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Fluid equations are derived that describe wave-particle resonances, which usually require kin
theory. Unlike previous such efforts the closure is not linearized, and so retains many nonlinear wa
particle effects never before described by fluid equations. To demonstrate utility, we show that the n
equations can retain trapping, time reversibility, and rectify a discrepancy between full kinetic theo
and linear kinetic fluid closures. [S0031-9007(97)04396-2]
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In plasmas, wave-particle resonances produce numer
effects. This includes linear Landau damping, nonline
effects such as trapping, scattering, plasma echoes [1],
probably many others which are yet unknown. Studi
of wave-particle resonances have traditionally employ
kinetic equations, which describe the one-particle pha
space distribution,fsx, v , td. There have been efforts to
simplify this by incorporating such effects in fluid equa
tions. “Landau-fluid” equations [2,3] model linear Landa
damping by addinglinear terms to fluid equations. But this
approach can missnonlinearwave-particle effects, such as
listed above, and so can miscalculate nonlinear pheno
ena like saturation amplitudes and transport [4–6]. T
correct this, Ref. [7] introduced anonlinear kinetic fluid
closure, deriving a renormalized term to describe wav
particle resonances in Langmuir turbulence. This pres
paper makes a major advance, showing that moment eq
tions can be closed with a simple integration trick, skippin
most approximations of prior approaches. This sugge
that fluid equations may be able to includemanyresonance
effects previously thought to require kinetic theory.

Kinetic theory addresses resonant interactions by f
lowing particle velocities. However, this may be unne
essary because resonant particles just follow the ph
velocity of the wave, which fluid equations already retai
This paper shows that the particle velocity can be in
grated out of the kinetic equations without sacrificing res
nances. Thus the only required knowledge is the pha
velocities and the initial distribution function. This ma
make great simplification possible.

The first part of this paper gives an exact kinetic flu
closure for the drift kinetic equation. The method ca
apply to a number of other systems as well. The seco
part demonstrates the utility of this approach, showi
that the closure rectifies a known discrepancy betwe
kinetic solutions and linear kinetic fluid closures [5].

We begin with the drift kinetic equation, describing th
evolution of a plasma in a strong magnetic field,

≠tf 1 svk 1 vEd ? =f 1 Ek≠yk
f ­ 0 , (1)

where fsx, yk, td is the distribution function for some
species,vk is the kinetic velocity parallel to the magneti
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field B, vE is the E 3 B velocity, andEk is the electric
field parallel toB. Taking f ­ F0sx, ykd 1 f̃sx, yk, td,
and for simplicity assuming straight constant mag
netic field B ­ Bẑ, electrostatic field E ­ 2=f̃,
Maxwellian F0 with density and temperature gradient
in x̂, F0sx, ykd ­ n0s2pT0ymd21y2 expf2my

2
ky2T0g, ne-

glecting nonlinear parallel acceleration [8], and Fourie
Laplace transforming inx andt

2isv 2 ykkkdf̃k 1
X
k0

ṽE,k00 ? ik0f̃k0 1

ifkkyk 2 vp 1 vT
p s 1

2 2
1
2 y

2
kdgFMkf̃k ­ 0 , (2)

where2iv is the Laplace time conjugate,k00 ­ k 2 k0,
kk ­ k ? ByB, vp ­ kyyLn, vT

p ­ 2kyyLT , L21
n ­

d ln n0ydx, L21
T ­ d ln T0ydx, FMk ­ n0 exps2y

2
ky2dyp

2p, and units are so thateBymc ­ T0 ­ m ­ 1, and
y

2
th ­ T0ym ­ 1. We regard Eq. (2) as exact for the

purpose of deriving the fluid equations. A number o
other kinetic equations could also serve as a starting poi
Eq. (2) is chosen for definiteness.

Fluid equations come from velocity momentsR
dyk y

n
k , of Eq. (2), forn ­ 0, 1, and 2,

2ivñk 1
X
k0

ṽE,k00 ? ik0ñk0 1 ivpf̃k 1 ikkṼkk ­ 0 ,

(3)

2ivṼkk 1
X
k0

ṽE,k00 ? ik0Ṽkk0 1 ikkf̃k 1 ikkp̃kk ­ 0 ,

(4)

2ivT̃kk 1
X
k0

ṽE,k00 ? ik0T̃kk0 2 ivT
p f̃k2

ikkṼkk 1 ikk

Z
dyk y

3
k f̃kyn0 ­ 0 , (5)

where ñk ­
R

dyk f̃k, n0Ṽkk ­
R

dykykf̃k, p̃kk ­R
dyky

2
k f̃k, and pk ­ nTk. Closure is now needed, to

express
R

dyky
3
k f̃k in terms of lower moments.

The closure proceeds as follows. First, we streamlin
notation by representing Eq. (2) in matrix form, as

sV 2 G 2 ykKkd $f ­ VpsykdFMk
$f . (6)
© 1997 The American Physical Society 3419
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Here $f and $f are column vectors of̃fk and f̃k for
different k, V and Kk are diagonal matrices ofv and
kk, G is a matrix of nonlinear coupling coefficients,
Gk,k0 ; v̂E,k00 ? k0, andVpsykd is the diagonal matrix of
kkyk 2 vp 1 vT

p s 1
2 2

1
2 y

2
kd. All matrices are diagonal

exceptG. A number of other kinetic equations can be
cast in this form, and so the following derivation, up
to Eq. (10), is fairly general. Inverting the evolution
operator in Eq. (6) gives

$f ­ 2syk 2 W d21K
21
k VpsykdFMk

$f , (7)

whereW ; K
21
k fV 2 Gg is thenonlinear phase veloc-

ity matrix,a central object in this theory, and a generaliza
tion of thevykk appearing in linear kinetic theory. Now
we take two particular moments of Eq. (7), obtainingZ

dyksy3
k 2 3ykd $f ­ ≠3

a

∑Z
CL

dyk

FMk

yk 2 a 2 W

∏
a­0

3 K
21
k VpsW d $f , (8)Z

dyksy2
k 2 1d $f ­ 2≠2

a

∑Z
CL

dyk

FMk

yk 2 a 2 W

∏
a­0

3 K
21
k VpsW d $f , (9)

whereCL is the Landau contour, giving analytic continu-
ation as discussed below. To derive Eqs. (8) an
(9), one uses sy3 2 3ydFMsyd ­ 2≠3

yFMsyd and
sy2 2 1dFM syd ­ ≠2

yFMsyd, a special property of
Maxwellian distributions that relates moments and deriva
tives. This allows integration by parts of the right side
after which we have applied the identity

≠m
y

yn

y 2 W
­ s2≠adm W n

y 2 a 2 W

Ç
a­0

sm $ nd .

This identity shows that closing the fluid equations at th
n ­ 2 moment is related to the appearance ofy

2
k as the

highest power inVpsykd. Solving Eqs. (8) and (9) for
they

3
k moment, applying definitions of the fluid moments

and substituting into Eq. (5) yields

2ivT̃kk 1
X
k0

ṽE,k00 ? ik0T̃kk0 2 ivT
p f̃k 1

2ikkṼkk 1 ikk

X
k0

Bk,k0 T̃kk0 ­ 0 , (10)

where we have defined

BsW d ; 2Z
f3g
0 sW y

p
2 d f

p
2 Z

f2g
0 sW y

p
2 dg21,

Z0 is the analytically continued plasma dispersion functio

Z0sW y
p

2 d ;
1

p
p

Z
CL

dyk

e2y2
k y2

yk 2 W
,

the superscripts[3] and [2] denote derivatives evaluated
with a as in Eqs. (8) and (9),Bk,k0 ; $e

y
kBsW d$ek0 , and

$e
y
k and $ek0 are unit row and column vectors.
Equation (10) is the central result of this paper

representing a fluid closure which fully retains nonlinea
3420
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resonances. It reduces to the Chang-Callen closure
when G ­ 0 in W , and the Hammet-Perkins closur
[2] when V ­ G ­ 0 in W . There are a number o
directions to go from this point. Here we will discus
some general features and then demonstrate the ut
with the specific example of a three-mode ITG problem

One might think that such a closure is impossible, th
a description of wave-particle interactions must reta
some aspect of particle motion. In reality, we ha
not really eliminated any complication; we have on
integratedyk out of the equation. The details of th
kinetic interactions still exist inB, which is a complicated
function of the frequency spectrum. What this procedu
has done is to replace the usual complication inparticle
velocity by complication inphasevelocity. Since there
are typically many fewer waves than particles, and sin
fluid equations track the wave velocities anyway, th
can simplify computation. However, Eq. (10) is clear
still not useful, as several issues must be addressed
make it tractable, among them handling the function
a matrix,BsW d, handling the analytic continuation ofZ0,
and evolving a complicated function of frequency.

As a scalar function,Bswd is mostly a smooth function
of w, with only one pole, atw ! `. Bswd has a rapid jump
across the lineswi , 2jwr j in the complexw plane [9].
As a matrix function,BsW d requires some explanation
BsW d $T can be reduced to a scalar function by dividin
$T into eigenvectors.More specifically, ifh $jjj is a com-
plete set of eigenvectors ofW , such thatW $jj ­ wj

$jj ,
and $T ­

P
j Tj

$jj , then

BsW d $T ­
X

j

BswjdTj
$jj . (11)

So the solution involves an eigenvector problem. For lo
order systems, such as the three-mode problem be
eigenvectors can be found analytically. For systems wit
large number of modes, perturbation methods or nume
can be used. We briefly mention two possibilities. T
first is to divideW ­ V 2 ´U , whereV ­ K

21
k V is

the diagonal phase velocity,U is the nonlinear coupling,
and´ ø 1. In this case, the eigenvalue problem becom

fV 2 wjg $jj ­ ´U $jj .

The left side is simple and the right side is small, whic
is the form needed to apply the “Fredholm perturbati
formula.” Reference [10] calculates this to several orde
The second method, relevant numerically, is an iterat
procedure where eigenvectors are calculated at each
step as a small perturbation on the previous values.

We next discuss analytical continuation ofBsW d.
For a scalar argument, sayw ­ vyk, this is stan-
dard [11]; Z0 becomes a weak function of two
variables, with Z0swy

p
2, kd ­ Zswy

p
2 d for k . 0,

and Z0swy
p

2, kd ­ 2Zs2wy
p

2 d for k , 0, where
Z is the usual scalar argument plasma dispers
function. The function Bswd becomes Bsw, kd ;
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B1swd for k . 0 and Bsw, kd ; B2swd for k , 0.
These satisfy the symmetriesB1swd ­ 2Bp

1s2wpd ­
Bp

2swpd. This can be generalized to matrix argument
Z0sW d, by first decomposing into eigenvalues,Z0swjd, as
in the above paragraph. Following analytic continuatio
then if wj is continuously connected to a linear-limit
eigenvalue withk . 0, then Z0swjd ­ Zswjd; if k , 0,
then Z0swjd ­ 2Zs2wjd. If fluctuations grow from
linear amplitude, one can trace the eigenmodes contin
ously and maintain the same branch ofZ0. Difficulty
arises when ak . 0 and a k , 0 eigenvector become
degenerate. This is discussed a bit in the example belo

A final general comment about Eq. (10) concerns th
utility of an equation that is such a complicated functio
of frequency. More specifically, withv inextricably
embedded inBsW d, it seems hopeless to transform
Eq. (10) back to the time domain. One might try solvin
entirely in frequency space instead of time, but what
really desired is a time domain equation, soluble with th
usual partial differential equation algorithms. Currentl
we favor the ansatz of transforming the fluid part of th
temperature equation back to the time domain, which
routine, and inB evaluatingv in eikonal fashion, as

ivk ­ ≠t ln f̃k . (12)

For linear normal modes this method is exact. Non
linearly the frequency spectrum broadens, and Eq. (1
obtains some sample of this spectrum. Keeping tim
histories could incorporate fuller spectra if more accurac
is needed. Choosing̃fk in Eq. (12) is motivated by three
considerations. Mathematically, in Eq. (7)v originates
essentially from a time-history integral over̃f. Physi-
cally, it is the contours of the potential̃f (not ñ, Ṽ , or
T̃ ) that resonate with the particle. With Eq. (12)BsW d
becomes purely a function of̃f. Practically, we find that
≠t ln f̃k gives a more continuous solution than≠t ln T̃k,
which can have abrupt losses of roots.

We now demonstrate how this approach is an im
provement over linear models with a specific calculatio
We consider the “3-mode ion temperature gradient drive
(ITG) system,” similar to that of Lee and Tang [12
except bounded. This is one of the simplest system
with linear agreement but nonlinear disagreement b
tween kinetic and Landau fluid models [5]. The equ
librium has a straight tilted magnetic fieldB ­ Bsẑ 1

Qŷd, and a Maxwellian ion distribution with density
and temperature gradients alongx̂. There are pertur-
bations in f̃ and f̃, which are periodic iny, vanish
at x ­ 0, Lx, and havekz ­ 0 so thatkk ­ Qky . The
spectrum is truncated at three modes, with wave nu
bersk ­ skx , kyd, skx , 2kyd, s2kx, 0d, denoted1, 2, and
0, respectively, and their conjugates. Vanishing atx ­
0, Lx gives the relations̃f2 ­ 2f̃p

1 andf̃2 ­ 2f̃p
1, re-

ducing these to two independent modes, and Res f̃0d ­
Resv0d ­ 0. We also takef̃0 ; 0. Electrons are adia-
batic and quasineutral, withTe ­ Ti, so f̃ ­ ñe ­ ñi .
s,
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The drift kinetic equation for this system, Eq. (2), in vec
tor form, is

2ifV 2 ykKkg $f 2

µ
kf̃1

2kf̃2

∂
f̃0 ­ 2iVpsykdFMk

$f ,

(13)

2v0f̃0 2 skf̃2 2kf̃1df ­ 0 , (14)

where $f and $f are two-element matrices off̃6 and f̃6,
and k ­ 2kxky. Equation (14) forf̃0 has no resonant
contributions, and is kept separate becauseW is unde-
fined whenkk ­ 0. Substitutingf̃0 from Eq. (14) into
Eq. (13) gives

fyk 2 W g $f ­ 2K
21
k VpsykdFMk

$f , (15)

where

W ;
µ

yp 2 is0juj u
up yp

p 1 is0juj

∂
is the effective nonlinear phase velocity matrix,yp ­
v1ykk , u ; 2k2f2

1ykkv0 , s0 ; sgnfImsv0dg. Equa-
tion (15) now has the form of Eq. (7), and so the clos
fluid equation, Eq. (10) follows directly. Calculating
eigenvalues and eigenvectors ofW gives temperature
equations

≠t T̃k1 2 ivT
p f̃1 1 2ikkṼk1 1 kf̃1T̃k0 1 ikkq̃1 ­ 0 ,

(16)

≠t T̃k0 2 kff̃p
1T̃k1 2 f̃1T̃p

k1g ­ 0 , (17)

where the kinetic heat flux is given by

ikkq̃1 ­ 2Dfg1T̃k1 1 kf̃1T̃k0g

1 ikk
1
2 fB1 1 B2gT̃k1 ,

v6 ­ yp,r 6 s0s1

q
juj2 2 syp,i 1 s0jujd2 ,

D ­
B1 2 B2

v1 2 v2

,

B6 ; B6sv6d and s0s1 in v6 follow from continuity
arguments. Equations (16) and (17), together with t
equations forñ and Ṽk [easily following from Eqs. (3)
and (4)], form a closed system of fluid equations with fu
nonlinear representation of resonant particles. Lineariz
q̃1 and taking s0 ­ 1 gives the Chang-Callen closure [3
q̃1 ­ B1sypdT̃k1, and further takingyp ! 0 gives the
Hammet-Perkins closure [2],q̃1 ­ i

p
8yp T̃k1.

We have solved this system of equations numerical
using an adjustable time-step predictor-corrector schem
For eikonal frequencies we use2iv1 ­ ≠t ln f̃1 [from
Eq. (12)] and2iv0 ­ ≠t ln T̃k0 [from Eq. (14)]. Equa-
tion (15) has singularities at points whereD diverges,
which can be traced to degeneracy inW . This occurs
when w1 ­ w2, i.e., whenyp,i ­ 0 or yp,i ­ 22s0juj.
Fortunately, these singularities present no difficulty he
becauseyp,i apparently goes through such points linear
in time, yp,i , t 2 t0, meaning that the singularity goe
3421
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FIG. 1. Averaged potential,jf̃1j, of the 3-mode ITG system
for the four closures. Here,kx ­ ky ­ 0.1, andhi ­ 10.

as st 2 t0d21y2, which has a convergent integral abou
t ­ t0.

We compare four theories: full drift kinetics [Eqs. (13
and (14) solved with a Vlasov code], the present mod
and the two linear Landau-fluid closures.

The numerical results demonstrate that the nonline
closure corrects at least two deficiencies of the linear c
sures. First, Fig. 1 shows the time-averaged saturat
amplitude ofjf̃1j for the four models. The nonlinear clo
sure is much closer to the kinetic amplitude than the li
ear closures, repairing the discrepancy found in Ref. [
Second, Fig. 2 shows that the kinetic and nonlinear flu
closures both exhibit “bounces” in potential, while in th
linear closures the potential reaches a steady level wh
remains fixed in time. The bounces arise from res
nant ions orbiting in the potential well of̃f1 [13]. Ions
near the center of the well orbit with nearly the sam
frequency. After a half orbit the density perturbation
ñ1 ­ f̃1, is maximal. After a full orbit, the density is

FIG. 2. Time evolution ofjf̃1j for the four closures. Parame
ters as above, andQ ­ 1.25.
3422
t

)
l,

ar
o-
ion

-
].
id
e
ich
o-

e
,

largely restored and̃f1 returns to its original value, near
0. Thus, these bounces demonstrate that the nonline
closure retainsparticle trapping.

The trapping is a manifestation of a more fundamen
tal property:the nonlinear closure preserves the time re
versal symmetry of the original kinetic equation.This is
verifiable by a time reversal transformation on Eq. (15
which reverses signs onv, yp , s0, s1, Ṽk, ỹE, B, vp, vT

p ,
andk, and takesw1 $ 2w2 andB1sw1d $ 2B2sw2d.
In this case,q̃1 reverses sign with the rest of Eq. (15).
This is not the case for the linear closures, which in ad
dition to linearization have nos0 in w6. This renders
B6sw6d irreversible, producing spurious damping.

In summary, we have given an exact fluid closure fo
the collisionless drift kinetic equation. This suggests tha
many resonance effects usually requiring kinetic equatio
can also be described by fluid equations. Numerical sol
tion of the 3-mode ITG problem shows that the nonlinea
closure is able to capture linear Landau damping and tra
ping, and maintains the reversibility of the original kinetic
equation.
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