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Relaxation of a Two-Specie Magnetofluid
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The relaxation theory of an ideal magnetofluid is developed for a multispecie magnetofluid. Its
invariants are the self-helicities, one for each specie. Their “local” invariance in the ideal case follows
from the helicity transport equation. The global forms of the self-helicities are investigated for a two-
fluid (ion and electron), and their ruggedness in a weakly dissipative system is defended by cascade and
selective decay arguments. In general the two-fluid theory predicts relaxed states with finite pressure
and sheared flows. The familiar single-fluid relaxation theory, which admits only force-free states, is a
reduced case of the present more general theory. [S0031-9007(97)04375-5]

PACS numbers: 52.30.Bt, 47.65.+a, 52.55.Dy

Knowledge of a system’s invariants often leads to anwe show the relationship of this more general theory to the
elegant qualitative picture of its behavior, particularly thatfamiliar reduced theory based on MHD.
such constraints cause it to self-organize iefaxed states We begin by deriving equations for the evolution of two
[1]. An example is ideal magnetohydrodynamics (MHD) basic electromagnetic and two (for each specie) mechani-
where the invariance of the magnetic helicity has fos-cal quantities. Consider the vector and scalar potentials
tered successful predictions of self-organization by certaifthe existence of which is an implicit expression of Fara-
classes of magnetofluid into force-free states, i.e., equilibday’s law): Use the definitiodA/dr = —cE + —cV¢
ria with no coupling force between the system’s fluid and(A and ¢ are the potentials); augmefA /dr to construct
field elements [2,3]. However, practical magnetofluids inthe total derivative with respect to speae D,/Dr =
space and in fusion experiments are not generally forcé/dr + u, - V; and replace the electric field in favor of
free, i.e., they exhibit significant fluid pressure. Furtherthe Lorentz force on specie,
significant f_Iows (not predicted by 'Fhe MHD theory) are F, = quns[E + u, X B/c]. 1)
a nearly ubiquitous feature of practical plasmas. A more
realistic formulation of a magnetofluid is a multifluid sys- Herea =i (ions), e (electrons) denotes the specig;,
tem, e.g., @awo-fluid (ions and electrons). In a multifluid 7, . are the charge, number density, and flow velocity;
the invariants are the self-helicities (one for each speciegnNdE, B are the electric and magnetic fields. Then
which are canonical composites of the fluid and magnetic p,A ¢ (F,
momenta. MHD is simply the reduced case of a two- 5, — Ua X B + ua - VA = V(cd) — _<n_>

[ 47

fluid in which the ion and electron responses are locked 2)
together; and the magnetic helicity is simply the electron _ o
self-helicity in the limit of massless electrons. Consider the explicit form of Faraday’s law: Augment

In this Letter we develop the two-fluid theory of re- 9B/dt to construct the total derivative; again repld€e
laxation. Helicity transport equations, which govern thein favor of the Lorentz force, adB times the continuity
“local” form of a helicity, are derived from the equations equation[n,D.(1/n,)Dt =V - u,]; and simplify using
of motion and Maxwell's equations. This leads to thea vectoridentity foV X (u, X B)andV - B = 0. Then
idealinvariance (dissipationless case) of the self-helicities. D,/ B ¢ F,

The global form of a self-helicity is the integral of its lo- Na E<_> =B -Vu, - —VX <_> 3
o

cal form over the system volume. The ruggedness of the

global self-helicities subject to a weak dissipation is de-Consider the mechanical elements of the system. For

fended by cascade and selective decay arguments. In tHi@rotropic speciebp, = p.(n.)], the equations of mo-

analysis, the fluid-field coupling in turbulent fluctuationstion can be expressed as

plays animportant role. Finally, relaxed states follow from D u, F, R,

minimizing the magnetofluid energy subject to constrained mog —p— = ~Vha + -= + —=, (4)

self-helicities. Inspection of the resulting Euler equations “ “

together with the steady equation of motion shows thatvhere #, = fdpa/na, and R, is the frictional force

non-negligible fluid pressure and sheared flows are condensity (resistive plus viscous). An equation for the fluid

mon features of relaxed states. Throughout the discussioworticity, @, = V X u,, follows by taking the curl of

Ny Ny
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Eq. (4), addingw, times the continuity equation, and Local invariancefollows from the transport equations,

using vector identities foVu2 andV X (u, X w,): which share a common form: The total derivative of a
specific helicity is expressed as the sum of a divergence
Dy (@q
Mg Ng E(n_> =mawy - Vu, +V term, an electromagnetic coupling term, and a frictional
a

term. Consider the ideal case, i.e., set the frictional term
y <F_a> LV X <&> (5) 0 zero; if the coupling term happens to vanish, then the
Mg g /) helicity is invariant on the characteristic lines (or tubes)

We now have expressions for the evolution of two electro-that are tangential to the vector in the divergence term.

magnetic and two mechanical elememts{Eq. (2)] and Then the helicity idocally invariantin the sense that it is
9 . g- constant on each characteristic line that doesn't intercept
u, [Eqg. (4)] are analogous, as are their cuBs[Eq. (3)]

andw,, [Eq. (5)]. Ineach equationisan electromechanicafh.e system boundary._ These gharacterlstlc Ilnt_es convect
with a particular specie. Consider the magnetic helicity

coupling term containing the specific (per particle) Lorentz[Eq. 6)] with & = i: It is invariant only in the reduced

Logftiecﬁ;“)/n“' (Here and elsewhere "specific” denotes Pelase ofzero coupling forceF; = 0; this is identical to

The next step is to examine quadratic elements (specifi&ﬁiégei (I)Or::g”s IiiY/vaEiSaeni Er?ll (ilrz].M :'- gu?sf:ﬁeﬂﬁ?(;e“c
helicities) in search of ideal invariants. From Egs. (2)“ y y y 9 :

. . MNts characteristic lines are the magnetic flux lines, and
and (3), the transport equation for the magnetic he“C'tythey convect with the ion specie. %y contrast, the self-

A B/ngis helicities [Eq. (7)] are invariankithout reducing assump-
Da(A-B) _ V- DA — _ < tions: This is because the electromagnetic coupling is
Ne (ug A — c¢o)B A ; . . A
Dt \ n, qa absent from their transport equations. Their characteristic
F, 2 F, lines convect with the particular specie.
X n_} - q_ B - P (6) Global invarianceconcerns the global forms of a he-

licity and becomes important when weak dissipation is
Similar transport equations can be found for the fluidconsidered. The global form is the integrdln, dr
helicity u, - w./n., [from Egs. (3),(4)] and the spe- (d7 is the volume element) of the specific helicity,
cific cross helicity u, - B/n, [from Egs. (4),(5)]. i.e., summing over all particles (of a specie). Then,
Further guadratic elements are found by combininge.g., the specific magnetic helicity - B/n; (a = i) be-
the electromagnetic and mechanical elements into theomes theglobal magnetic helicityk,, = [A - Bdr.
well-known canonical momentB, = m,u, + g.A./c We find the evolution of a global helicity from its trans-
and their curl, the canonical vorticitf2, = V X P,.  port equation [e.g., foK,,, EQ. (6) witha = i,F; = 0]
Notably, in the evolution equations foP, and , as follows: Take the volume integrdldr, apply conti-
[from Egs. (2)—(5)] the electromagnetic coupling termsnuity D, (n,d7)/Dt = 0; and convert the integral of the
(Lorentz force) completely cancel: This hints tlat and  divergence to a surface integral. For appropriate bound-
Q. are thenatural electromechanical quantities. The as-ary conditions, the surface integral vanishes (e.g.Kfgr
sociated quadratic elements are the specific self-helicitieso normal component dB at the boundary). This leads
P, - Q,./n.. The self-helicity transport equations (one to, e.g.,dK,,/dr = 0 so thatkK,, = const. Global self-

for each specie) follow [from Eqgs. (2)—(5)]: helicity invariance follows by applying the same proce-
D, (P, - Q, dure to Eq. (7).

Na E(T) V.Vghave established the ideal invariance of the self-
“ ) helicities. However, a useful relaxation theory rests on two

_v. [(u p. _ Malla dudb — I )Q further requirements: (1) The “direction” of the relaxation
“ooe 2 “ a)pe must be toward larger size structures; and (2) the invariants

R, R, must berugged,i.e., theK, must decay more slowly than

- P, X n—} +2Q, - P (7)  the magnetofluid energW,,¢ in the presence of a weak

dissipation. We address the former by a cascade argument
Related helicity transport equations have been derivetiased on the spectral form of the Fourier-analyzed quanti-
elsewhere. In theeduced model of an ideal Ohm's tiesW,, K,. We address the latter by selective decay ar-
law (o« =i and F; = 0) Moffatt [4] derived transport guments based on the spectral forms and on the decay rates,
equations for the magnetic [Eq. (6)] and cross helicitiesdWy,¢/dt, dK, /dt, in thin reconnection layers. Since the
For a pure fluid (no Lorentz force) Moffatt also derived self-helicities unite the mechanical and electromagnetic
the fluid helicity transport equation. Bhadra and Chu [5]elements, the “fluid-field” coupling is needed. For this we
derived the ion helicity transport equation [Eq. (7) with employ linear wave theory. This is equivalent to adopting
a = i]. The forms in Eqgs. (6) and (7) are new in that the well-known paradigm of quasilinear theory, i.e., that
they display explicitly the electromechanical coupling,the frequencies of linear theory apply even though non-
and they are referenced &o(any) specie. linear processes ensue.
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Consider the fluid-field coupling in the case of mass-mode). In the former the selection favors the lowest en-
less electrons: This excludes high-frequency phenomenergy wave. For lowk the energy is about the same for
(plasma frequency, electron cyclotron frequency) and asall three wavesW,,; =~ k*|A|>/44, while at highk the
sures quasineutrality; = n, = n. The “organized” en- R wave (“whistler”) for whichW,,; =~ k?|A|>/8 is en-
ergy form is the magnetofluid enerdy,,r, which sums ergetically favorable. For low there is equipartition be-
the flow kinetic and magnetic energies [4,6]; note thattween magnetic and the flow kinetic energies. This, with
the electrostatic energy is negligible when high-frequencyur observation that MHD behavior applies for lawy
phenomena are excluded. The magnetofluid energy arid consistent with the equipartition well known in MHD
the self-helicities with their Fourier-analyzed forms are  simulations. For highk, however, the flow kinetic en-

1 , B . ergy is much less than the magnetic energy. The self-
Wit = | dr| - minu; + —) — Wy helicities are (lowk), K, =~ K; = k|A|*/8, and (highk,
2 8 - 2 - -
. R wave), K, = k|A|?/8# and K; = (k€.) *k|A|*/8.
_ L (1 |micu; 21412 Then for all ranges ok and the energetically favored
. +RIAP), 8) hge: n
8 \ 0 wave the following inequalities hold:
2 = p .
K, = % [ drP, - (V X Pa) — f(a Wmf(k) = kKa(k); a =1,¢€. (12)
e ) With these relationships in hand we can consider the spec-
_ k |mac i +A ) tral selection, which leads to tleascade argumentHere
T 87wl g.  “ we apply the argument of Friseh al. [6]. Having estab-

. " . . lished the inequality¥ (k) = kK (k), they showed that an
Egtuer (ljeré)anzlytzi%(i.Eu?snt![tr;ee@xr;\zllé 'vrec_to;'wtt:%]e ir? rde?_ ideal transition (one in which the global energy and he-
y . . ' N licity are preserved) can only lead towalalver %, i.e.,
flects the Schwarz inequality. We have also IntrOdUCeqoward larger-scale structures. This isiamersecascade
the factor gz /8wc? in the self-helicities (giving them - applied this argument.tﬁ’m,i(m (MHD model),.
energy-_length2uzlts)zan(il/ghehcolllsm_nltfﬁs Sk'rk').de?tdh: but it applies equally to the magnetofluid energy and the
géwplAEhgﬁichIé Zﬁldnlg) di;vere(;?lllio t')S aigrrll;tal?]?fa((:etg_r self-helicities in view of the inequalities [Eq. (12)]. This
Y- ghie " y 0y argument does not apply to the cross and fluid helici-

ior massille.ss e[ectrqnsﬁe rather_ thank,, is the proper ties since they do not satisfy inequalities of the form in
electr_o_n invariant in a two-fluid. In the case of cold, Eq. (12)
Hgﬂd;rl'fg?f species the ion and electron responses to the Qbserve two differences between the MHD and_ two-
fluid models. (1) If one adopts the MHD model (ideal
Mﬁi - v 2<wA — iwg By % A), (10) Oh_m’s Iavv_), then f(_)r lowk, ngf o k2~ andf(l- o k,
e Wei — @ 0 while for highk (again) Wy « k=, but K; o« k°; there-
mic ® By - fore Eqg. (12), on which the inverse cascade argument
i, = —i— — XA, (11) rests, doesn't hold for high. It is unlikely then that a
¢ @ei Bo MHD simulation will predict invariantk;, and particu-
wherew.; = eBy/m;c is the ion cyclotron frequency and larly so since relaxation proceeds at thin reconnection
By is the ambient field. Inspection of Egs. (10) and (11)layers corresponding to high Therefore the appear-
shows that the ion and electron responses lock togetha@nce of rugged ion helicity requires a two-fluid treatment.
for low frequenciesw < w,;, i.e., the MHD model is (2) BothK, andk,, are rugged invariants in their particu-
valid. However, for higher frequencies = O(w.;) the lar contexts (two-fluid, MHD, respectively); howeve¥,
ion and electron responses differ markedly, i.e., the twois on a firmer footing since it is based on the more general
fluid model is necessary. An investigation of the disperplasma model, and it doesn'’t rest on an artificial assump-
sion relation (see, e.g., [7]) uncovers three propagatingon (ideal Ohm’s law).
waves: theR wave {;, right circularly polarized); the The other argument supporting the relaxation mael
L wave ¢, left circularly polarized); and the magneto- lective decaywhich was articulated by Montgomery [8]
sonic wave k,, E L By). Here|l and L denote parallel and others (e.g., [2]), addresses the issue of ruggedness:
and perpendicular tdB,. For low k (k€. < 1) each in the presence of weak dissipation, are the self-helicities
has Alfven-like frequency = kv, = w.k€f. (v4 isthe more invariantthan the magnetofluid energy. The sim-
Alfven speed) and lie in the low-frequency MHD regime. plest selective decay argument springs from Eq. (12).
For high k (k€. > 1) all responses require the two- Since Wy, is proportional to a higher power df than
fluid treatmentw =~ w.;(k€.)?, R wave, w =~ w.;(k€.), K., its spectrum should peak at a higher Then since
magnetosonic wave; and = w.;, L wave. dissipation is stronger at highér(smaller scale) the mag-
Consider now thecascade argument.Since a two- netofluid energy should be dissipated faster than either of
fluid has a multiplicity of waves, two kinds of selection the self-helicities. Indeed for ions, this tendency is accen-
occur: intermode selection and spectral selection (intratuated in view of the extreme smallnessiof at high k.
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The second formulation of the selective decay argumentherep is the sum of the electron and ion pressures. An
compares the decay rates: important consequence of Eq. (19) is that finite-pressure
AW, relaxed states can exist, but only with velocity shear (or
== f dT(nj2 + Z vQIVua|2>; (13)  more generally withVu? # 0). It was noted earlier that
dt a the ion equation [Eq. (18)a = i] allows significantly
dK, c2 vy sheared flows.
= — 5 ]drﬂa . <—qa77j + —Vzua>; The relaxation theory of a two-specie magnetofluid syn-
dt 4mqq n thesizes several familiar concepts: relaxation; multi-fluid
(14) magnetohydrodynamics; and the canonical momenta. Its
where j, »,V?u, are the current density and viscous invariants are the self-helicities, based on the canonical
stress, respectively. Defing/kz as the nominal recon- momenta. These naturally conjoin the mechanical and

nection layer thicknessg €. > 1 for thin layers). Then electromagnetic elements in that their invariance requires
no artificial assumptions about the electromechanical cou-

2 IR|2
AWt /dt ~ K2 ne” ﬂ[l n ZL} (15) pling. The range of two-fluid relaxed states includes
4 8 kg2 both static force-free equilibria and equilibria with sig-
nificant pressure and sheared flow. The familiar MHD

2 B2
dK,/dt ~ kg ne” ﬂ (16)  (single-fluid) relaxation theory is a reduced case of the
4 8 present more general two-fluid treatment. Since the MHD
2 1B theory assumes no electromechanical coupling force on
dK;/dt ~ kRL—[Z + ;‘2} (17) the ions (ideal Ohm’s law), it is not surprising that
4m 8w kgtZ it predicts only force-free states. A forthcoming work

will show that two-fluid relaxed states include equilibria
. . ) resembling field-reversed configurations, reversed-shear
V|Sc03|ty1r/12as been neglected; z_:md t.he tgrms vyith= tokamaks, reversed-field pinches, and spheromaks, all of
(m;/2m,)"/> = 40 represent the ion viscosity. The pre- ,hich are magnetic plasma configurations relevant to fu-
dominant scalings at higtk imply that the energy - gjon  Fyture directions for the two-fluid theory should
decay ratedWm/di = ki is stronger than that of the jhqjyde the following: (1) Comparison of relaxed states
self-helicitiesdK, /dt = kg. The same proportionalities yith space and laboratory magnetofluids; (2) a two-fluid
appearin the depay 67,, andK.,, [2]. . simulation to verify the preservation of both self-helicities
Having es_tabllshed the ruggedness Qf self-hehcmesz W?the two-fluid model is essential for the invariancekoj;
are free to find relaxed states by solving the constrainedn,q (3) addition of finite ion orbit effects (not included in
variational ~ problem SWms — A;6K; — A:6K. =0, {he two-fluid model), possibly using the gyroviscosity.

where A;, A, are Lagrange multipliers. The resulting = The authors wish to thank Ravi Sudan for suggesting
Euler equation for each specie are the self-helicity invariants.

Aoy = (277(’1a/c2)j01 . (18)
Observe the following properties: (1) For massless elec-

trons (a = e,m, = 0) the left side of Eq. (18) is pro- '
. »e .. . 11 S by M.R. B , J. Pl Phys2, 203
portional to the magnetic field, so thjt «« A, B; thus in g (legewr;a'wew y rown asma

the absence of ion currentg = j.), the equilibrium is  [2] 3 B. Taylor, Phys. Rev. Let83, 1139 (1974).

force free,as in the MHD theory. In general, of course, [3] J.B. Taylor, Rev. Mod. Phys8, 741 (1986).

the ion current is nonzero. (2) For iong = i) the [4] H.K. Moffatt, J. Fluid Mech.35, 117 (1969).

V X u; term on the left side of Eq. (18) (recall th&; = [5] D.K. Bhadra and C. Chu, J. Plasma Ph$8, 257 (1985).
m;V X u; + eB/c) implies that significant sheared ion [6] U. Frisch, A. Pouquet, J. Leorat, and A. Mazure, J. Fluid
flows can arise in relaxed states. The pressure is found  Mech.68, 769 (1975). o

by summing the species equations of motion. For relaxedl?] N.A. Krall and A.W. Trivelpiece,Principles of Plasma

Here B is the perturbed magnetic field; the electron

equilibria [Eq. (18)] this leads to a Bernoulli equation Physics(McGraw-Hill, New York, 1973), Chap. V.
d [Ea. (18)] q [8] D. Montgomery, L. Turner, and G. Vahala, Phys. Fluids
Vp = —minVu?/2, (19) 21, 757 (1978).
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