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Calculation of the Positronium Hyperfine Interval
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We have completed the calculation of the one-photon-annihilation contribution to the positron
hyperfine interval at orderma6. Our result for this contribution is20.1256481s12dma6 
22.344 MHz. The complete theoretical result for this interval is worked out, and comparison w
experiment is discussed. [S0031-9007(97)04341-X]
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Positronium provides an important testing ground fo
our understanding of bound-state QED. The low ma
and pointlike nature of its constituents minimize stron
and weak interaction effects, so the structure is govern
almost completely by QED. The equal masses of t
constituents require that a field theory based bound-st
formalism be used to go beyond the most basic nonre
tivistic Schrödinger level of approximation. The annih
lation channel leads to interesting effects not present
hydrogen or muonium. Positronium is accessible to hi
precision measurements of spectrum and decay rates.
particular, the measured values for the ground state (trip
minus singlet) hyperfine interval are

DEexpt  203 387.5 6 1.6 MHz s7.9 ppmd ,

 203 389.10 6 0.74 MHz s3.6 ppmd (1)

[1 –3]. In order to achieve a comparable theoretic
prediction, all ordera2 corrections to the lowest order
interval must be computed. In this Letter we report th
result for the final uncalculated contribution at this order

For this calculation, we have used a new bound-state f
malism [4], a quasipotential variant of the Bethe-Salpet
formalism [5]. Our approach is closely related to th
methods of Barbieri, Remiddi, and Buchmüller [6–8] an
Caswell and Lepage [9]. We write the bound-state equ
tion for the e2e1 to e2e1 Green’s functionG as G 
S0 1 S0KG, whereS0 is a modifiede2e1 propagator and
K is the “quasipotential.” ForS0 we use [10]

S0s pd  2pds p0d
2i

2svp 2 Ey2 2 ied
fL1s $pdg0gs1d

3 fL2s $pd s2g0dgs2dT , (2)

wherevp  s $p 2 1 m2d1y2 and theL6s $pd are projection
operators. The reference bound-state equation has
form G0  S0 1 S0K0G0, whereK0 is an approximation
to K containing the dominant nonrelativistic physics an
is chosen so that the reference equation can be sol
exactly. The reference energy levels and wave functio
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can be found by studying the pole structure of the referen
Green’s functionG0. With the particular reference kernel
K0 that we are using, the reference energy levels areE0

n 
2ms1 2 a2y4n2d1y2, where n is the principal quantum
number. Then  1 reference wave functions have the
form

C0s pd  2pdsp0d
µ

2vp

vp 1 m

∂ µ
vp 1 W

2W

∂1y2

fs $pd

3 fL1s $pdGL2s $pd s2g0dg , (3)

whereW  E0
1y2, G is a4 3 4 spin matrix, andfs $pd is

the nonrelativistic momentum space wave function.
We used Coulomb gauge for our calculation. Coulom

gauge is certainly the best gauge to use for exchan
photons since spurious lower order terms are absent. I
covariant gauge were used for radiative photons, a nontr
ial gauge correction term would be required. Therefore
we found it simplest to use Coulomb gauge throughou
The extensive noncovariant algebraic calculations we
done with routines written usingMATHEMATICA [11] and
MACSYMA [12]. We used dimensional regularization with
n  4 2 2e dimensions of space-time to regulate the ul
traviolet divergences that occurred in intermediate stag
of our calculation. In a previous work, we showed how th
on-shell renormalization scheme works in Coulomb gaug
at two-loop order [13], and calculated the two-loop verte
renormalization constant that will be used here.

Corrections for the energy levels can be calculate
from a systematic perturbation series [7,9,14]. For thos
terms from this series involving virtual annihilation to a
single photon, we have shown that all ultraviolet diver
gences vanish. The several graphs that contribute are r
resented in Fig. 1. We describe the contributions of the
graphs in turn, and tabulate the results in Table I.

The first contribution, shown in Fig. 1(a), involves a
renormalized one-loop vertex part on either end of th
annihilation photon. The (unrenormalized) amplitude fo
positronium to annihilate into a single photon with a
© 1997 The American Physical Society 3383
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FIG. 1. The set of all one-photon-annihilation graphs th
contribute at orderma6. The vertex corrections and vac-
uum polarization bubbles are renormalized. The bubble
(c) represents full two-loop vacuum polarization. The two-run
ladder diagram of (e) represents all two-loop corrections to t
annihilation vertex diagram. The “MP” in (f ) stands for man
potential: the exchange of two or more photons with the grou
state pole subtracted out. The “D” in (f ) and (g) represents the
difference between a Coulomb gauge photon and a refere
photon. The asymmetric graphs (d), (e), and the second par
(f ) must be doubled.

one-loop vertex correction, in our formalism, isAm
1 

BmI1, where

I1  1 1 L1I0 2 2
a

p
1

5
8

a2 ln

µ
1
a

∂
1 a2f20.247 065 7s9dg 1 Osa3d . (4)

The uncorrected decay amplitude isAm
0  BmI0, where

Bm 
p

2 ief0em, f0  fm3a3ys8pdg1y2 is the wave
function at contact,$e is the positronium spin vector,
and I0  1 1 ay6 1 Osa2d [7]. The one-loop renor-
malization constant isL1  say4pdVeGsed, whereV 
4pm2ym2 with m the arbitrary mass introduced in the
process of dimensional regularization. The renormaliz
one-rung decay amplitude is justAm

1R  BmI1R where
I1R  I1 2 L1I0, so that the energy shift due to the grap
of Fig. 1(a), through terms of orderma6, is

DEa  ma4

Ω
1
4

2
a

p
1

5
16

a2 ln

µ
1
a

∂
1 a2f0.040 288 3s5dg

æ
. (5)

The one-loop vacuum polarization contribution o
Fig. 1(b) is easy to evaluate. The value of this grap
is just 2PRs4W 2d times the lowest order annihilation
contribution, wherePRsk2d is the renormalized scalar
vacuum polarization function. The relativistic expansio
of the wave function also leads to a contribution a
Osma6d. One has

DEb 
ma4

4

Ω
2

8
9

a

p
1

a2

4
1 . . .

æ
I2

0

 ma4

Ω
2

2
9

a

p
1

a2

16
2

2
27

a2

p

æ
. (6)
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TABLE I. One-photon-annihilation contributions to the
positronium hyperfine interval. The corresponding diagram
are shown in Figs. 1(a)–1(g). Each contribution is the sum o
parts of ordersa4, a5yp, a6 lns1yad, anda6. The energy in
MHz of the purea6 contribution is shown in the final column.
Note that the numerically uncertainOsa6d part of I1 cancels
between (a) and (e), so the final uncertainty is just that o
Eq. (9).

Contribution a4 a5

p
a6 lns1yad a6 DE sMHzd

a 1
4

21 5
16

0.040 288 3s5d 0.752

b 0 2
2
9

0 0.038921490 0.726

c 0 0 2
1
8

0.038327738 0.715

d 0 0 0 0.113641784 2.120

e 0 0 2
7

48
20.124 035 5s13d 22.314

f 0 0 0 20.201541896 23.760

g 0 0 0 20.031250000 20.583

Total 1
4 2

11
9

1
24

20.1256481s12d 22.344

The a2y16 from the expansion of the one-loop vacuum
polarization function was noted by Karshenboim [15] an
Hoang [16].

The two-loop vacuum polarization contribution of
Fig. 1(c) was done many years ago by Barbieriet al. [17]
and by Samuel [18]. The result, given in Table I, in
cludes the reducible product of two one-loop vacuum
polarization parts, but does not include the “Coulom
distortion” part of [17], which we take to be part of the
“many-potential” contribution of Fig. 1(f ).

The contribution of Fig. 1(d) comes from combining
the one-loop vacuum polarization and vertex correction
It is

DEd  ma4

Ω
8
9

µ
a

p

∂2

1
2
27

a2

p

æ
. (7)

Thea2yp contribution comes from the relativistic expan-
sion of the wave function and cancels against a simila
term in DEb . The other contribution here was worked
out by Karshenboim [15].

The heart of our calculation is contained in the two
loop annihilation vertex of Fig. 1(e). The five two-loop
vertex graphs are shown in Fig. 2. All divergent contri
butions and lower order contributions were obtained an
lytically. The Osa2d correction to the decay amplitudes
was obtained numerically [19], except for the vacuum
polarization contribution, which was found analytically.
Our result for the unrenormalized two-loop correction
is
Am
2  L1Am

1 1 Bm

Ω
1 2 2

a

p
1

1
3

a2 ln

µ
1
a

∂
1

µ
a

p

∂2

sVe2gE d2e

∑
1

96e2 1
1
e

µ
3
8

z s2d 2
391
576

∂
2 3.73 122 7s23d

∏
1 Osa3d

æ
. (8)
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FIG. 2. The two-loop annihilation vertex contributions. The
are (a) the vacuum polarization (VP) graph, (b) self-ener
(SE) graph, (c) side-vertex (SV) graph, (d) crossed ladder (C
graph, and (e) two-rung double ladder (DL) graph.

The renormalized two-loop annihilation vertex has th
form [20] Am

2R  Am
2 2 L1Am

1 2 L2Am
0 1 L2

1Am
0 , where

L2 is the two-loop renormalization constant [13] andL2
1

is the square of the one-loop constant. The renormaliz
two-loop annihilation amplitude is

Am
2R  Bm

Ω
1 2 2

a

p
1

1
3

a2 ln

µ
1
a

∂
1

µ
a

p

∂2

f24.88 680 4s24dg
æ

, (9)

which is ultraviolet finite. The subtracted two-loop minu
one-loop amplitude is

Am
2R 2 Am

1R  Bm

Ω
2

7
24

a2 ln

µ
1
a

∂
1 a2f20.248 071 1s26dg

æ
, (10)

and the energy contribution is

DEe  ma4

Ω
2

7
48

a2 ln

µ
1
a

∂
1 a2f20.124 035 5s13dg

æ
.

(11)

The VP contribution was worked out earlier [15,21,22
Our new calculation agrees with the earlier work on th
graph.

The many-potential (MP) terms of Fig. 1(f ) are simila
to the MP contributions in other related formalism
Corresponding contributions were worked out by Casw
and Lepage [9], where it was noted that the contributio
having two annihilation photons and an annihilatio
photon with a transverse exchange photon should
formalism independent, while the term involving th
exchange of a Coulomb minus lowest order photon sho
be formalism dependent. We found this to be the ca
although our result for the Coulomb minus lower ord
contribution agrees with that of Buchmüller and Remid
[8], which underscores the closeness of the formalism
y
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The total energy shift from MP contributions isDEf 
ma6fs5y16d 2 s5y16dz s2dg.

The final contribution from Fig. 1(g) is the derivative
term. This is similar to the derivative term calculated
by Caswell and Lepage [9], except for a formalism de
pendent sign and the fact that only the one-photon
annihilation part contributes here. The derivative term i
DEg  2ma6y32.

The total result for the coefficient ofma6 coming from
all one-photon-annihilation contributions, from Table I, is
20.125 648 1s12d. This agrees with the analytic result

DE 
ma6

p2

Ω
13
32

z s3d 1
27
8

z s2d lns2d 2
1183
192

z s2d

1
1477
324

æ
(12)

of Hoang et al. [23] reported in the companion Letter.
The numerical value of the analytic result is20.1256487.

All contributions to the hyperfine interval are tabulated
in Table II. The total coefficient at orderma6 is K 
20.597s34d, where the uncertainty is from the numerica
integration in the three-photon-exchange contribution
The complete theoretical result for the hyperfine interva
has the form [14,33]

DEth  ma4

Ω
7

12
2

a

p

µ
1
2

ln 2 1
8
9

∂
1

5
24

a2 ln

µ
1
a

∂
1 Ka2 2

7
8

a3

p
ln2

µ
1
a

∂
1 . . .

æ
. (13)

With a coefficient of1, the ma6 term would contribute
18.658 MHz. The complete theoretical prediction is

DEth  203 388.22 6 0.63 MHz , (14)

in agreement with the combined experimental result of

DEexpt  203 388.82 6 0.67 MHz . (15)

However, Pachucki [34] has recently reported a new
result for the three-photon-exchange contribution o
7.03s3d MHz, in disagreement with the old value given in
Table II. This would give a difference between theory
and experiment of3.32 6 0.67 MHz. The three-photon-
exchange discrepancy will have to be resolved befor
final conclusions can be drawn.

TABLE II. Contributions to the positronium hyperfine inter-
val at orderma6.

Contribution K DE sMHzd

Three-photon-annihilation [24–26]20.05194 20.969
Two-photon-annihilation [27,28] 20.03248 20.606
One-photon-annihilation [this work]20.12565 22.344
One-photon-exchange [21,29,30] 20.01374 20.256
Two-photon exchange [21,31] 20.5394s14d 210.06s3d
Three-photon-exchange [32] 0.167(34) 3.11(62

Total 20.596s34d 211.13s63d
3385
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