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Fluid equations are derived that describe wave-particle resonances, which usually require kinetic
theory. Unlike previous such efforts the closure is not linearized, and so retains many nonlinear wave-
particle effects never before described by fluid equations. To demonstrate utility, we show that the new
equations can retain trapping, time reversibility, and rectify a discrepancy between full kinetic theory
and linear kinetic fluid closures. [S0031-9007(97)04396-2]

PACS numbers: 52.25.Dg, 52.35.Ra, 52.65.Kj

In plasmas, wave-particle resonances produce numerotigld B, vg is theE X B velocity, andE) is the electric
effects. This includes linear Landau damping, nonlineafield parallel toB. Taking f = Fo(x,v)) + f(x, vy, 1),
effects such as trapping, scattering, plasma echoes [1], amahd for simplicity assuming straight constant mag-
probably many others which are yet unknown. Studiesetic field B = Bz, electrostatic field E = —Vé,
of wave-particle resonances have traditionally employediaxwellian F, with density and temperature gradients
kinetic equations, which describe the one-particle phasén %, Fo(x,v)) = no(RwTy/m)~"/? exp[—muﬁ/zTO], ne-
space distributionf(x,v,). There have been efforts to glecting nonlinear parallel acceleration [8], and Fourier-
simplify this by incorporating such effects in fluid equa- Laplace transforming i andz
tions. “Landau-fluid” equations [2,3] model linear Landau

damping by addinginear terms to fluid equations. But this —i(w — vk fx + D> Vexr - ik frot
approach can missonlinearwave-particle effects, such as . T“l - .
listed above, and so can miscalculate nonlinear phenom- ilkjv) — o« + 0i (3 = 3vPIFuydx =0, (2)

ena like saturation amplitudes and transport [4—6]. Towhere—' is the Laolace time coniugatk” — k — k'
correct this, Ref. [7] introduced monlinear kinetic fluid o — K -laI;/B —pk /L T l g—k /’L_ -1 !
closure, deriving a renormalized term to describe wave=!! — ’ @ = Ky/Eny - @x = TRy BT o
particle resonances in Langmuir turbulence. This preserft N 70/dx, Ly = dInTo/dx, Fuyj = noexp(—vj/2)/
paper makes a major advance, showing that moment equsi27, and units are so thatB/mc = Tp = m = 1, and
tions can be closed with a simple integration trick, skippingvin = To/m = 1. We regard Eq. (2) as exact for the
most approximations of prior approaches. This suggesturpose of deriving the fluid equations. A number of
that fluid equations may be able to inclutianyresonance Other kinetic equations could also serve as a starting point;
effects previously thought to require kinetic theory. Eqg. (2) is chosen for definiteness. _

Kinetic theory addresses resonant interactions by fol- F|U|dn equations come from velocity moments,
lowing particle velocities. However, this may be unnec-/ dvj v, of Eq. (2), forn = 0, 1, and 2,
essary because resonant particles just follow the phase . . e .5 o
velocity of the wave, which fluid equations already retain. ‘@7 * %VE"‘” iK' + ioxdr + ik Vik =0,
This paper shows that the particle velocity can be inte-

> e \ : ol 3

grated out of the kinetic equations without sacrificing reso- 5
nances. Thus the only required knowledge is the phase-iw Vi + ZVE,k,, ik Vi + ik + ikypix =0,
velocities and the initial distribution function. This may k'
make great simplification possible. (4)

The first part of this paper gives an exact kinetic fluid . - - A T
closure for the drift kinetic equation. The method can ‘@7Tik * %VE"‘” kT — iw, dx
apply to a number of other systems as well. The second
part demonstrates the utility of this approach, showing ik Vi + ikuj dv vﬁfk/no =0, (5
that the closure rectifies a known discrepancy between
kinetic solutions and linear kinetic fluid closures [5]. o 7 o 7 S

oo AN : e where 7y = [dvyfx, noVix = [dvyvfx, Pk =

We begin with the drift kinetic equation, describing the J dvyviifx, and pj = nTj. Closure is now needed, to

evolution of a plasma in a strong magnetic field, 34
express/ dvjvj fi in terms of lower moments.

af + (v +ve) - Vf + Ejoy,f =0, (1) The closure proceeds as follows. First, we streamline

where f(x, vy, 1) is the distribution function for some notation by representing Eq. (2) in matrix form, as

speciesy is the kinetic velocity parallel to the magnetic Q-T - v||.’K||);‘ = Q*(u”)FM”cZ. (6)
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Here f and ¢ are column vectors offy and ¢ for  resonances. It reduces to the Chang-Callen closure [3]
different k, Q and XK are diagonal matrices ab and When I' = 0 in "W, and the Hammet-Perkins closure
kyj, T is a matrix of nonlinear coupling coefficients, [2] when ) =T =0 in ‘W. There are a number of
Txx = Vexr - k', andQ.(v)) is the diagonal matrix of directions to go from this point. Here we will discuss
kv — @« + ol (3 — Lof). All matrices are diagonal some general features and then demonstrate the utility
exceptI. A number of other kinetic equations can be With the specific example of a three-mode ITG problem.
cast in this form, and so the following derivation, up One might think that such a closure is impossible, that
to Eq. (10), is fairly general. Inverting the evolution @ description of wave-particle interactions must retain
operator in Eq. (6) gives some aspect of particle motion. In reality, we have
- -1 > not really eliminated any complication; we have only
f==tn = WK u@)Fné. @) integratedv; out of the equation. The details of the
where W = j<||‘1[Q — I']is thenonlinear phase veloc- kinetic interactions still exist iB, which is a complicated
ity matrix, a central object in this theory, and a generalizafunction of the frequency spectrum. What this procedure
tion of the w /k) appearing in linear kinetic theory. Now has done is to replace the usual complicatiorpanticle
we take two particular moments of Eq. (7), obtaining velocity by complication inphasevelocity. Since there

R Fui are typically many fewer waves than particles, and since
]dvn(vﬁ = 3y)f = aiU dv) } L fluid equations track the wave velocities anyway, this

vl R a-W can simplify computation. However, Eq. (10) is clearly
X .7<||_IQ*(W)¢, (8) still not useful, as several issues must be addressed to
R Ful make it tractable, among them handling the function of
fdv||(vﬁ - )f = —ai[] dv U”_a—_w} . a matrix,B('W), handling the analytic continuation &,

| and evolving a complicated function of frequency.
X .7<||_IQ*(W)¢, 9 As a scalar functionB(w) is mostly a smooth function

whereCy is the Landau contour, giving analytic continu- of w, with only one pole, av — c. B(w) has arapid jump

ation as discussed below. To derive Egs. (8) an@AcrOSS trle. I|?e$v,-t.< _}% in the complexw plalne [?]
(9). one uses (v} — 3v)Fy(v) = ~33 Fy(v) and AS.a matrix function,s ) requires some explanation.

(v* — DFy(v) = ®Fy(v), a special property of IE(W)f can be reduced to a scalar function by dividing

Maxwellian distributions that relates moments and derival Into eigenvectors.More specifically, if{¢;} is a com-
tives. This allows integration by parts of the right side,plete set of eigenvectors of, such thatW¢; = w;¢;,

after which we have applied the identity andT = > Tj.gfj, then
v" wn > P
m_ Y aym W = ). B(W)T = » B(wj)T;é&;. 11
Ny G ey =) 2 BOwTE, (11)

This identity shows that closing the fluid equations at thesg the solution involves an eigenvector problem. For low
n =2 moment is related to the appearancevgfas the order systems, such as the three-mode problem below,
highest power inQ.(vj). Solving Egs. (8) and (9) for eigenvectors can be found analytically. For systems with a
the vﬁ moment, applying definitions of the fluid moments, large number of modes, perturbation methods or numerics
and substituting into Eq. (5) yields can be used. We briefly mention two possibilities. The
firstis to dividke W = V — U, whereV = X 'Q is

the diagonal phase velocit§l/l is the nonlinear coupling,

_inIIk + ZVEJ(// . ik/T”kr — iw,{(Z)k +
k'’ . .
ande < 1. In this case, the eigenvalue problem becomes

2iky Vi + ik ZBk,k’TIIk’ =0, (10) [V - w‘,‘]gfj = glugj‘
_ K The left side is simple and the right side is small, which
where we have defined is the form needed to apply the “Fredholm perturbation
BOW) = —ZE\w V2 [V2 2w v2)1 7, formula.” Reference [10] calculates this to several orders.

The second method, relevant numerically, is an iterative

Z is the analytically continued plasma dizspersion functionyocedure where eigenvectors are calculated at each time
Zo(W/2) = e J e Vil? step as a small perturbation on the previous values.
0 ST e,y —we We next discuss analytical continuation & W).

g 2 o For a scalar argument, say = w/k, this is stan-
the superscriptd® and 2! denote derivatives evaluated y5,q [11]. Z, becomes a weak function of two

with « as in Egs. (8) and (9Bkx = etB(W)éw, and  variables, with Zow/2,k) = Z(w/\/2) for k >0,

¢! andé, are unit row and column vectors. and Zy(w/v2,k) = —Z(-w//2) for k <0, where
Equation (10) is the central result of this paper,Z is the usual scalar argument plasma dispersion

representing a fluid closure which fully retains nonlinearfunction. The function B(w) becomes B(w,k) =
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Bi(w) for k>0 and B(w,k) = B_(w) for kK < 0. The drift kinetic equation for this system, Eq. (2), in vec-
These satisfy the symmetrieB,(w) = —B%.(—w") =  tor form, is
B* (w*). This can be generalized to matrix arguments,

Zo('W), by first decomposing into eigenvalueg(w,),as  —i[Q — v Ky 1f — <_K¢(£ >fo = —iQ.(v)Fu o,

in the above paragraph. Following analytic continuation, K@= (13)
then if w; is continuously connected to a linear-limit

eigenvalue withk > 0, thenZy(w;) = Z(w;); if k <0, —wnFr — (kd . —xd -0 14
then Zy(w;) = —Z(—w;). If fluctuations grow from wofo = (i k$+)f | (14)

linear amplitude, one can trace the eigenmodes continivheref and¢ are two-element matrices gf. and ¢ -,
ously and maintain the same branch &f Difficulty — and k = 2k.k,. Equation (14) forf, has no resonant
arises when & > 0 and ak < 0 eigenvector become contributions, and is kept separate becaddeis unde-
degenerate. This is discussed a bit in the example beloWined whenk; = 0. Substitutingfo from Eg. (14) into
A final general comment about Eq. (10) concerns thé=d. (13) gives
utility of an equation that is. _such a c_omplipated_ function [v) — WIf = —~7<||_19*(U||)FM||<Z’ (15)
of frequency. More specifically, withw inextricably
embedded inB('W), it seems hopeless to transform
Eqg. (10) back to the time domain. One might try solving w= (v~ isolul u
entirely in frequency space instead of time, but what is - < u* v, + is0|u|>
really desired is a time domain equation, soluble with the ) ) ] )
usual partial differential equation algorithms. Currently!S the effective nonlinear phase velocity matrix, =

where

we favor the ansatz of transforming the fluid part of the@+/kii.u = —x*¢2 /kjwo. s = sgriim(wo)]. ~ Equa-
temperature equation back to the time domain, which i$ion (15) now has the form of Eq. (7), and so the closed
routine, and inB evaluatinge in eikonal fashion, as fluid equation, Eq. (10) follows directly. Calculating
. . eigenvalues and eigenvectors ¥ gives temperature
iwg = 9,In Py . (12)  equations
For linear normal modes this method is exact. Non-g, 7y, — iw! . + 2ik Vs + kb Tjo + ikyg+ = 0,
linearly the frequency spectrum broadens, and Eq. (12)
, ; = (16)
obtains some sample of this spectrum. Keeping time
histories could incorporate fuller spectra if more accuracy a,T”O — K[g,jTlH — <2,+T|T+] =0, (17)

is needed. Choosingy in Eq. (12) is motivated by three
considerations. Mathematically, in Eq. (é) originates N >
essentially from a time-history integral over. Physi- ikjg+ = —Aly+Ty+ + xkdp+T)o)
cally, it is the contours of the potentigh (not i, V, or o .

T) that resonate with the particle. With Eq. (12) W) + ikiz[By + BTy .

where the kinetic heat flux is given by

becomes purely a function @. Practically, we find that we =v,, = Sosl\/|u|2 — (vp + solul)?,
d,In ¢ gives a more continuous solution thapln T, B. — B

. + f—
which can have abrupt losses of roots. A= ———,

We now demonstrate how this approach is an im- W+ — O-

provement over linear models with a specific calculationB+ = B+(@+) and sos; in @+ follow from continuity

We consider the “3-mode ion temperature gradient drive@’guments. Equations (16) and (17), together with the
(ITG) system,” similar to that of Lee and Tang [12] equations fori and V) [easily following from Eqgs. (3)
except bounded. This is one of the simplest systemdnd (4)], form a closed system of fluid equations with full
with linear agreement but nonlinear disagreement beﬂon"near representation of resonant particles. Linearizing
tween kinetic and Landau fluid models [5]. The equi-4+ andtakingso, = 1 gives the Chang-Callen closure [3]
librium has a straight tilted magnetic fiell = B(2 +  d+ = B+(v,)Tj+, and further takingv, — 0 gives the
09), and a Maxwellian ion distribution with density Hammet-Perkins closure [, = i /8/7 Tjj+.

and temperature gradients alotg There are pertur- We have solved this system of equations numerically,
bations in f and ¢, which are periodic iny, vanish using an adjustable time-step predictor-corrector scheme.
atx = 0,Ly, and havek, = 0 so thatky = ®k,. The For eikonal frequencies we us€iw = d,In ¢+ [from
spectrum is truncated at three modes, with wave numkq. (12)] and—iwo = 9,InT)o [from Eqg. (14)]. Equa-
bersk = (ky, ky), (ky, —ky), (2k,,0), denoted+, —, and  tion (15) has singularities at points where diverges,

0, respectively, and their conjugates. Vanishingcat  which can be traced to degeneracy W. This occurs

0,L, gives the relationg - = —f% and$- = —¢3,re- whenw, = w_, i.e, whenv,; =0 orv,; = —2so|ul.
ducing these to two independent modes, and fRe=  Fortunately, these singularities present no difficulty here
Re(wp) = 0. We also takep, = 0. Electrons are adia- becauses,,; apparently goes through such points linearly
batic and quasineutral, witlf, = T;, so b = i, = ii;. in time, v,,; ~ t — to, meaning that the singularity goes
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8( ' ' R ' ) largely restored and . returns to its original value, near
0. Thus, these bounces demonstrate that the nonlinear
6l /,.w"’"' “““““““““ g ] closure retaingarticle trapping.
yd s Hommett_Perkins The trapping is a manifestation of a more fundamen-

tal property:the nonlinear closure preserves the time re-
versal symmetry of the original kinetic equatiofthis is

verifiable by a time reversal transformation on Eq. (15),
which reverses signs an, v, so, 1, V”, g, B, ws, o],

i and, and takesy; — —w_ andB(wy) « —B_(w_).

Normalized Saturation Level
'S
T

S Rt i ] In this caseg. reverses sign with the rest of Eq. (15).
\ | This is not the case for the linear closures, which in ad-
Y : : . . . 1 dition to linearization have n@qg in w+. This renders
60 05 1.0 15 20 25 30 B-(w-) irreversible, producing spurious damping.

Normalized Parallel Wave Number . .
In summary, we have given an exact fluid closure for

FIG. 1. Averaged potential¢. |, of the 3-mode ITG system the collisionless drift kinetic equation. This suggests that
for the four closures. Herd, =k, = 0.1, and7; = 10. many resonance effects usually requiring kinetic equations
can also be described by fluid equations. Numerical solu-
tion of the 3-mode ITG problem shows that the nonlinear
as (t — to)~'/2, which has a convergent integral aboutclosure is able to capture linear Landau damping and trap-
t = to. ping, and maintains the reversibility of the original kinetic
We compare four theories: full drift kinetics [Egs. (13) equation.
and (14) solved with a Vlasov code], the present model, We are grateful to B. B. Afeyan, J. Cary, R.H. Cohen,
and the two linear Landau-fluid closures. A. M. Dimits, L. L. Lodestro, W. M. Nevins, and D.D.
The numerical results demonstrate that the nonlinearyutov for valuable discussions. We thank G. W. Ham-
closure corrects at least two deficiencies of the linear clomet for providing us with the Vlasov code. This work
sures. First, Fig. 1 shows the time-averaged saturatiowas supported by U.S. DOE Contract No. W7405-ENG-
amplitude of| ¢ | for the four models. The nonlinear clo- 48 (LLNL), and Grant No. DE-FG03-97ER54424 (Uni-
sure is much closer to the kinetic amplitude than the linversity of Colorado), and contributes to the Numerical
ear closures, repairing the discrepancy found in Ref. [5]Tokamak Turbulence Project, a DOE Grand Challenge
Second, Fig. 2 shows that the kinetic and nonlinear fluicApplication.
closures both exhibit “bounces” in potential, while in the
linear closures the potential reaches a steady level which
remains fixed in time. The bounces arise from reso-
nant ions orbiting in the potential well @b, [13]. lons
near the center of the well orbit with nearly the same
frequency. After a half orbit the density perturbation, [1]
ii. = ¢, is maximal. After a full orbit, the density is
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