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Calculation of the Positronium Hyperfine Interval
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We have completed the calculation of the one-photon-annihilation contribution to the positronium
hyperfine interval at orderma®. Our result for this contribution is—0.1256481(12)ma% =
—2.344 MHz. The complete theoretical result for this interval is worked out, and comparison with
experiment is discussed. [S0031-9007(97)04341-X]

PACS numbers: 36.10.Dr, 12.20.Ds, 31.15.Md, 31.30.Jv

Positronium provides an important testing ground forcan be found by studying the pole structure of the reference
our understanding of bound-state QED. The low mass&reen’s functionGy. With the particular reference kernel
and pointlike nature of its constituents minimize strongk|, that we are using, the reference energy levelsgre-
and weak interaction effects, so the structure is governe@im(l — «2/4n%)'/2, where n is the principal quantum
almost completely by QED. The equal masses of thewumber. Thern = 1 reference wave functions have the
constituents require that a field theory based bound-stafterm
formalism be used to go beyond the most basic nonrela- 2w w. + W\1/2
tivistic Schrodinger level of approximation. The annihi- WV(p) = 2775(p0)< : >< £ > é(p)
lation channel leads to interesting effects not present in wp +m 2w
hydrogen or muonium. Positronium is accessible to high X [A+(PTA-(p) (=], 3)
precision measurements of spectrum and decay rates. Wherew = EV/2, T is a4 X 4 spin matrix, andp( p) is
particular, the measured values for the ground state (triplehe nonrelativistic momentum space wave function.
minus singlet) hyperfine interval are We used Coulomb gauge for our calculation. Coulomb

AEep = 203387.5 = 1.6 MHz (7.9 ppm), gauge is .certainly_the best gauge to use for exchange
B . photo_ns since spurious lower orde_,-r terms are absent. If a
=203389.10 = 0.74 MHz (3.6 ppm (1)  covariant gauge were used for radiative photons, a nontriv-
[1 —3]. In order to achieve a comparable theoreticalial gauge correction term would be required. Therefore,
prediction, all ordera? corrections to the lowest order we found it simplest to use Coulomb gauge throughout.
interval must be computed. In this Letter we report theThe extensive noncovariant algebraic calculations were
result for the final uncalculated contribution at this order. done with routines written usingATHEMATICA [11] and

For this calculation, we have used a new bound-state fomacsymA [12]. We used dimensional regularization with
malism [4], a quasipotential variant of the Bethe-Salpetei, = 4 — 2¢e dimensions of space-time to regulate the ul-
formalism [5]. Our approach is closely related to thetraviolet divergences that occurred in intermediate stages
methods of Barbieri, Remiddi, and Buchmiiller [6—8] andof our calculation. In a previous work, we showed how the
Caswell and Lepage [9]. We write the bound-state equaen-shell renormalization scheme works in Coulomb gauge

tion for thee e* to e”e™ Green’s functionG asG =  at two-loop order [13], and calculated the two-loop vertex
So + SoKG, whereS, is a modifiede "e* propagator and renormalization constant that will be used here.
K is the “quasipotential.” Fof, we use [10] Corrections for the energy levels can be calculated
—i from a systematic perturbation series [7,9,14]. For those
So(p) = 2m8(po) Nos —EJ2 — i0) [A+(p)y 1V terms from this series involving virtual annihilation to a
RO N@T single photon, we have shown that all ultraviolet diver-
X [A-(p) (=¥, (2) gences vanish. The several graphs that contribute are rep-

wherew, = (p2 + m?)!/? and theA+( p) are projection  resented in Fig. 1. We describe the contributions of these
operators. The reference bound-state equation has tlggaphs in turn, and tabulate the results in Table I.

form Gy = Sy + SoKoGo, WherekKj is an approximation The first contribution, shown in Fig. 1(a), involves a

to K containing the dominant nonrelativistic physics andrenormalized one-loop vertex part on either end of the
is chosen so that the reference equation can be solvexhnihilation photon. The (unrenormalized) amplitude for
exactly. The reference energy levels and wave functionpositronium to annihilate into a single photon with a
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TABLE |. One-photon-annihilation contributions to the
M >O< >@< >«Ov €-< positronium hyperfine interval. The corresponding diagrams
are shown in Figs. 1(a)—1(g). Each contribution is the sum of
@ © © @ parts of ordersx?, a°/7, a®In(1/a), anda®. The energy in

MHz of the purea® contribution is shown in the final column.
©

Note that the numerically uncertai@(«%) part of I, cancels
>@~<+><{{ >A<&_iﬁ[ E] between (a) and (e), so the final uncertainty is just that of
N ws Eq. (9).
® @ °

Contribution o* 2 a°In(1/a) a® AE (MHz)
FIG. 1. The set of all one-photon-annihilation graphs that z
contribute at orderma®. The vertex corrections and vac- a % -1 15—6 0.0402883(5) 0.752
uum polarization bubbles are renormalized. The bubble in b 0 _2 0 0.038921490 0.726
(c) represents full two-loop vacuum polarization. The two-rung 9 |
ladder diagram of (e) represents all two-loop corrections to the c 0 0 ~38 0.038327738 0.715
annihilation vertex diagram. The “MP” in (f) stands for many d 0 O 0 0.113641784 2.120
potential: the exchange of two or more photons with the ground 7 _ _
state pole subtracted out. ThA™in (f) and (g) represents the € 0 0 R 0.1240355(13) 2.314
difference between a Coulomb gauge photon and a reference  f 0 0 0 —0.201541896 —3.760
photon. The asymmetric graphs (d), (€), and the second partof g 0 0 0 —0.031250000 —0.583
(f) must be doubled.

Total I -4 L —0.1256481(12) —2.344

one-loop vertex correction, in our formalism, i#§' =
B™I;, where

5 1
I =1+ Ll _2i + —a2ln<—>
T 8 a

The «?/16 from the expansion of the one-loop vacuum
+ a[—02470657(9)] + O(a?). ) ﬂ(;l:rr:éa[tll(é? function was noted by Karshenboim [15] and
The uncorrected decay ar2p|2tUdeA§;/2= B"ly, where  The two-loop vacuum polarization contribution of
B™ = V2iegoe™, by = [m”a”/@8m)]'/* is the wave Fig. 1(c) was done many years ago by Barbéral. [17]
function at contacté is the positronium spin vector, and by Samuel [18]. The result, given in Table I, in-
and o = 1 + a/6 + 0(a?) [7]. The one-loop renor- ¢judes the reducible product of two one-loop vacuum
malization constant i, = (a/4m){<I'(e), whereQ) =  polarization parts, but does not include the “Coulomb
4 p”/m> with u the arbitrary mass introduced in the gistortion” part of [17], which we take to be part of the
process of dimensional regularization. The renorma"Zedmany-potential" contribution of Fig. 1(f).

one-rung decay amplitude is justik = B™I;r Where The contribution of Fig. 1(d) comes from combining
Iig = Iy — Lily, so that the energy shift due to the graphthe one-loop vacuum polarization and vertex corrections.

of Fig. 1(a), through terms of ordera®, is Itis
1 a 5 1
— 4y - = + = 2 <_> 2 2 2
AE, = ma {4 T 16 a”In o AE; = ma4~{—8 <_a ) + =L } (7
+ a?[0.040288 3(5)]}» (5) ST 7T
o . .
The a? /7 contribution comes from the relativistic expan-

The one-loop vacuum polarization contribution of sion of the wave function and cancels against a similar
Fig. 1(b) is easy to evaluate. The value of this grapHerm in AE,. The other contribution here was worked
is just —I1z(4W?) times the lowest order annihilation out by Karshenboim [15].
contribution, wherellgz(k?) is the renormalized scalar  The heart of our calculation is contained in the two-
vacuum polarization function. The relativistic expansionloop annihilation vertex of Fig. 1(e). The five two-loop
of the wave function also leads to a contribution atvertex graphs are shown in Fig. 2. All divergent contri-

O(ma®). One has butions and lower order contributions were obtained ana-
mat | 8 a o2 lytically. The O(a?) correction to the decay amplitudes

AE, = — {—— — + — + ...}13 was obtained numerically [19], except for the vacuum

4 9w 4 polarization contribution, which was found analytically.

a’ 2 Our result for the unrenormalized two-loop correction

2 « 2 «
=matl-= — + = — = =1
m“{ 9 7 16 2777} ©® s

a 1 1 a\? 1 1/3 391
A = LAT + B"{1 —2— + — 2I<—>+<—>Q‘7525[—+—<— 2——)
2 = fd { 3N, 2) Qe gea T al5 i@ T 5

— 3.73 1227(23)} + 0(a3)}. (8)
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The total energy shift from MP contributions i$E, =
ma®[(5/16) — (5/16)¢(2)].

The final contribution from Fig. 1(g) is the derivative
term. This is similar to the derivative term calculated
by Caswell and Lepage [9], except for a formalism de-

(a) (b) (©) pendent sign and the fact that only the one-photon-
annihilation part contributes here. The derivative term is
AE, = —ma®/32.

The total result for the coefficient aia® coming from
all one-photon-annihilation contributions, from Table I, is
—0.125648 1(12). This agrees with the analytic result

ma® [13 27 1183
= —{ — + — —_—
@ © AE="0 {32 £0) + % (@IN@) = g7 ()
FIG. 2. The two-loop annihilation vertex contributions. They 1477
are (a) the vacuum polarization (VP) graph, (b) self-energy t 3 (12)
(SE) graph, (c) side-vertex (SV) graph, (d) crossed ladder (CL) ) )
graph, and (e) two-rung double ladder (DL) graph. of Hoang et al. [23] reported in the companion Letter.

The numerical value of the analytic result+€).1256487.

The renormalized two-loop annihilation vertex has the All contributions to the hyperfine interval are tabulated
form [20] ASx = Ay — LAY — LAl + L%AQ, where in Table ll. The total coefficient at ordena® is K =

L, is the two-loop renormalization constant [13] ang ~ —0.597(34), where the uncertainty is from the numerical
is the square of the one-loop constant. The renormalizetiitegration in the three-photon-exchange contribution.
two-loop annihilation amplitude is The complete theoretical result for the hyperfine interval
N | | has the form [14,33]
AE”R = Bm{l - 2— + —a2|n<—> 7 1 8 5 1
7 3 @ AEy = 4{——i<—ln2+—>+— 2In(—)
o2 TR T 7 \2 9) " 24" &
+ (—) [—4.88 6804(24)]}, (9) L T a1
77 + Ka —g—ln — )+ ..t (13)
which is ultraviolet finite. The subtracted two-loop minus & «
one-loop amplitude is With a coefficient of1, the ma® term would contribute
7 1 18.658 MHz. The complete theoretical prediction is
m _ am _ pm)_ " 2 _
w® ~ Aig =B { ¢ '”( ) AEg = 20338822 = 0.63 MHz, (14)
+ a’[—0.248071 1(26)]} , (10) in agreement with the combined experimental result of
AEep = 203388.82 + 0.67 MHz. (15)

and the energy contribution is
However, Pachucki [34] has recently reported a new

AE, = ma“{_l a2|n<l> + a?[—0.124035 5(13)]}_ result for the three-photon-exchange contribution of
48 a 7.03(3) MHz, in disagreement with the old value given in
(11) Table Il. This would give a difference between theory

The VP contribution was worked out earlier [15,21,22].a@nd experiment 08.32 + 0.67 MHz. The three-photon-

Our new calculation agrees with the earlier work on thisexchange discrepancy will have to be resolved before
graph. final conclusions can be drawn.

The many-poteptlal_ (MP). terms of Fig. 1(f) are Slmllar TABLE Il. Contributions to the positronium hyperfine inter-
to the MP contributions in other related formalisms., | at orderma®.

Corresponding contributions were worked out by Caswekl

and Lepage [9], where it was noted that the contributions Contribution K AE (MHz)
having two annihilation photons and an annihilationThree-photon-annihilation [24—26] —0.05194 —0.969
photon with a transverse exchange photon should b®wo-photon-annihilation [27,28] —0.03248 —0.606
formalism independent, while the term involving the One-photon-annihilation [this work}-0.12565 —2.344
exchange of a Coulomb minus lowest order photon shoulne-photon-exchange [21,29,30] —0.01374 —0.256

be formalism dependent. We found this to be the casdWo-photon exchange [21,31] ~ —0.5394(14) —10.06(3)
although our result for the Coulomb minus lower order!hrée-photon-exchange [32] 0.167(34) 3.11(62)

contribution agrees with that of Buchmuller and Remiddi B B
[8], which underscores the closeness of the formalismsTOtaI 059634 —11.13(63)
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