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A large-scale study of the “inherent structures” (IS) associated with equilibrium two-dimensional
Lennard-Jones systems is presented. The results validate, for simple 2D fluids, an essential premise
of inherent-structures theory: there are consistgoglitative differences between the IS associated
with distinct equilibrium phases. The hexatic IS show free dislocations plus some nonpercolating
grain boundaries. The liquid IS always contain percolating grain boundaries, but no evidence of free
disclinations. Our results are consistent with the dislocation-unbinding scenario for the hexatic phase,
but leave open the question of the microscopic melting mechanism leading to the isotropic liquid.
[S0031-9007(97)04274-9]
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Some years ago, Stillinger and Weber [1] developedystem size. Recently, large-scale simulations on Lennard-
a theory of liquids based on the partitioning of theJones systems [11,12] have provided some compelling
configuration space into potential-energy basins, definedvidence for the hexatic phase, though the thermodynamic
by steepest-descent paths to the nearest local minimustability of the latter is still in question [11]. Clear identi-
of the potential energy. These minima were coinedfication of the free dislocations predicted by KTHNY has
“inherent structures” (IS), and the theory takes all othetbeen extremely difficult in such simulations, however, due
configurations to be vibrational excitations of them. Ato the presence of many “virtual dislocations,” which are
fundamental notion of thmherent-structures theofST)  manifestations of vibrational excitations of the system. An
is that singularities in thermodynamic functions mayobvious way to overcome this difficulty would be to re-
be traced to singularities in the probability distribution move the vibrational excitations. This is evidently equiva-
of potential-energy basins; hence the inherent structurdent to minimizing (locally) the potential energy—that is,
associated with different equilibrium phases should differto finding the inherent structure. The latter will then re-
gualitatively, in consistently reproducible ways. Supportveal the topological defects present in equilibriufthose
for this claim has been found for some three-dimensionatiefects are mechanically stable.
systems [2], but in two dimensions (2D), there are only We are thus led to the question: what is known about
limited results [3,4]. In principle, however, it would seem the mechanical stability of free defects (dislocations and
that 2D offers an ideal testing ground for IST, since heralisclinations) in these fluids? We consider first free dislo-
even simple liquids are thought to hatreee condensed cations, which are expected to appear in the hexatic phase.
phases. In this work, we test and validate, for simple 2DThe KTHNY theory sums over all possible positions of
fluids, this fundamental idea of IST, working with particle these defects. Elasticity theory is used to obtain the strain
numbers 1-2 orders of magnitude larger than those ifields for each such position; and the latter theory uses the
previous 2D work [34], and finding three “phases” of IS, assumption of mechanical equilibriuof the mediunfthe
with dramatic qualitative differences among them. “equations of equilibrium”) [13]. Thus, the positions of

The existence of three condensed phases in 2D was prtie defects themselves are assumed stable with respect to
dicted by Halperin and Nelson (HN) [5], following work elasticdeformations of the medium. However, they may
by Kosterlitz and Thouless [6], Nelson [7], and Young [8], or may not be stable with respect to topology-changing
who predicted a continuous melting transition for the solid(“tearing”) motion. The continuum theory has nothing to
phase in 2D. The union of these ideas is commonly calleday on this question (except thatigsumesuch moves do
the “KTHNY theory” of 2D melting. In this theory, the not occur); rather, one must look to the underlying micro-
solid phase melts via the unbinding of dislocations. Thescopic structure. Here we find the well-known Peierls-
resulting phase is not an isotropic liquid, but rathdrex-  Nabarro potential [13] which can trap the dislocations.
atic phase with some residual bond-orientational order [5]Hence, we find reason to expect that the IS obtained from
An isotropic liquid is obtained via the unbinding (at higher the hexatic (and liquid) phase will exhibit the free dislo-
T) of thedisclinations of which the dislocations are “com- cations predicted by KTHNY.
posed” [5]. (For a detailed review of the KTHNY theory  Next, we consider free disclinations. Halperin and
and the defects involved, see Strandburg [9].) ConfirmaNelson [5] viewed these defects as scalar singularities
tion of the existence of the hexatic phase in simulation®f a bond-orientation field, analogous to vortices in an
[10] has been elusive, presumably because of limitations iXY magnet. The logarithmic interaction then comes,
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analogously to the case of dislocations, from the assump- (a)
tion [6] that the spin fields (the “medium”) are relaxed to a

local minimum of the coupling energy, with the vortex po- . ~

sitions held fixed. And, again, we face the question of the , o, J,.r:"‘}‘-\“\
stability of the given vortex configuration with respectto -~ = B S TN
(“tearing”) motion of the vortices themselves. Here, how- < : —— N (’\ ' L
ever, we have much less microscopic evidence that such L R \}k L /
objects may be pinned by some analog of the Peierls po- Fon e ;

tential. Thus, we cannat priori say what kind of IS might
arise from an equilibrium configuration which includes a
nonzero density of free disclinations. Let us then con-
sider our IS results, examined in the light of these stability
arguments. (b) 5 o

As mentioned above, in IST, equilibrium configurations ©ry % ¥ ki
are connected to their corresponding inherent structures
by steepest-descent paths. In practice, however, steepest-  |? s ad "
descent minimization is not computationally feasible [2] ¥ 8
for the very large system sizes used in the present study. 5 P% Py 5
Instead, we use a highly damped molecular-dynamics % 5
approach (herein, referred to as “quenching”) at very 5 . s e 7
low temperature. The low temperature (plus damping) = fﬁ %,

ensures that the system trajectory nearly follows theE G.1. (a) Inherent (mechanically stable, or *quenched")
steepest-descent path in configuration space (again s ucture for 36 862 particles with periodic bo’undary conditions,

[2]); also, we insist that the chosen energy functiongpiained by relaxing a configuration from a hexatic phase in
(U for constanty quenches, ofU + pV for constant- (metastable) equilibrium. The relaxation is done at constant

p quenches) strictly decreases until a local minimumpressurep = 20, from an equilibrium snapshot at = 2.154

is reached. It is likelv that our small viation from [units, interaction potential, and constapt-{") MD algorithm,
s reached s likely that our small deviatio 0 e as in Ref. [11]]. Only those atoms which are not sixfold

Steepest—descgnt minimization produces a scatte'r in O@E)ordinated are marked. (b) Enlargement of the boxed-in
results much like that expected from sampling at differenkection of (a). Free dislocations appear as isolated 5—7 pairs.
times; hence it should not have any significant effect on

the results.

With the (metastable [11]) equilibrium hexatic phasedisclination-unbinding mechanism, the only additional de-
as the starting point, our quenching procedure results ifects, as compared to the hexatic phase, are percolating
structures like that shown in Fig. 1. The free disloca-networks of large-angle grain boundaries. In principle,
tions are clearly evident. [In contrast, in quenching fromthis result allows for two competing scenarios. First, it is
a crystal, just below the transition temperature, we findbossible that our equilibrium liquid contains no free discli-
that essentially all of the dislocations have “canceling’nations. In this case, our IS suggest (compare Figs. 1 and
(equal and opposite Burgers vector) dislocations withir8) that the system is melting via a grain-boundary mecha-
one or two lattice spacings.] Also evident is a tendencynism [15], rather than by the HN disclination-unbinding
for the dislocations to arrange themselves into small-anglenechanism. We have attempted to test for the presence
grain boundaries [14], as well as a few large-angle grairof free disclinations in the equilibrium liquid by way of a
boundaries which are identifiable as chains of very closelyprocedure described by Halperin [16], using the disclina-
spaced dislocations. While networks of large-angle grairtion “charge-charge” correlation function, but the results,
boundaries are capable of destroying the quasi-long-ranglus far, are too noisy to allow any definite conclusion.
orientational order characteristic of the hexatic phaseThis leaves open the second possibility—that thare
those present in our hexatic quenches are relatively smdilee disclinations at equilibrium, but that these are un-
and isolated, so that this order is preserved. This is corstable, and somehow transformed into a system of grain
firmed in Fig. 2, where we show log-log plots of the boundaries on quenching. The viability of this idea is
orientational correlation function gg(r)] for a typical demonstrated in Fig. 4. Here, starting with a configura-
hexatic “MD snapshot” and its associated quenched strudion whose only defects are four widely spaced discli-
ture. The linearity of the equilibrium plot, indicative of nations (two positive and two negative), our quenching
the power-law decaydq(r) ~ r~ "] associated with the procedure results in a roughly square grain-boundary net-
hexatic phase, is maintained on quenching. work whose nodes correspond closely to the positions of

Quenching from the equilibrium liquid, we obtain struc- the original disclinations. This would suggest a strong
tures such as that shown in Fig. 3. Rather than theorrelation between the average separation of disclinations
free disclinations that might be expected from the HNin an equilibrium configuration, and the average grain
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. inherent structures. In the process, we have provided
MWV . strong, microscopic evidence for the existence of the
hexatic phase, by extracting the telltale free dislocations
from amidst the vibrational “clutter” of the equilibrium
i phase. This evidence is distinct from, and complementary
to, the previously accumulated evidence for this phase,
which has been based mostly on correlation functions.
While the fact that our isotropic-liquid quenches contain

0.5 -
percolating large-angle grain boundariesather than free

ge(r)

(a)

5 10 20 50 100
r(oy)

FIG. 2. Orientational correlation functiongs(r) for the
quenched (upper curve) and equilibrium (lower) hexatic phase.
In each case a power-law behavior holds at large The
decay is slower for the quenched structure because the disorder
arising from torsional vibrations has been removed.

size in the corresponding quenched structure. The fact
that the equilibrium and quenched configurations have
nearly identical correlation lengths (Fig. 5) thus appears
consistent with the presence of free disclinations in the
equilibrium liquid—without, however, providing decisive
evidence for their existence.

Our large-scale numerical experiments have decisively
established that quenched (inherent) structures clearly
and qualitatively distinguish among the different phases
of condensed matter in 2D—a fundamental premise of
IST—and that there arthree such distinct “phases” of

FIG. 4. (a) An artificial starting configuration  for
FIG. 3. Inherent structure obtained by relaxing an equilibrium4096 particles, constructed with four widely spaced discli-
liquid configuration. The parameters are as in Fig. 1, excephations of zero net scalar and vector charge. Again we use
T, = 2.17. The grain boundaries, isolated in Fig. 1, span theperiodic boundary conditions. (b) The relaxed structure for
sample here, and in all other liquid quenches we have donda) (defects only). The free disclinations have vanished; what
There is no evidence for free disclinations (which would appearemains is a network of grain boundaries which closely marks
here as isolated 5's and 7’s). the original positions of the disclinations.
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