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Monte Carlo simulations on a variety of finite 2D percolating systems at criticality suggest that
the excess number of clusters over the bulk valyeis a universal quantity, dependent upon the
system shape but independent of the lattice and percolation type. Values ak found to high
accuracy, and for bond percolation are in accord with the theoretical predictions of Temperley and Lieb
[Proc. R. Soc. London 822 251 (1971)], and Baxter, Temperley, and Ashley [Proc. R. Soc. London
A 358 535 (1978)], whose results we have evaluated explicitly in terms of simple algebraic numbers.
Fluctuations are also studied. [S0031-9007(97)04390-1]

PACS numbers: 64.60.Ak, 05.70.Jk

The standard percolation model [1] involves the ran-that they appear to follow a simple universal behavior;
dom occupation of sites or bonds of a regular lattice. Athat is, for a finite system of sites, we found that the
a critical occupation probabilitp., the mean size of clus- average density of clusters (number per site) behaves as
ters of adjacently occupied sites becomes infinite, sig- b
naling the percolation transition. The numbefp) of n=net ot 1)

clusters per site, however, remains finite, and attains @nherep is a function of the system shape only and thus a

P JOWEVE . e ant _ _
valuen, = n(pc) with crltlcal behaviorlp — pc|*"* as niversal quantity. For example, the results for a system
p — pc, where2 — a = 8/3. Critical exponents like it 5 square boundary of dimensignx L are shown
a are universal, having the same value for all systemg, Fig. 2, where we plok(S) vs 1/S. For this boundary

of a given dimensionality no matter what the lattice orgpane e considered three systems: S-SQ-I (site percola-
percolation type, essentially because they derive from thgq o 5 square lattice with orientation | shown in Fig. 1),

large-scale, fractal properties of the percolation clusters. B-SQ-I, and B-SQ-II, where Il is a square lattice rotated
On the other handp,, like p, is a nonuniversal . 45" The equality of the slopes of the three curves

quantity which varies from system to system. This iSingjies thath has the same value0.8835 for all these
because it depends upon the microscopic, lattice-levelystems. Higher-order corrections to (1) are small and not
behavior of the systems. For some systemsis known isihle above the statistical errors of these simulations.
theoretically [2,3], while for others, it must be determined ., rectangular systems of dimensidn X L', we

by Monte Carlo (MC) means. Accurate valuesof—a  found that b increases monotonically with increasing
basic property of a percolating system—do not seem to bﬁspect ratior = L'/L as shown in Table I. Here, we

available for many common lattices. Thus we embarkeq ,sidered only one type of system for each aspect

on a project to determine it for a variety of systems byy4iin  Besides B-SQ, we also considered B-TR with the
MC simulation. In the course of this work we found a

number of new results which we report upon here.
To obtain accurate values, we performed very extensive
simulations on square (SQ) and triangular (TR) lattices,
with both site (S) and bond (B) percolation, and the
1]}

honeycomb (HC) lattice, for B only. Various orientations
and system boundaries were used as shown in Fig. 1.

I I
Periodic boundary conditions were used. Systems ranged
from 16 X 16 to 512 X 512 in size, and between(°
to 10° samples were generated for each, which required
several months of workstation computer time. All but one
\% \Y%

set of simulations were carried out at the critical pgipt
of the respective lattice.

Because simulations must necessarily be done on finitelG. 1. Different lattices and boundary shapes used in the MC
systems, an essential part of such a project is to determirfé“d'es- Systems I, II, and Il have rectangular boundaries and

. . . ead to normal tori when the periodic boundaries are applied.

the_ ngture of the flnlt'e-'-S|ze corrections.  The u;e Ol and V have a rhomboid boundary, but the periodic boundary
periodic boundary conditions reduces those corrections tgonditions are applied when the lattice is in a squared-off form,
subsurface terms. In characterizing the latter, we foundkading to a helical or twisted boundary.
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0.0014 comparable to a rectangular system of that aspect ratio
because of the twist in the boundary condition.

While we do not have a proof that is universal, we
can make the following heuristic arguments to support that
hypothesis. Equation (1) can be written

0.0012

0.001

®» 0.0008
= N=n.S + b, 2
I 0.0006
s where N = nS is the total number of clusters in the
0.0004 system. This equation shows thatis effectively the
0.0002 excess number of clusters over the expected bulk value,
n.S. As such, it represents large clusters whose size
0 . . . . is of the order of the size of the system. While the
0 0.0002  0.0004  0.0006 0.0008  0.001 number and distribution of small, “microscopic” clusters
178 = 1/L2 is nonuniversal, the distribution of these larger clusters is

FIG.2. A plot of n = N/S vs 1/S for the L X L S-SO- universal. One can also relaketo the average number

| (filled square), B-SQ-I (open square), and B-SQ-I (open"W of clusters wrapping around the toroidal system, which

diamond) systems at.. The curves are offset vertically for 100 is a universal quantity. Consider taking ohe X
clarity; the actual intercepts aréSQ for the upper curves, and 2L system, unwrapping the periodic boundary conditions,

n2™C for the lower two curves. This plot illustrates tafthe  cutting it into fourL X L systems, and then reapplying the
slope) is the same for all three systems. periodic boundary conditions to each of these. The number
boundary Ill. With III's rectangular boundary, a normal Of clustersN(L) should roughly satisfyV(2L) — w =
torus is produced when the periodic boundary condition4lN(L) — w], since the density of nonwrapping clusters
are applied, and the effective aspect ratio of the system w#ill be about the same, and this formula is consistent

used isv3. Note that, becausk(r) = b(1/r), the value  With (2) withw = b (here,S = L?). A similar argument
b(1) =~ 0.8835 is a minimum for rectangular systems. shows thab should increase as the aspect raties L'/L

Besides rectangular systems, we also considered IACréases, since there are then more wraparound clusters,

60° rhomboid system with effective helical or “twisted” consistent with what we have observed.

periodic boundary conditions (systems IV and V). This The values ofr. that we found from plots like Fig. 2
type of boundary results when a triangular lattice is'® listed in Table Il. The results for the bond percolation

represented in the computer by a square lattice witffyStems are consistent with theoretical predictions that
one set of diagonals drawn in, and periodic boundanf@vé been made for these systems. For B-SQ, where

conditions are applied to the lattice in the squared-off?c = 1/2, Temperley and Lieb [2] showed

orientation. An effective helical twist in the torus is B-s 1 ol 1 al,

evident when the lattice is viewed in its true configuration e = = 5 [Z 5}21 ) [_ cotp a} e
with the triangles drawn as equilateral. For such a system w/
with sidesL X L, we findb = 0.878, somewhat smaller (3)

than the minimum value above for rectangular boundariesyhereZ = 2 cosu and
(Likewise, 0.878 should be the minimum value ofor L=

all 60° parallelograms.) Note that the effective heightto j, = _f secr(ﬂ>ln<
width of this system isy/3/2, although it is not really 4u J o 2p

cosha — cos2,u>
d £
cosha — 1
4)
TABLE |I. Measured values of the universal finite-size cor- : :
rection constanb = N — n.S, grouped by universality class and reported the numer!cal estimai980;. In fact,
(system shape and boundary condition). "Numbers in parenthd¥€ have found that this integral result can be evaluated

ses show the errors in the last digit(s). explicitly [4]. First, we integrate (4) by parts to obtain
System Boundary b ;o 4sir u ]” tan‘l(tanh%) cothy (5)

! T 0 cosha — cos2u
S-SQ-I Square 0.8832(3) : , :
B-SO-| Square 0.8838(5) and then differentiate to find 3
B-SQ-Il Square 0.8835(8) ol _ 8V3 fmtan‘l(tanh%)sinha
B-TR-II I x /3 Rectangle 0.946(2) op lyews 7 Jo  (2cosha + 12 7
B-SQ-II 1 X 2 Rectangle 0.991(2) 7 [ a
B-SQ-Il | X 4 Rectangle 1.512(3) ~ 2 ), «coshocscBada. (6)
S?S':x i § i Sﬂgmgaz 8'2?2(31(? Substitutinga = —2Inz in the first integral above, we
B-HC-V | X 1 Rhombus 0.877(1) can reduce it to a form that can be evaluated with the help

of MATHEMATICA [5], yielding 2+/3 — 3. Likewise, the
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TABLE Il. MC results for cluster concentratiom. and fluctuationss? for the various systems studied, grouped by system type,
along with known values op,. [6,12,13]. These quantities are nonuniversal, but independent of the system boundary, as seen here
for the B-SQ and B-TR cases.

System Boundary De ne o?
S-SQ-I Square 0.592 746 0.027598 1(3) 0.05385
S-TR-IV 1 X 1 Rhombus 0.5 0.017 6255(5) 0.0309
B-SQ-I Square 0.5 0.098 076 3(8) 0.1644
B-SQ-II Square 0.5 0.0980765(10) 0.1644
B-SQ-II 1 X 2 Rectangle 0.5 0.098076 0.1642
B-SQ-II 1 X 4 Rectangle 0.5 0.0981 0.163
B-TR-III 1 X +/3 Rectangle 0.347 296 0.111846(2) 0.183
B-TR-IV 1 X 1 Rhombus 0.347 296 0.111843(2) 0.1827
B-HC-V 1 X 1 Rhombus 0.652 705 0.153735(2) 0.267

second integral in (6) can also be evaluated, and leads tine must subtract the concentration of isolated sité )

the surprisingly simple final result and then divide by two, the number of bonds per site.
_ This yields
nBSQ = MTS ~ 0.098076211. (7) 243 — 41
B-SQ _ ~
Further details are given in [4]. Our numerical results ne " (per bond 32 0017788106, (11)

in Table Il are consistent with this prediction to all and shows that the results of [11] are only slightly

significant figures. Likewise, for B-TR, whepe® ™ = |ow. Surprisingly, we have found little comparison with
2sin(7/18) is the solution top® — 3p + 1 =0 [6], or discussion of the results of [2,3] in the percolation
Baxter, Temperley, and Ashley [3] showed that literature—a notable exception being [12].
— [_ csC2¢ 8_12} 3 2 For S-SQ, wherep. = 0.592746 0(5) [13], we find
e 4 0¢ lg=mpy 2 1 + pBIRC ny 5 = 0.027598 1 = 0.0000003, (12)
(8)  but could not find any published values to compare this
where with. A simple Padé analysis [14] of the 25th order
o - _ - series forn(p) given in [15], with no attempt made
I, = i] S'”“”_ ¢)x sinh3 px X, (9) to account for the branch-point singularity at, yields
2 J—=  xsinhmx coshgx n. = 0.02754(4), the error representing the variation for

and estimated. =~ 0.1118 by numerical integration and [N, D] = [12,13],[13,12],....
also from the 16-term series available at that time. Again, For S-TR lattice, where, = 1/2, we find
we have explicitly evaluated this expression [7,8], and

. . e nS ™R = 00176255 = 0.0000005. (13)
after many manipulations find simply ¢
35 3 This result is consistent with the previous MC value
ndR = = — —— =~ 0.111844275, (10)  0.017630(2) of Margolina et al.[16] but not the early
S 4 _ low-order series valu®.0168(2) [11]. As in the S-SQ
which is in agreement with our observations. case, no theoretical prediction for this quantity exists.

Taking advantage use of duality, we also studied the\ote that the value ofi5™™® is quite close ton2™SQ of

B-HC system at the same time as B-TR. Our value 0f11), which is reasonable because the matching site lattice

n. for this lattice given in Table Il agrees with prediction to the B-SQ system is quite similar to the S-TR system,

ngHC = pB TR + (pB7TR)S =~ 0.153733341, which  poth having coordination number 6 apd = 1/2.

follows from the results of [9] written in terms of clusters  we also considered S-SQ at= 0.5, well below p..

of wetted sites per site on the TR lattice. Note that forour MC results give

all bond percolation systems, we count the number of -

clusters of all wetted sites, which includes both clusters of n%73(0.5) = 0.0657703 * 0.0000002. (14)

connected sites and “null” clusters of isolated sites withThis quantity relates to a simple question of graph theory

no occupied bonds attached to them. Having the abovil7]: how many clusters of 1's exist on a matrix filled

exact results fon,. was very useful for findind to high  randomly with 0's and 1’s of equal concentration? Here,

accuracy for these systems. no finite-size effects were observed in lattices frdnx
Previous numerical results are generally consistent wit32 to 512 X 512 in size (i.e.b = 0), presumably because

our findings. For B-SQ, Nakanishi and Stanley [10] foundthe dimension of a typical cluster was smaller than 32. In

0.98075 by simulation. Domb and Pearce [11] foundthis case, a straightforward Padé analysis of Conway and

n. = 0.0173(3) by series analysis, where hetig is the  Guttmann’s series [15] yields a result of nearly the same

number of bond clusters per bond. To put (7) in this form,accuracy0.065 769 6(6).
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The fluctuationsa? in the number of clusters from excess number of clusters is a universal quantity, much
sample to sample, determined BYAN)?) = (N?) — like the crossing probability that has been of interest
(N)> = So? for large S, are given in Table Il. Liker.,, lately [13,19—24]. Recently, Aharony and Stauffer [25]
o2 is a function of the lattice and percolation type andhave presented theoretical arguments for the universality
thus nonuniversal, but still independent of the boundanof b, and furthermore, Kleban [26] has derived explicit
condition and shape. The value 0.164 found for B-SQexpressions fo using conformal invariance methods,
for example, was found for square systems with bothwhich support this universality hypothesis.
orientations, rectangular systems of aspect ratio 2 and 4, The authors thank P. Kleban, D. Stauffer, and A. Aha-
and also a square system with open boundaries. Theseny for their comments. This material is based in
values ofo were also used to obtain the statistical errorpart upon work supported by the U.S. National Science
bars inn., which are given byr(SN.uns) /2, whereN,.,s  Foundation under Grant No. DMR-9520700.
is the number of samples. Note that previously, only
rough measurements of fluctuations were made [18].

For the B-SQ case, the theory of [2] yields a prediction [1] See, for example, D. Stauffer and A. Aharonfn
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; ; . A 322 251 (1971).
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(AH)?) 9 \2 R. Soc. London A358 535 (1978).
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K p=m/3 Potts Model on the Square Lattice,” available at http://

The numerical results given in [2] (p. 280) imply the value www.wolfram.com/~victor/articles/percolation.html.

0.196, — 0.037; = 0.1585 for this quantity. After many [5] Mathematica, Wolfram Inc.
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