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The relaxation theory of an ideal magnetofluid is developed for a multispecie magnetofluid. Its
invariants are the self-helicities, one for each specie. Their “local” invariance in the ideal case follows
from the helicity transport equation. The global forms of the self-helicities are investigated for a two-
fluid (ion and electron), and their ruggedness in a weakly dissipative system is defended by cascade an
selective decay arguments. In general the two-fluid theory predicts relaxed states with finite pressure
and sheared flows. The familiar single-fluid relaxation theory, which admits only force-free states, is a
reduced case of the present more general theory. [S0031-9007(97)04375-5]
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Knowledge of a system’s invariants often leads to
elegant qualitative picture of its behavior, particularly th
such constraints cause it to self-organize intorelaxed states
[1]. An example is ideal magnetohydrodynamics (MHD
where the invariance of the magnetic helicity has fo
tered successful predictions of self-organization by cert
classes of magnetofluid into force-free states, i.e., equi
ria with no coupling force between the system’s fluid an
field elements [2,3]. However, practical magnetofluids
space and in fusion experiments are not generally fo
free, i.e., they exhibit significant fluid pressure. Furthe
significant flows (not predicted by the MHD theory) ar
a nearly ubiquitous feature of practical plasmas. A mo
realistic formulation of a magnetofluid is a multifluid sys
tem, e.g., atwo-fluid (ions and electrons). In a multifluid
the invariants are the self-helicities (one for each spec
which are canonical composites of the fluid and magne
momenta. MHD is simply the reduced case of a tw
fluid in which the ion and electron responses are lock
together; and the magnetic helicity is simply the electr
self-helicity in the limit of massless electrons.

In this Letter we develop the two-fluid theory of re
laxation. Helicity transport equations, which govern th
“local” form of a helicity, are derived from the equation
of motion and Maxwell’s equations. This leads to th
ideal invariance (dissipationless case) of the self-helicitie
The global form of a self-helicity is the integral of its lo
cal form over the system volume. The ruggedness of
global self-helicities subject to a weak dissipation is d
fended by cascade and selective decay arguments. In
analysis, the fluid-field coupling in turbulent fluctuation
plays an important role. Finally, relaxed states follow fro
minimizing the magnetofluid energy subject to constrain
self-helicities. Inspection of the resulting Euler equatio
together with the steady equation of motion shows th
non-negligible fluid pressure and sheared flows are co
mon features of relaxed states. Throughout the discuss
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we show the relationship of this more general theory to t
familiar reduced theory based on MHD.

We begin by deriving equations for the evolution of tw
basic electromagnetic and two (for each specie) mecha
cal quantities. Consider the vector and scalar potenti
(the existence of which is an implicit expression of Far
day’s law): Use the definition≠Ay≠t ­ 2cE 1 2c=f

(A andf are the potentials); augment≠Ay≠t to construct
the total derivative with respect to speciea, DayDt ;
≠y≠t 1 ua ? =; and replace the electric field in favor o
the Lorentz force on speciea,

Fa ­ qanafE 1 ua 3 Bycg . (1)

Here a ­ i (ions), e (electrons) denotes the specie;qa ,
na , ua are the charge, number density, and flow velocit
andE, B are the electric and magnetic fields. Then

DaA
Dt

­ ua 3 B 1 ua ? =A 2 =scfd 2
c

qa

µ
Fa

na

∂
.

(2)

Consider the explicit form of Faraday’s law: Augmen
≠By≠t to construct the total derivative; again replaceE
in favor of the Lorentz force, addB times the continuity
equationfnaDas1ynadDt ­ = ? uag; and simplify using
a vector identity for= 3 sua 3 Bd and= ? B ­ 0. Then

na

Da

Dt

µ
B
na

∂
­ B ? =ua 2

c
qa

= 3

µ
Fa

na

∂
. (3)

Consider the mechanical elements of the system. F
barotropic speciesfpa ­ pasnadg, the equations of mo-
tion can be expressed as

ma

Daua

Dt
­ 2=ha 1

Fa

na

1
Ra

na

, (4)

where ha ;
R

dpayna , and Ra is the frictional force
density (resistive plus viscous). An equation for the flu
vorticity, va ; = 3 ua, follows by taking the curl of
© 1997 The American Physical Society 3423
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Eq. (4), addingva times the continuity equation, and
using vector identities for=u2

a and= 3 sua 3 vad:

mana

Da

Dt

µ
va

na

∂
­ mava ? =ua 1 =

3

µ
Fa

na

∂
1 = 3

µ
Ra

na

∂
. (5)

We now have expressions for the evolution of two electr
magnetic and two mechanical elements:A [Eq. (2)] and
ua [Eq. (4)] are analogous, as are their curls,B [Eq. (3)]
andva [Eq. (5)]. In each equation is an electromechanic
coupling term containing the specific (per particle) Loren
forceFayna. (Here and elsewhere “specific” denotes pe
particle.)

The next step is to examine quadratic elements (spec
helicities) in search of ideal invariants. From Eqs. (2
and (3), the transport equation for the magnetic helici
A ? Byna is

na

Da

Dt

µ
A ? B

na

∂
­ = ?

∑
sua ? A 2 cfdB 2

c
qa

A

3
Fa

na

∏
2

2c
qa

B ?
Fa

na

. (6)

Similar transport equations can be found for the flui
helicity ua ? vayna, [from Eqs. (3),(4)] and the spe-
cific cross helicity ua ? Byna [from Eqs. (4),(5)].
Further quadratic elements are found by combinin
the electromagnetic and mechanical elements into t
well-known canonical momentaPa ­ maua 1 qaAayc
and their curl, the canonical vorticityVa ­ = 3 Pa.
Notably, in the evolution equations forPa and Va

[from Eqs. (2)–(5)] the electromagnetic coupling term
(Lorentz force) completely cancel: This hints thatPa and
Va are thenatural electromechanical quantities. The as
sociated quadratic elements are the specific self-helicit
Pa ? Vayna. The self-helicity transport equations (one
for each specie) follow [from Eqs. (2)–(5)]:

na

Da

Dt

µ
Pa ? Va

na

∂
­ = ?

∑µ
ua ? Pa 2

mau2
a

2
2 qaf 2 ha

∂
Va

2 Pa 3
Ra

na

∏
1 2Va ?

Ra

na

. (7)

Related helicity transport equations have been deriv
elsewhere. In thereduced model of an ideal Ohm’s
law (a ­ i and Fi ­ 0) Moffatt [4] derived transport
equations for the magnetic [Eq. (6)] and cross helicitie
For a pure fluid (no Lorentz force) Moffatt also derived
the fluid helicity transport equation. Bhadra and Chu [5
derived the ion helicity transport equation [Eq. (7) with
a ­ i]. The forms in Eqs. (6) and (7) are new in tha
they display explicitly the electromechanical coupling
and they are referenced toa (any) specie.
3424
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Local invariancefollows from the transport equations,
which share a common form: The total derivative of
specific helicity is expressed as the sum of a divergen
term, an electromagnetic coupling term, and a friction
term. Consider the ideal case, i.e., set the frictional ter
to zero; if the coupling term happens to vanish, then th
helicity is invariant on the characteristic lines (or tubes
that are tangential to the vector in the divergence term
Then the helicity islocally invariant in the sense that it is
constant on each characteristic line that doesn’t interce
the system boundary. These characteristic lines conv
with a particular specie. Consider the magnetic helicit
[Eq. (6)] with a ­ i: It is invariant only in the reduced
case ofzero coupling forceFi ­ 0; this is identical to
the ideal Ohm’s law [see Eq. (1)]. Thus the magnet
helicity is locally invariant only in MHD (single-fluid).
Its characteristic lines are the magnetic flux lines, an
they convect with the ion specie. By contrast, the sel
helicities [Eq. (7)] are invariantwithout reducing assump-
tions: This is because the electromagnetic coupling
absent from their transport equations. Their characteris
lines convect with the particular specie.

Global invarianceconcerns the global forms of a he-
licity and becomes important when weak dissipation
considered. The global form is the integral

R
na dt

(dt is the volume element) of the specific helicity
i.e., summing over all particles (of a specie). Then
e.g., the specific magnetic helicityA ? Byni sa ­ id be-
comes theglobal magnetic helicityKm ­

R
A ? B dt.

We find the evolution of a global helicity from its trans-
port equation [e.g., forKm, Eq. (6) with a ­ i, Fi ­ 0]
as follows: Take the volume integral

R
dt, apply conti-

nuity DasnadtdyDt ­ 0; and convert the integral of the
divergence to a surface integral. For appropriate boun
ary conditions, the surface integral vanishes (e.g., forKm,
no normal component ofB at the boundary). This leads
to, e.g.,dKmydt ­ 0 so thatKm ­ const. Global self-
helicity invariance follows by applying the same proce
dure to Eq. (7).

We have established the ideal invariance of the se
helicities. However, a useful relaxation theory rests on tw
further requirements: (1) The “direction” of the relaxation
must be toward larger size structures; and (2) the invarian
must berugged,i.e., theKa must decay more slowly than
the magnetofluid energyWmf in the presence of a weak
dissipation. We address the former by a cascade argum
based on the spectral form of the Fourier-analyzed quan
tiesW̃mf, K̃a. We address the latter by selective decay a
guments based on the spectral forms and on the decay ra
dWmfydt, dKaydt, in thin reconnection layers. Since the
self-helicities unite the mechanical and electromagne
elements, the “fluid-field” coupling is needed. For this w
employ linear wave theory. This is equivalent to adoptin
the well-known paradigm of quasilinear theory, i.e., tha
the frequencies of linear theory apply even though no
linear processes ensue.
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Consider the fluid-field coupling in the case of mas
less electrons: This excludes high-frequency phenome
(plasma frequency, electron cyclotron frequency) and a
sures quasineutralityni ­ ne ­ n. The “organized” en-
ergy form is the magnetofluid energyWmf, which sums
the flow kinetic and magnetic energies [4,6]; note th
the electrostatic energy is negligible when high-frequen
phenomena are excluded. The magnetofluid energy a
the self-helicities with their Fourier-analyzed forms are

Wmf ­
Z

dt

µ
1
2

minu2
i 1

B2

8p
d ! W̃mf

­
1

8p

µ
1
,2

c

Ç
micũi

e

Ç2
1k2jÃj2

∂
, (8)

Ka ­
q2

a

8pc2

Z
dtPa ? s= 3 Pad ! K̃a

#
k

8p

Ç
mac
qa

ũa 1 Ã

Ç2
. (9)

Fourier-analyzed quantitiesfexpsik ? r 2 ivtdg are de-
noted by a tilde;k is the wave vector; the “#” re-
flects the Schwarz inequality. We have also introduc
the factor q2

ay8pc2 in the self-helicities (giving them
energy-length units) and the collisionless skin depth,c ­
cyvpi ­ smic2y4pe2n0d1y2 wheren0 is the ambient den-
sity. AlthoughKe andKm differ only by a constant factor
for massless electrons,Ke rather thanKm is the proper
“electron” invariant in a two-fluid. In the case of cold
nondrifting species the ion and electron responses to
field Ã are

mic
e

ũi ­
v

vci 2 v2

µ
vÃ 2 ivci

B0

B0
3 Ã

∂
, (10)

mic
e

ũe ­ 2i
v

vci

B0

B0
3 Ã , (11)

wherevci ­ eB0ymic is the ion cyclotron frequency and
B0 is the ambient field. Inspection of Eqs. (10) and (11
shows that the ion and electron responses lock toget
for low frequenciesv ø vci, i.e., the MHD model is
valid. However, for higher frequenciesv $ Osvcid the
ion and electron responses differ markedly, i.e., the tw
fluid model is necessary. An investigation of the dispe
sion relation (see, e.g., [7]) uncovers three propagati
waves: theR wave (kk, right circularly polarized); the
L wave (kk, left circularly polarized); and the magneto
sonic wave (k', Ẽ ' B0). Herek and' denote parallel
and perpendicular toB0. For low k sk,c , 1d each
has Alfven-like frequencyv ø knA ­ vcik,c (nA is the
Alfven speed) and lie in the low-frequency MHD regime
For high k sk,c . 1d all responses require the two
fluid treatment:v ø vcisk,cd2, R wave; v ø vcisk,cd,
magnetosonic wave; andv ø vci, L wave.

Consider now thecascade argument.Since a two-
fluid has a multiplicity of waves, two kinds of selection
occur: intermode selection and spectral selection (int
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mode). In the former the selection favors the lowest e
ergy wave. For lowk the energy is about the same fo
all three waves,W̃mf ø k2jÃj2y4p , while at highk the
R wave (“whistler”) for whichW̃mf ø k2jÃj2y8p is en-
ergetically favorable. For lowk there is equipartition be-
tween magnetic and the flow kinetic energies. This, wi
our observation that MHD behavior applies for lowk,
is consistent with the equipartition well known in MHD
simulations. For highk, however, the flow kinetic en-
ergy is much less than the magnetic energy. The se
helicities are (lowk), K̃e ø K̃i ­ kjÃj2y8p, and (highk,
R wave), K̃e ­ kjÃj2y8p and K̃i ø sk,cd24kjÃj2y8p.
Then for all ranges ofk and the energetically favored
wave the following inequalities hold:

W̃mfskd $ kK̃askd; a ­ i, e . (12)

With these relationships in hand we can consider the sp
tral selection, which leads to thecascade argument.Here
we apply the argument of Frischet al. [6]. Having estab-
lished the inequalityW̃ skd $ kK̃skd, they showed that an
ideal transition (one in which the global energy and he
licity are preserved) can only lead towardlower k, i.e.,
toward larger-scale structures. This is aninversecascade.
Frisch applied this argument tõWm, K̃m (MHD model),
but it applies equally to the magnetofluid energy and t
self-helicities in view of the inequalities [Eq. (12)]. This
argument does not apply to the cross and fluid helic
ties since they do not satisfy inequalities of the form
Eq. (12).

Observe two differences between the MHD and tw
fluid models. (1) If one adopts the MHD model (idea
Ohm’s law), then for lowk, W̃mf ~ k2 and K̃i ~ k,
while for high k (again) W̃mf ~ k2, but K̃i ~ k3; there-
fore Eq. (12), on which the inverse cascade argume
rests, doesn’t hold for highk. It is unlikely then that a
MHD simulation will predict invariantKi, and particu-
larly so since relaxation proceeds at thin reconnecti
layers corresponding to highk. Therefore the appear-
ance of rugged ion helicity requires a two-fluid treatmen
(2) BothK̃e andK̃m are rugged invariants in their particu
lar contexts (two-fluid, MHD, respectively); however,Ke

is on a firmer footing since it is based on the more gene
plasma model, and it doesn’t rest on an artificial assum
tion (ideal Ohm’s law).

The other argument supporting the relaxation modelse-
lective decay,which was articulated by Montgomery [8]
and others (e.g., [2]), addresses the issue of ruggedn
in the presence of weak dissipation, are the self-helicit
more invariantthan the magnetofluid energy. The sim
plest selective decay argument springs from Eq. (1
Since W̃mf is proportional to a higher power ofk than
K̃a , its spectrum should peak at a higherk. Then since
dissipation is stronger at higherk (smaller scale) the mag-
netofluid energy should be dissipated faster than either
the self-helicities. Indeed for ions, this tendency is acce
tuated in view of the extreme smallness ofK̃i at high k.
3425
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The second formulation of the selective decay argume
compares the decay rates:

dWmf

dt
­

Z
dt

µ
hj2 1

X
a

na j=uaj2
∂

; (13)

dKa

dt
­ 2

c2

4pq2
a

Z
dtVa ?

µ
2qahj 1

na

n
=2ua

∂
;

(14)

where j, na=2ua are the current density and viscou
stress, respectively. Define1ykR as the nominal recon-
nection layer thickness (kR,c ¿ 1 for thin layers). Then

dWmfydt , k2
R

hc2

4p

jB̃j2

8p

∑
1 1

m

k2
R,2

c

∏
, (15)

dKeydt , kR
hc2

4p

jB̃j2

8p
, (16)

dKiydt , kR
hc2

4p

jB̃j2

8p

∑
2 1

m

k2
R,2

c

∏
. (17)

Here B̃ is the perturbed magnetic field; the electro
viscosity has been neglected; and the terms withm ø
smiy2med1y2 ø 40 represent the ion viscosity. The pre
dominant scalings at highkR imply that the energy
decay ratedWmfydt ~ k2

R is stronger than that of the
self-helicitiesdKaydt ~ kR. The same proportionalities
appear in the decay ofWm andKm [2].

Having established the ruggedness of self-helicities, w
are free to find relaxed states by solving the constrain
variational problem dWmf 2 lidKi 2 ledKe ­ 0,
where li , le are Lagrange multipliers. The resulting
Euler equation for each specie are

laVa ­ s2pqayc2dja . (18)

Observe the following properties: (1) For massless ele
trons sa ­ e, me ­ 0d the left side of Eq. (18) is pro-
portional to the magnetic field, so thatje ~ leB; thus in
the absence of ion currentss j ­ jed, the equilibrium is
force free,as in the MHD theory. In general, of course
the ion current is nonzero. (2) For ionssa ­ id the
= 3 ui term on the left side of Eq. (18) (recall thatVi ­
mi= 3 ui 1 eByc) implies that significant sheared ion
flows can arise in relaxed states. The pressure is fou
by summing the species equations of motion. For relax
equilibria [Eq. (18)] this leads to a Bernoulli equation

=p ­ 2min=u2
i y2 , (19)
3426
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wherep is the sum of the electron and ion pressures. A
important consequence of Eq. (19) is that finite-pressu
relaxed states can exist, but only with velocity shear (o
more generally with=u2

i fi 0). It was noted earlier that
the ion equation [Eq. (18),a ­ i] allows significantly
sheared flows.

The relaxation theory of a two-specie magnetofluid syn
thesizes several familiar concepts: relaxation; multi-flui
magnetohydrodynamics; and the canonical momenta.
invariants are the self-helicities, based on the canonic
momenta. These naturally conjoin the mechanical an
electromagnetic elements in that their invariance requir
no artificial assumptions about the electromechanical co
pling. The range of two-fluid relaxed states include
both static force-free equilibria and equilibria with sig-
nificant pressure and sheared flow. The familiar MHD
(single-fluid) relaxation theory is a reduced case of th
present more general two-fluid treatment. Since the MH
theory assumes no electromechanical coupling force
the ions (ideal Ohm’s law), it is not surprising that
it predicts only force-free states. A forthcoming work
will show that two-fluid relaxed states include equilibria
resembling field-reversed configurations, reversed-she
tokamaks, reversed-field pinches, and spheromaks, all
which are magnetic plasma configurations relevant to fu
sion. Future directions for the two-fluid theory should
include the following: (1) Comparison of relaxed state
with space and laboratory magnetofluids; (2) a two-flui
simulation to verify the preservation of both self-helicities
(the two-fluid model is essential for the invariance ofKi);
and (3) addition of finite ion orbit effects (not included in
the two-fluid model), possibly using the gyroviscosity.

The authors wish to thank Ravi Sudan for suggestin
the self-helicity invariants.

[1] See review by M. R. Brown, J. Plasma Phys.52, 203
(1997).

[2] J. B. Taylor, Phys. Rev. Lett.33, 1139 (1974).
[3] J. B. Taylor, Rev. Mod. Phys.58, 741 (1986).
[4] H. K. Moffatt, J. Fluid Mech.35, 117 (1969).
[5] D. K. Bhadra and C. Chu, J. Plasma Phys.33, 257 (1985).
[6] U. Frisch, A. Pouquet, J. Leorat, and A. Mazure, J. Fluid

Mech. 68, 769 (1975).
[7] N. A. Krall and A. W. Trivelpiece,Principles of Plasma

Physics(McGraw-Hill, New York, 1973), Chap. IV.
[8] D. Montgomery, L. Turner, and G. Vahala, Phys. Fluids

21, 757 (1978).


