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Universality of Finite-Size Corrections to the Number of Critical Percolation Clusters
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Monte Carlo simulations on a variety of finite 2D percolating systems at criticality suggest that
the excess number of clusters over the bulk valuenc is a universal quantity, dependent upon the
system shape but independent of the lattice and percolation type. Values ofnc are found to high
accuracy, and for bond percolation are in accord with the theoretical predictions of Temperley and Lieb
[Proc. R. Soc. London A322, 251 (1971)], and Baxter, Temperley, and Ashley [Proc. R. Soc. London
A 358, 535 (1978)], whose results we have evaluated explicitly in terms of simple algebraic numbers.
Fluctuations are also studied. [S0031-9007(97)04390-1]

PACS numbers: 64.60.Ak, 05.70.Jk
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The standard percolation model [1] involves the ran
dom occupation of sites or bonds of a regular lattice. A
a critical occupation probabilitypc, the mean size of clus-
ters of adjacently occupied sites becomes infinite, si
naling the percolation transition. The numbernspd of
clusters per site, however, remains finite, and attains
value nc ­ nspcd with critical behaviorjp 2 pcj

22a as
p °! pc, where2 2 a ­ 8y3. Critical exponents like
a are universal, having the same value for all system
of a given dimensionality no matter what the lattice o
percolation type, essentially because they derive from t
large-scale, fractal properties of the percolation clusters

On the other hand,nc, like pc, is a nonuniversal
quantity which varies from system to system. This
because it depends upon the microscopic, lattice-lev
behavior of the systems. For some systems,nc is known
theoretically [2,3], while for others, it must be determine
by Monte Carlo (MC) means. Accurate values ofnc —a
basic property of a percolating system—do not seem to
available for many common lattices. Thus we embarke
on a project to determine it for a variety of systems b
MC simulation. In the course of this work we found a
number of new results which we report upon here.

To obtain accurate values, we performed very extensi
simulations on square (SQ) and triangular (TR) lattice
with both site (S) and bond (B) percolation, and th
honeycomb (HC) lattice, for B only. Various orientation
and system boundaries were used as shown in Fig.
Periodic boundary conditions were used. Systems rang
from 16 3 16 to 512 3 512 in size, and between106

to 109 samples were generated for each, which requir
several months of workstation computer time. All but on
set of simulations were carried out at the critical pointpc

of the respective lattice.
Because simulations must necessarily be done on fin

systems, an essential part of such a project is to determ
the nature of the finite-size corrections. The use
periodic boundary conditions reduces those corrections
subsurface terms. In characterizing the latter, we fou
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that they appear to follow a simple universal behavior
that is, for a finite system ofS sites, we found that the
average density of clusters (number per site) behaves as

n ­ nc 1
b
S

1 . . . , (1)

whereb is a function of the system shape only and thus a
universal quantity. For example, the results for a system
with a square boundary of dimensionL 3 L are shown
in Fig. 2, where we plotnsSd vs 1yS. For this boundary
shape we considered three systems: S-SQ-I (site perco
tion on a square lattice with orientation I shown in Fig. 1),
B-SQ-I, and B-SQ-II, where II is a square lattice rotated
by 45±. The equality of the slopes of the three curves
implies thatb has the same valueø0.8835 for all these
systems. Higher-order corrections to (1) are small and no
visible above the statistical errors of these simulations.

For rectangular systems of dimensionL 3 L0, we
found that b increases monotonically with increasing
aspect ratior ­ L0yL as shown in Table I. Here, we
considered only one type of system for each aspec
ratio. Besides B-SQ, we also considered B-TR with the

FIG. 1. Different lattices and boundary shapes used in the MC
studies. Systems I, II, and III have rectangular boundaries an
lead to normal tori when the periodic boundaries are applied
IV and V have a rhomboid boundary, but the periodic boundary
conditions are applied when the lattice is in a squared-off form
leading to a helical or twisted boundary.
© 1997 The American Physical Society 3447
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FIG. 2. A plot of n ­ NyS vs 1yS for the L 3 L S-SQ-
I (filled square), B-SQ-I (open square), and B-SQ-II (ope
diamond) systems atpc. The curves are offset vertically for
clarity; the actual intercepts arenS-SQ

c for the upper curves, and
nB-SQ

c for the lower two curves. This plot illustrates thatb (the
slope) is the same for all three systems.

boundary III. With III’s rectangular boundary, a norma
torus is produced when the periodic boundary conditio
are applied, and the effective aspect ratio of the system
used is

p
3. Note that, becausebsrd ­ bs1yrd, the value

bs1d ø 0.8835 is a minimum for rectangular systems.
Besides rectangular systems, we also considered

60± rhomboid system with effective helical or “twisted”
periodic boundary conditions (systems IV and V). Th
type of boundary results when a triangular lattice
represented in the computer by a square lattice w
one set of diagonals drawn in, and periodic bounda
conditions are applied to the lattice in the squared-o
orientation. An effective helical twist in the torus is
evident when the lattice is viewed in its true configuratio
with the triangles drawn as equilateral. For such a syst
with sidesL 3 L, we findb ø 0.878, somewhat smaller
than the minimum value above for rectangular boundari
(Likewise, 0.878 should be the minimum value ofb for
all 60± parallelograms.) Note that the effective height t
width of this system is

p
3y2, although it is not really

TABLE I. Measured values of the universal finite-size co
rection constantb ­ N 2 ncS, grouped by universality class
(system shape and boundary condition). Numbers in parent
ses show the errors in the last digit(s).

System Boundary b

S-SQ-I Square 0.8832(3)
B-SQ-I Square 0.8838(5)
B-SQ-II Square 0.8835(8)

B-TR-III 1 3
p

3 Rectangle 0.946(2)

B-SQ-II 1 3 2 Rectangle 0.991(2)

B-SQ-II 1 3 4 Rectangle 1.512(3)

S-TR-IV 1 3 1 Rhombus 0.8783(8)
B-TR-IV 1 3 1 Rhombus 0.878(1)
B-HC-V 1 3 1 Rhombus 0.877(1)
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comparable to a rectangular system of that aspect ra
because of the twist in the boundary condition.

While we do not have a proof thatb is universal, we
can make the following heuristic arguments to support th
hypothesis. Equation (1) can be written

N ø ncS 1 b , (2)

where N ­ nS is the total number of clusters in the
system. This equation shows thatb is effectively the
excess number of clusters over the expected bulk valu
ncS. As such, it represents large clusters whose siz
is of the order of the size of the system. While the
number and distribution of small, “microscopic” clusters
is nonuniversal, the distribution of these larger clusters
universal. One can also relateb to the average number
w of clusters wrapping around the toroidal system, whic
too is a universal quantity. Consider taking one2L 3

2L system, unwrapping the periodic boundary conditions
cutting it into fourL 3 L systems, and then reapplying the
periodic boundary conditions to each of these. The numb
of clustersNsLd should roughly satisfyNs2Ld 2 w ­
4fNsLd 2 wg, since the density of nonwrapping clusters
will be about the same, and this formula is consisten
with (2) with w ­ b (here,S ­ L2). A similar argument
shows thatb should increase as the aspect ratior ­ L0yL
increases, since there are then more wraparound cluste
consistent with what we have observed.

The values ofnc that we found from plots like Fig. 2
are listed in Table II. The results for the bond percolatio
systems are consistent with theoretical predictions th
have been made for these systems. For B-SQ, whe
pc ­ 1y2, Temperley and Lieb [2] showed

nB-SQ
c ­

1
2

∑
Z

≠I1

≠Z

∏
Z­1

­
1
2

∑
2 cotm

≠I1

≠m

∏
m­py3

,

(3)

whereZ ­ 2 cosm and

I1 ­
1

4m

Z `

2`

sech

µ
pa

2m

∂
ln

µ
cosha 2 cos2m

cosha 2 1

∂
da ,

(4)

and reported the numerical estimate0.09807. In fact,
we have found that this integral result can be evaluate
explicitly [4]. First, we integrate (4) by parts to obtain

I1 ­
4 sin2 m

p

Z `

0

tan21stanhpa

4m d cotha

2

cosha 2 cos2m
da (5)

and then differentiate to find

≠I1

≠m

Ç
m­py3

­
8
p

3
p

Z `

0

tan21stanh3a

4 d sinha

s2 cosha 1 1d2
da

2
27
p2

Z `

0
a cosh

a

2
csch3a da . (6)

Substitutinga ­ 22 ln z in the first integral above, we
can reduce it to a form that can be evaluated with the he
of MATHEMATICA [5], yielding 2

p
3 2 3. Likewise, the
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TABLE II. MC results for cluster concentrationnc and fluctuationss2 for the various systems studied, grouped by system typ
along with known values ofpc [6,12,13]. These quantities are nonuniversal, but independent of the system boundary, as see
for the B-SQ and B-TR cases.

System Boundary pc nc s2

S-SQ-I Square 0.592 746 0.027 598 1(3) 0.053 85

S-TR-IV 1 3 1 Rhombus 0.5 0.017 625 5(5) 0.0309

B-SQ-I Square 0.5 0.098 076 3(8) 0.1644
B-SQ-II Square 0.5 0.098 076 5(10) 0.1644
B-SQ-II 1 3 2 Rectangle 0.5 0.098 076 0.1642
B-SQ-II 1 3 4 Rectangle 0.5 0.0981 0.163

B-TR-III 1 3
p

3 Rectangle 0.347 296 0.111 846(2) 0.183
B-TR-IV 1 3 1 Rhombus 0.347 296 0.111 843(2) 0.1827

B-HC-V 1 3 1 Rhombus 0.652 705 0.153 735(2) 0.267
e.

y

n

is
r

e

s.

ice
,

ry

,

In
nd
e

3449
second integral in (6) can also be evaluated, and leads
the surprisingly simple final result

nB-SQ
c ­

3
p

3 2 5
2

ø 0.098 076 211 . (7)

Further details are given in [4]. Our numerical resul
in Table II are consistent with this prediction to al
significant figures. Likewise, for B-TR, wherepB-TR

c ­
2 sinspy18d is the solution top3 2 3p 1 1 ­ 0 [6],
Baxter, Temperley, and Ashley [3] showed that

nB-TR
c ­

∑
2

csc2f

4
≠I2

≠f

∏
f­py3

1
3
2

2
2

1 1 pB-TR
c

,

(8)

where

I2 ­
3
2

Z `

2`

sinhsp 2 fdx sinh 2
3 fx

x sinhpx coshfx
dx , (9)

and estimatednc ø 0.1118 by numerical integration and
also from the 16-term series available at that time. Aga
we have explicitly evaluated this expression [7,8], an
after many manipulations find simply

nB-TR
c ­

35
4

2
3

pB-TR
c

ø 0.111 844 275 , (10)

which is in agreement with our observations.
Taking advantage use of duality, we also studied t

B-HC system at the same time as B-TR. Our value
nc for this lattice given in Table II agrees with prediction
nB-HC

c ­ nB-TR
c 1 spB-TR

c d3 ø 0.153 733 341, which
follows from the results of [9] written in terms of clusters
of wetted sites per site on the TR lattice. Note that f
all bond percolation systems, we count the number
clusters of all wetted sites, which includes both clusters
connected sites and “null” clusters of isolated sites wi
no occupied bonds attached to them. Having the abo
exact results fornc was very useful for findingb to high
accuracy for these systems.

Previous numerical results are generally consistent w
our findings. For B-SQ, Nakanishi and Stanley [10] foun
0.980 75 by simulation. Domb and Pearce [11] foun
nc ­ 0.0173s3d by series analysis, where herenc is the
number of bond clusters per bond. To put (7) in this form
to
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one must subtract the concentration of isolated site (1y16)
and then divide by two, the number of bonds per sit
This yields

nB-SQ
c sper bondd ­

24
p

3 2 41
32

ø 0.017 788 106 , (11)

and shows that the results of [11] are only slightl
low. Surprisingly, we have found little comparison with
or discussion of the results of [2,3] in the percolatio
literature—a notable exception being [12].

For S-SQ, wherepc ­ 0.592 746 0s5d [13], we find

nS-SQ
c ­ 0.027 598 1 6 0.000 000 3 , (12)

but could not find any published values to compare th
with. A simple Padé analysis [14] of the 25th orde
series for nspd given in [15], with no attempt made
to account for the branch-point singularity atpc, yields
nc ­ 0.027 54s4d, the error representing the variation for
fN, Dg ­ f12, 13g, f13, 12g, . . . .

For S-TR lattice, wherepc ­ 1y2, we find

nS-TR
c ­ 0.017 625 5 6 0.000 000 5 . (13)

This result is consistent with the previous MC valu
0.017 630s2d of Margolina et al. [16] but not the early
low-order series value0.0168s2d [11]. As in the S-SQ
case, no theoretical prediction for this quantity exist
Note that the value ofnS-TR

c is quite close tonB-SQ
c of

(11), which is reasonable because the matching site latt
to the B-SQ system is quite similar to the S-TR system
both having coordination number 6 andpc ­ 1y2.

We also considered S-SQ atp ­ 0.5, well below pc.
Our MC results give

nS-SQs0.5d ­ 0.065 770 3 6 0.000 000 2 . (14)

This quantity relates to a simple question of graph theo
[17]: how many clusters of 1’s exist on a matrix filled
randomly with 0’s and 1’s of equal concentration? Here
no finite-size effects were observed in lattices from32 3

32 to 512 3 512 in size (i.e.,b ­ 0), presumably because
the dimension of a typical cluster was smaller than 32.
this case, a straightforward Padé analysis of Conway a
Guttmann’s series [15] yields a result of nearly the sam
accuracy:0.065 769 6s6d.
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The fluctuationss2 in the number of clusters from
sample to sample, determined byksDNd2l ­ kN2l 2

kNl2 ­ Ss2 for largeS, are given in Table II. Likenc,
s2 is a function of the lattice and percolation type an
thus nonuniversal, but still independent of the bounda
condition and shape. The value 0.164 found for B-S
for example, was found for square systems with bo
orientations, rectangular systems of aspect ratio 2 and
and also a square system with open boundaries. Th
values ofs were also used to obtain the statistical err
bars innc, which are given byssSNrunsd21y2, whereNruns

is the number of samples. Note that previously, on
rough measurements of fluctuations were made [18].

For the B-SQ case, the theory of [2] yields a predictio
for the fluctuations of a quantityH ; CG 1 SG , where
CG is the number of components (clusters plus isolat
sites—the same asN above) andSG is the number of
independent cycles in the system:

ksDHd2l
S

­

∑µ
cotm

≠

≠m

∂2

I1

∏
m­py3

. (15)

The numerical results given in [2] (p. 280) imply the valu
0.1962 2 0.0377 ­ 0.1585 for this quantity. After many
intermediate steps, we have evaluated the resulting inte
expressions explicitly and find [4]

ksDHd2l
S

­
8
p

3 2 25
2

1
18
p

ø 0.157 781 182 . (16)

At pc, SG ­ CG, but because of the cross termkCGSGl
in ksDHd2l, the above result cannot be used to obtain
prediction fors2 ­ ksDCGd2lyS. However, one can show
that SG is equal to the number of components on the du
lattice CG̃ , which can be measured at the same time
clusters onCG. (It also follows thatH is equal to the
total number of hulls that can be drawn on the syste
minus 1 if there is wraparound in both directions [19]
Indeed, for B-SQ percolation on rectangular systems,
find thatksDHd2l ­ 0.1578s1d, in perfect agreement with
(16). If CG and CG̃ were uncorrelated, thenksDHd2lyS
would equal2s2 ­ 0.328. This implies that realizations
with more clusters on the regular lattice tend to have few
clusters on the dual lattice, and vice versa, as one mi
expect. The fluctuations ofH have finite-size corrections
that behave asøL22, while the fluctuationss2 of clusters
alone followøL21.

We have also measuredksDHd2lyS for the B-TR case,
where nowCG̃ are components on the B-HC lattice, an
find 0.2207s1d. We have not related this result to theor
[3]; although we can evaluate the next derivative ofI2 [7],
we have not found the additional terms analogous to
last two terms in (8).

In conclusion, we have shown that the theory of [2
describes fluctuations in the number of clusters on t
lattice plus the dual lattice. We have found surprising
simple expressions for the integrals of the theories
[2,3], which we have also verified numerically to hig
precision. And we have presented evidence that
3450
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excess number of clusters is a universal quantity, muc
like the crossing probability that has been of interes
lately [13,19–24]. Recently, Aharony and Stauffer [25]
have presented theoretical arguments for the universalit
of b, and furthermore, Kleban [26] has derived explicit
expressions forb using conformal invariance methods,
which support this universality hypothesis.
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