ignqring the _screening_gates implicitly_used to
not directly included in Eq. (9) as the simple lingit— 1. derive the Luttinger liquid model is thus responsible for

For a Fermi liquid, one assumes that quasiparticles WitII\he modified condition (9) within the 1D system. Paren-

good screening exist and then adds a local potentialhetica”y’ we note that if the Char@ is not put directly .
scatterer in order to derive the Friedel sum rule [3]. lts'NtO the 1D system but some distance away, the screening

scattering strength is related to a phase shif, and C*.‘l";‘r%.e”th ;3 not given by Eq. (9) anymore, yet Eq. (12)
the screening charge i, = ns/7 as in Eq. (11). By ‘W1 St hod. . -
interpreting /7 as the impurity charge, the Friedel The underscreening of an external charge brought into

sum rule is then in fadimposedas a consistency relation the 1D system should also be experimentally observ-

ensuring electroneutrality of the system. In contrast,able' If charge is injected into, €.9., a carbon nanotube

putting ¢ = 1 for the Luttinger liquid model would constituting a perfect experimental realization of a 1D

imply a noninteracting system (Fermi gas) rather than gonductor [7]’ the resulting image charge on negrby exter-
Fermi liquid nal screening gates can be detected by capacitance spec-

The physical reason for the apparent failure of eleciroscopy [11] or by using highly sensitive single—glectron
troneutrality in finite-range models is due to inducedt.r"’mi'zStor (SET) electrometers on top of a scanning probe
charges outside the 1D system, e.g., on external screer[ ]

ing gates, which cause the finite range of the interaction, So far we have discussed the I(_)ng-wavelength part of
he electronic response only. Turning now to #te part

These other conductors also contribute to the total scree 31 and i i . h ¢ N
ing charge. To give a concrete example, consider th 1an assuming finear screening, we have to compute
e polarizability y, which is essentially the double-

gated 1D quantum wire shown in Fig. 1. For a wire ofF ior t ; d densitv-densit lation functi
width d, the presence of a two-dimensional gate at a dis- ourier transtormed density-densily corretation function
of the unperturbed conductor

xa.iw) = = [ dxdre 0T o0, 1p(0,0).
(13)
Here T, is the time-ordering operator in Euclidean time,
and one has to analytically continue Eg. (13) to real

frequenciesjo — w + i0", in order to obtainy (g, w)
needed in Eg. (6). The&kr part of y for a Luttinger

liquid is found to read
" QG C . 2g—2
1Sw
S x(qio) = — —= Z( + i—2p )
TVE ps—= UFkF k]:

FIG. 1. Schematic view of a 1D quantum wire with short-
range Coulomb interaction due to the presence of a 2D X Fl2—2g,1— g2 — g
screening gate located a distan@eaway from the wire. The ’ ’ ’

bare impurity charge i€, the direct screening charge within 50 — vrlg — 2pke]
the 1D system isQ, = —(1 — g*)Q [see Eg. (9)], and the ISw — Vrlg PKF
induced charge on the screening gat@is isw + vrlg — 2pkr| )’
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where F denotes the hypergeometric function afid =  charge is given by, = —(1 — g?)Q, where Q is the
478T(2 — 2¢)/T(g)T'(2 — g). In the static case, this impurity charge andg the Luttinger liquid interaction
gives algebraic singularities parameter. To resolve this apparent inconsistency, one
C q 2872 needs to take into account induced charges on screening
x(g) = ——%% o w| . (14 gates.
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