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Nonlocal Dielectric Saturation in Liquid Water
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The linear and nonlinear dielectric response of water to spatially varying electric fields of differ
wavelength and field strengths is calculated by means of molecular dynamics computer simulatio
a central force model of water. We find that nonlinear effects are strongest atk ø 3 Å21, where the
linear response functionxskd ­ 1 2 1yeskd has its main maximum. For smallk the response is linear
up to field strengths ofE0 ø 1 VyÅ. A phenomenological theory is discussed which reproduces th
main nonlinear effects found in the simulation. [S0031-9007(97)04236-1]

PACS numbers: 61.25.Em, 61.20.Ja, 77.22.Ch
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The wave vector dependent dielectric tensoreabskd de-
termines the response of a polar liquid to an embedd
microscopic charge distribution at distances of the cha
acteristic liquid structure. It appears in the thermody
namic description of electrolytes, charge transfer kinetic
electrochemistry, adsorption and interaction of biologica
membranes and macromolecules. For the case when
response is linear, it is only the longitudinal componen
eskd ­ kakbeabyk2 that appears in electrostatics. Un
der this assumption a variety of solvation determined ph
nomena were described, but it was never checked whet
the linear response assumption holds for water. At lea
one would expect nonlinear behavior when the intera
tion energy between the water dipoles and the extern
field becomes so large that the hydrogen bonds are brok
smE0 . 0.25 eVd.

The linear dielectric response functionxskd ­ 1 2

1yeskd is related to the correlation function of equilibrium
bound charge density fluctuations via the fluctuatio
dissipation theorem (FDT). A number of works were
devoted to the calculation ofeskd of polar liquids by using
computer simulations or different statistical mechanic
schemes [1]. In a recent work we have calculated th
linear response function for water by means of molecul
dynamics computer simulation and compared it to th
available experimental data [2]. The main features foun
for eskd were (i) a decrease from the macroscopic valu
se ­ 80d to a value near 15 at smallk from where
it increases to a divergence point atk ø 1 Å21, (ii) a
negative region in an intermediatek range, and, after
crossing a second divergence point atk ø 12.5 Å21,
(iii) a monotonic decrease to the high frequency lim
esk ! `d ­ 1. The corresponding response function
xskd, which reflects the spatial distribution of the bound
charge density pattern, showed a high peak atk ø 3 Å21

and a satellite maximum atk ø 5 Å21 (see Fig. 1).
The present work is to be understood as a first st

towards building a bridge between the nonlinear and th
nonlocal effects. Our goal will be to answer the following
questions: At which electric field strengths does the line
response assumption break down and for which wa
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number k are the nonlinear effects the strongest? Fo
this we have performed a series of molecular dynamic
computer simulations for a flexible water model in stati
external electric fields and have calculated the longitudin
polarization as a function of the field amplitude and it
wavelength.

The description of the nonlocal medium polarization
becomes a difficult task when the response is not linea
There is no closed-form FDT, no superposition of differ
ent k modes, and there are off-diagonal elements in th
response tensor. The constitutive relation between pola
izationPskd and external fieldEs0dskd then reads [4]

Paskd ­ x
s0d
abskdEs0d

b skd 1
Z

dk0 dk00 dsk 2 k0 2 k00d

3 x
s1d
abgsk0, k00dEs0d

b sk0dEs0d
g sk00d 1 . . . , (1)

where s. . .d denotes integrals of higher powers inEs0d,
which contain response tensors of increasing rank.

FIG. 1. The dielectric response functionxskd as obtained
from an equilibrium computer simulation with the help of
the classical fluctuation dissipation theorem [2]. The indicate
points mark thek values for which we perform the external
electric field simulations.
© 1997 The American Physical Society 3435
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the linear response limit, the right-hand side of Eq. (1
reduces to the longitudinal component of the first item
While it is a hard task to evaluate the off-diagonal compo
nents and the higher rank tensors of the response, it is p
sible to reveal the limits of the linear response assumpti
by studying eachk component of the polarization sepa
rately. Creating in the computer simulation an extern
field of the formEs0dsk̂d ­ k̂E0 coskr sk̂ ­ kyjkjd and
calculating the polarization as a function of the amplitud
E0 and wave vectork, we may follow the transition from
the linear to nonlinear response. In the linear regime th
direct methodof calculating the response function pro
vides also an independent verification of the previous
obtained results [2,3], based on the FDT.

We consider a system of 200 water molecules in a cub
box with periodic boundary conditions. The side length o
the box isL ­ 18.1 Å, which leads to a mass density of
r ­ 0.999 gycm3. We used the Bopp-Janc´so-Heinzinger
(BJH) water model [5] (the same as in Refs. [2,3]) whic
allows the molecules to vibrate, but which has no ele
tronic polarizability. The computer simulations were per
formed for a temperature of 300 K. The time step o
integration wasDt ­ 0.25 fs and the total trajectory length
differed between 100 and 500 ps, depending on the co
vergence of the mean value of polarization. To spee
up the computer simulation time, we used as a bounda
condition a shifted force potential to truncate long range in
teractions beyond the cutoff radiusRc ­ 8.85 Å [6]. Fur-
thermore, we applied a multiple time step method wher
around each molecule, regions of fast and slow fluctua
ing forces are separated [7]. Fast components are cal
lated explicitly at every time step. The slow componen
are Taylor expanded in time up to the linear term and a
extrapolated over a time step interval at the beginning
which they are explicitly calculated. This procedure a
lows the simulation to speed upø8 times with respect to
a conventional Ewald summation method which was us
in our previous studies [2,3].

For the case of the field-free simulations using FD
one may calculate the wholek spectrum of the linear re-
sponse function from one simulation run. In the direc
method, one has to perform a separate simulation for e
ery k point and every field strengthE0. We, therefore, fo-
cused on five representativek points of the linear response
spectrum (see Fig. 1). From the periodicity of the simu
lation cell thek values are limited tokn ­ 2pnyL. For
our calculations we choosek1 ­ 0.34 Å21 (the smallestk
value accessible in the simulation),k5 ­ 1.73 Å21, k9 ­
3.11 Å21 (the main maximum position),k14 ­ 4.84 Å21

(the satellite maximum position), andk20 ­ 6.92 Å21.
For eachk point, we applied between eight to ten dif-
ferent electric field strengths within the interval0.005 ,

E0 , 5 VyÅ, corresponding toE0 [ f0.08; 80gkBTym,
wherem ­ 1.97D is the average dipole moment of a wa
ter molecule. From simulation data, we then calculate
the k dependent bound charge density patternrbskd ­
1y

p
N

P
aj qa exphikrajj ( j ­ 1, . . . , N , whereN is the
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number of molecules andqa is the partial charge of site
a of the moleculej), which is related to the longitu-
dinal part of polarization viak̂Pskd ­ rbskdyik [since
4pk̂P ­ xskdk̂Es0d, the external field and the bound
charge density pattern exhibit a phase shift of 90±].

To check our computational approach, we first compar
our results for the selectedk values with previous results
which were based on the linear FDT [8]. We foun
a nearly perfect agreement within the error bars [9
Figure 2 shows the dependence of the Fourier amplitu
of the bound charge densityrbskd on the external field
strengthE0. This dependence is well fitted by a Langevi
function

rbskd ­ Ak

∑
cothsBkE0d 2

1
BkE0

∏
, (2)

where Ak and Bk are the fitting parameters, which ar
shown in Table I. For small values of the external field
all k components of polarization respond linearly, as e
pected. The deviation from a straight line starts at d
ferent field strengths for the differentk. This deviation is
the signature of nonlinearity and it is characterized throu
the parameterBk in Eq. (2): the largerBk , the earlier the
appearance of nonlinear behavior. From Table I we fi
a pronouncedk dependence ofBk which resembles the
shape of the linear response function. With increasingk,
Bk sharply increases to a value of 20 at the main maximu
position ofxskd and then decreases with higherk. This
means that the nonlinear behavior occurs first at the re
nance position, where the absolute value of the respo
decreases with respect to the linear case; i.e., normal s
ration is observed [10].

One might argue that such field dependence could
due to the specific boundary conditions which we used

FIG. 2. The absolute value of the bound charge dens
jrbskdj as a function of the external field strengthE0 shown
for the five simulatedk values (see Fig. 1). The points with
error bars are the simulated values; the curves correspond to
Langevin function [see Eq. (2)]. For the parameter values s
Table I.
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TABLE I. Dependence of the Langevin parametersAk andBk
on k.

k fÅ21g Ak feg Bk fÅyVg
k1 0.35 0.986 1.0
k5 1.73 6.0 3.0
k9 3.46 10.8 20.0
k14 5.19 15.6 8.0
k20 6.92 16.8 3.5

the computer simulation. Indeed, in the limit ofk ­ 0,
several authors have found a strong dependence of
field strength, from which water starts to respond nonli
early on the boundary conditions [11]. This dependen
however, should not be that strong fork fi 0, since long
range correlations decay with increasingk. In order to
verify our approach, we made the following investigatio
For the smallestk value sk1d, we performed an Ewald
summation simulation for the same set of electric fiel
and found the same field dependence of the bound cha
density.

We note that for the strongest fields which we studie
the system is completely saturated, i.e., cossk̂md ø 1.
This saturation is the result of aphase transition[12],
leading to an icelike structure, which is different for th
different wave numbers. Fork5 it resembles a hexagona
structure but due to the alternating orientation of th
molecular dipoles it is not identical with iceIh.
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In order to rationalize our findings, we extended a phe
nomenological theory, which was developed to reproduc
the linear response results [13], to the nonlinear case.
consists of a Landau-Ginzburg Hamiltonian where two po
larization modes are considered: a slow oneP1 and a fast
oneP2, the latter of which is coupled through a gradient
term to the scalar order parameterh. For the nonlinear
case the Hamiltonian reads

H ­
Z

sh1 1 h2ddr , (3)

where

h1 ­
a1

2
fP2

1 1 l2
1s=P1d2g 2 P1D , (4)

h2 ­
a2

2
fP2

2 1 l2
2s=P2d2g 1

b
2

fh2 1 l2s=hd2g

1
g

2
P2=h 2 P2D 1 aP4

2 . (5)

The parametersai , b, g determine the weight of the
contributions andli , l are characteristic length scales.
a describes the deviation from a harmonic fluctuation
pattern. The Euler-Lagrange equations of the functiona
Eq. (3), then read

P1 2 =2P1 ­
1
a1

D , (6)
P2 2 sl2
2 1 l2 2 L2d=2P2 1 l2

2l2=2s=2P2d 1
4a

a2
fP3

2 2 l2=2sP3
2 dg ­

1
a2

sD 2 l2=2Dd , (7)
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whereL2 ­ g2ya2b. Whena ­ 0, the linear response
result is recovered (for details, see Ref. [13]). Fora fi 0
there is no closed form solution of Eq. (7). Assumin
small external fields of the formEs0dsrd ­ k̂E0 coskr ­
Dskd (which are equal to induction in this case) one ma
apply a perturbation approach to obtain a series soluti
in powers of the external electric fieldP2 ­ P

s0d
2 fE0g 1

P
s2d
2 fE3

0 g 1 . . . .
The solution shows the appearance of odd higher o

der k harmonics with increasing powers ofE0, with
kn ­ s2n 1 1dk sn ­ 0, 1, 2, . . .d. We observe the same
property in the simulation results. For the first term
of the power series we get4pP

s0d
2 srd ­ xskdk̂E0 coskr,

which corresponds to the linear response and4pP
s2d
2 srd ­

k̂P21 coskr 1 k̂P23 cos3kr, whereP21 ­ 23ax4skdE3
0

and P23 ­ 2ax3skdxs3kdE3
0 . This shows that (i) due

to the negative sign, the correction termdecreasesthe
response, i.e., it shows normal saturation behavior as
the simulation and (ii) since the lading term of the cor
rection is proportional to the fourth power ofx, the ef-
fect is particularly enhanced at the resonance wave vec
where xskd has a sharp maximum (see Fig. 1). Thu
with the increase ofE0, the saturation will be first ob-
served at the resonancek. From the criterionP

s2d
2 ø P

s0d
2 ,
g

y
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r-
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necessary for the convergence of the power series, w
find E0 & 1y

p
17.5ax3skd. In Fig. 3 we compare the re-

sults of the mean-field theory with the simulation data
for the value of the anharmonicity coefficienta ­ 5 3

1024 Å3yeV. Here we have defined an effective respons
functionxeffskd ­ 4pjPskdjyjDskdj. This value ofa al-
lows for a maximum field ofE0 ­ 0.1 VyÅ [for larger
fields the higher powers ofP should appear in Eq. (5)].

From our simulation results we also see that within
the error bars the response in the smallk range is still
linear at these fields. However, at the resonance positio
sk ­ 3.11 Å21d it is well seen that the response become
nonlinear already for field strengths ofE0 ­ 0.05 VyÅ.
At E0 ­ 0.1 VyÅ (the maximum field in the perturbation
approach) it is decreased to about 80% of the linea
result. Thus, the simulated response spectrum is perfec
reproduced by the mean-field theory up to the resonancek
value [14].

Are our results discouraging or not for the application
of the linear response theory to the screening of ions
solution? In fact, the response depends not on the over
Coulomb field of the ion [15] but rather on the separat
Fourier components of the field. Thus an importan
criterion for the applicability of the linear response
theory to the calculation of ion hydration energy
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FIG. 3. Comparison of the mean-field theory result forxskd
and the computer simulation results for a parametera ­
5 3 1024 Å3yeV. Linear response parameters are fixed as
Ref. [13].

fEhyd ­ 21yp
R`

0 dk xskd jrskdj2g would be a small
overlap of the external charge distributionrskd in the
integrand with the resonance inxskd; i.e., it depends on
how the ion structure matches the solvent structure. If t
form factor has profound contributions at the resonan
k values, linear response results may become inaccur
As was discussed in Ref. [16], the coupling between i
and solvent becomes weaker at the resonancek if the
charge distribution of the ion is considered to be smea
out spatially, i.e., when it is not considered as an idea
thin charge layer (the Born sphere model [17]). Havin
these considerations in mind, the application of line
response may still be a good approximation in a numb
of situations.

In the present Letter we considered only the contrib
tion of the diagonal elements of the response tensor. H
much the off-diagonal elements will affect the so-far di
cussed results is still an open question. These eleme
will play a particularly important role, if one calculate
the dielectric response for an anisotropic system, as is
case for a fixed impurity or a surface.
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