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Coherence, Correlations, and Collisions: What One Learns
about Bose-Einstein Condensates from Their Decay
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We have used three-body recombination rates as a sensitive probe of the statistical correlations
between atoms in Bose-Einstein condensates (BEC) and in ultracold noncondensed dilute atomic gases.
We infer that density fluctuations are suppressed in the BEC samples. We measured the three-body
recombination rate constants for condensates and cold noncondensates from number logs #a the
1,my = —1 hyperfine state of’Rb. The ratio of these i§.4(2.6) which agrees with the theoretical
factor of 3! and demonstrates that condensate atoms are less bunched than noncondensate atoms.
[S0031-9007(97)03611-9]

PACS numbers: 03.75.Fi, 05.30.Jp, 32.80.Pj, 42.50.Dv

The onset of Bose-Einstein condensation (BEC) is dephysics accounts for short-time photon bunching in a ther-
fined by the sudden accumulation of many bosons in anal light beam (the Hanbury-Brown-Twiss effect [10]),
single quantum state. The symmetry property of bosonfor the two-atom bunching that has been observed in
is such that if a gas is indeed composed of many idenbeams of ultracold (but not condensed) atoms [11], and
tical bosons all occupying the same single-particle statepr three-pion correlations irpp annihilations [12,13].
the gas will exhibit a collection of correlation proper- To paraphrase Walls and Milburn [14] (who were in fact
ties known as coherence. While most early experimentactually discussing two-photon correlations), the physical
on dilute-gas BEC [1-3] have shown good quantitativeorigin of such correlations may be understood in terms
agreement with the simple physical model of macroscopiof a noisy quantum field: There is a high probability that
occupation of a single state, no dilute-gas experiment exthe first boson is found at a high intensity fluctuation, and
plicitly addressed the issue of coherence in the conderiience an enhanced probability for finding a second and
sate until the striking observation by Andrewsal. [4]  third atom boson nearby. The correlations in the posi-
of first-order coherence in a sodium condensate. In thifons of multiple, identical bosons thus strongly depend
paper we describe collision-rate measurements that prolmn the type of fluctuations that exist in the density. For
the higher-order coherence properties of thermal andexample, for Gaussian (thermal) fluctuations, the average
Bose-condensed rubidium atoms [5]. In particular, theof the square of the density is a factor of 2 larger than
coherence of the BEC ground state is contrasted with ththe square of the average density, and this is precisely
chaotic fluctuations of the ultracold noncondensed statesthe factor of 2 observed in two-boson correlation experi-

The correlation properties of degenerate samples ahents. The atom-bunching effect is expected to vanish
ideal bosons have already been extensively studied in tHa a condensate, precisely as photon bunching does in an
context of quantum optics [6]. In fact, the close analogiesdeal laser beam—see Figs. 1(b) and 1(c).
between the macroscopically occupied state of a laser beamIn principle, with sufficiently high spatial and temporal
(characterized as a “coherent state”) and that of a Boseesolution, the density fluctuations in a dilute gas could
condensate have prompted the use of the term “atom lasebe imaged directly [15], or detected as coincidence counts
to describe some aspects of BEC [7]. Quantum opticén a beam experiment [11]. Kagan and Shlyapnikov [16]
teaches that a laser beam is described by a quantum fididwe pointed out, however, that an easier experimental ap-
that exhibits both (i) “first-order coherence,” meaning thatproach to probing fluctuations is to take advantage of an
a measurement of the phase of the field at one point inbservable that is directly sensitive to the probability of
space and time may be used to predict the phase of the fiefthding three atoms near each other, that is, the loss rate of
at some other point [8] and (ii) “higher-order coherences,’atoms due to three-body recombination. They calculated
meaning in essence that the intensity fluctuations in #hat three-body recombination in a condensate would be a
coherent sample are suppressed relative to those in factor of 3! less rapid than in a thermal cloud at the&me
thermal sample with the same mean intensity. mean density, and proposed that this change in recombi-

The analog of intensity fluctuations in a beam ofnation rate could be a useful signature for detecting the
photons is density fluctuations in a gas of atoms. Fopnset of BEC. It is this proposal that motivates our ex-
example, Fig. 1(a) shows the calculated [9] three-bodyerimental approach, although in the current experiment,
correlation function for a gas of thermal (i.e., noncon-the empirical onset of BEC is independently identified by
densed) bosons. Note that there is an enhanced probthe appearance of a sharp feature in the center of the co-
bility for finding three bosons close together. The samerdinate and momentum-space atom distribution. We use
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6+ We use the fact that these loss processes have different
density dependencies to distinguish their respective con-
tributions. Measurement of the loss rate of atoms from
the trap as a function of density is most easily done by
preparing a sequence of identical samples and then mea-
suring the number and density of the sample as a function
of time. The density decreases with time because of both
the loss of atoms and the rise in the sample temperature
due to heating.

The experimental apparatus and techniques used to
make and study the cold clouds have been described pre-
viously [18]. Using a double magneto-optic trap (MOT)
© we collect10° atoms. These are optically pumped into

theFF = 1,m; = —1 state and loaded into a baseball-coil
Thermal magnetic trap. The bias field is determined by an addi-
Condensate tional set of Helmholtz coils. The net biasi G with
a radial field gradient oB00 G/cm and axial curvature
84 G/cn?. The atoms are then cooled by radio frequency

1 15 2 (rf) evaporation. After being evaporatively cooled to the
Vi desired temperature, the cloud is held in the magnetic trap

FIG. 1. (a) Calculated third-order correlation functiog’ for varying intervals of timer. It is then released from

[6], for noncondensed ideal bosons. Given a particle at thdhe trap and_ imaged using absorption, or recaptured in a
origin, and a second particle a distancdrom the origin, the MOT. We find the temperatur of the cloud from the

z axis gives the relative, conditional probability for finding a velocity distribution of the noncondensate atoms observed
third particle a distance from the origin. The de Broglie jnthe absorption image. Although the number of atavns

wavelength is defined by, = h/(Q2mmksT)'/?, wherem is the : . .
particle’s mass and' is temperature. The calculation assumes also be obtained from this image, we find that we can

a cloud in the dilute limit and is not valid for distancesandy ~ determineN more precisely by detecting fluorescence on
less than or equal to the range of two-body interactions. (b) A& photodiode from atoms recaptured in a MOT. To study
sample cut through the surface shown in (a), witset equal  cold noncondensates we evaporatively cool the atoms to a
to y for ease of display. Note that in a thermal cloud one iStemperature 0800 nK, slightly above the transition tem-

3! times more likely to find three atoms close together than on : : 6
would naively assume given the mean density. The factdt of '?:)erature 0670 nK. Atthis point we have X 10° atoms

vanishes for the Bose-condensed atoms. Thus if one has Bos@t @ peak density of x 10 cm™. To study conden-
condensed and non-Bose-condensed samples at similar densiggtes, we cool the atoms to and haf® nK and have
one would expect a factor &l less three-body recombination. 2 x 10° atoms at a peak density 6fx 104 cm™3.

(c) A cut through the surface shown in (a) with the third A typical set of data is shown in Fig. 2. It can be seen

particle held well away from the origitx/A; = 2). Here the : . -
surface reduces to a familiar two-boson correlation function,that at long times, or equivalently, low densities, the loss

showing the factor of 2 at the origin well known in photon- fate is exponential, indicating that it has no dependence
bunching experiments. Preliminary measurements of the “atoren the density of the sample. The deviation from the
bunching” in a thermal atom beam have been reported byxponential line at short times indicates that at higher
Yasuda [11]. densities the loss rate is primarily density dependent. To
determine the dependence we must determine the density
the shape of the mean density distribution to normalizeof each sample. We obtain this from the temperature and
the observed three-body loss rate, and thus extract a rateimber of atoms in the sample. We fit the absorption
constant. The central result of this paper is that our comimages with a thermal Bose-Einstein distribution to find the
parison of the three-body recombination rate constant isample temperature. To avoid problems with large optical
condensed and noncondensed samples provides a quantépths we fit the absorption images only in the wings.
tative confirmation of the predicted factor ®f [17], and  The number of atoms in the trap is simply found from the
thus provides very strong evidence for the existence ophotodiode fluorescence signal using the known scattering
higher-order coherence in Bose-condensed rubidium.  rate per atom. For noncondensate clouds we calculate the
In this experiment, collisional rate constants were in-original density in the unreleased trap for each hold time
ferred from the loss rate of atoms from the trap. It isfrom the measured temperature and number and the known
known that there are three loss processes for ultracolgpring constants for the harmonic potential.
atoms in a magnetic trap: (1) collisions with background We do not measure condensate density directly but
gas, (2) dipolar relaxation, and (3) three-body recombinainstead measure total numbe¥ and temperaturel
tion. However, prior to this work the rate constants forand infer density from experimentally well-established
these three processes in very cold rubidium clouds, eithgroperties of alkali condensates. From measuvednd
condensed or noncondensed, were not accurately knowf.we infer [2] the condensate occupation numiNgr We
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16.0 are plotted as shown a single three-body loss process
appears as a straight line with a slope equal to the
a negative of the desired rate constant. The different
~ slopes for noncondensate and condensate data give the
e rate constantgg}¢ = 4.3(1.8) X 1072 cm®/s andK§ =
155 1 N 5.8(1.9) x 10739 cmP®/s, respectively. This value fdf;*
e is in good agreement with a calculation by Fediclkeeal.
~ [23], even though it is not clear that the experimental
~ system satisfies the claimed range of validity for the
15.0 ~g theory. The ratio of the noncondensate to the condensate
rate constants i8.4(2.6). This is in agreement with the
0 50 100 150 200 theoretical value oB! (for noninteracting atoms) and is
dramatically different from 1. This proves that, relative to
thermal atoms, the density fluctuations are suppressed for
FIG. 2. The natural log of the number of atoms as a functioncondensate atoms (“higher-order coherence”) as in a laser
g{otm‘s‘; in AE; %%'Cfit'i riggot‘;]ga;% r%’get?'%gssi?(}ﬂre ”tgnggglferrt‘)sﬂg)r any macroscopically occupied state of ideal bosons.
collisions and isgindependent of density. When plotted gi]n this, The rate cqnst_ants are quite sensitive to uncertainties
way, the data fall on a straight line with slope equal to theln the determination of temperature and number. These
negative inverse of the lifetime,, set by background collisions, uncertainties then are the primary cause for the errors
or about 250 s. The deviation of the data from this straight linein the rate constants. The heating that we observe also
at short times is the density-dependent loss. has a density dependence, under some conditions, raising
concerns that there may be an associated loss that would
model the condensate density profiler) as an inverted distort our results. To check that this was not the case,
parabola proportional td/; — U(x), whereU(x) is the we took data with the rf evaporative field on and set
trapping potential andl, is a function of No. The to different frequencies during the hold time. These
function Uy(N) can be determined from the Thomas-frequencies are well above that used to determine the
Fermi limit of the Gross-Pitaevski (GP) [19] equation initial sample temperature, but have a dramatic effect on
combined with molecular spectroscopy data [20], but wethe heating rate. As shown in Fig. 3, the loss rates from

need not assume the validity of the GP equation nothe samples were the same although the heating rates were
indeed even of quantum mechanics to justify the invertedery different.

parabola shape. The shape is due to balance of forces and
will be valid as long as the cloud is dilute and kinetic

ILaN

Time [sec]

energy (KE) is a small contribution to the condensate 000 -
energy [21]. We determine the form dfy(N) (i.e., ' %\\\
Uy = N°%) and the prefactor for rubidium from published %\\IL\
condensate expansion data [3], again assuming only that _ 0044 i ﬁ\\
KE is small in the condensate, and that the condensate + %\\
self-interacts in a dilute fashion [21]. Sl S 0081 %% \?\ }

This gives the density of the clouds as a function ZEZ h
of time. The loss due to three-body recombination is -0.12
modeled by the rate equations \} o & condornsate

dN 0.16 1 o a noncondensate

— = —Kmf n"(x, t)d>x (m=1,2, or3), (1) ' 1 - " - -

di 14 00 25 50 75 100 125 150
or equivalently , § , J<n(t')2>dt' (x 107) [sec/em’]

InM = —Kmf dt'] pLn) (x’t)d3x 0
N(0) 0 v N() FIG. 3. The natural log of the number of atoms as a
(m = 1,2, or3). (2) function of [o(n?(x, "))y dr' [22] where we defindn?(x, ")) =

1 . .
. v [y’ ) dx [see Eq. (2)]. On the vertical axis,/r
The rate constant for am-body processk,, is deter- ggc)ounts for loss due to background collisions. Circles and

mined from a fit to Eq. (2)n is the density, and&V(s) i triangle refer to separate runs with different heating rates.
the number after time. The condensate clouds contain Closed symbols refer to condensate data and open symbols
some noncondensate fraction and, in general, the rate cofgfer to noncondensate data. When a line is fit to the data,
stants for the two parts will be different. the slope gives the negative of the rate constant. A slight

We find that all of the d itv-d dent | deviation from a straight line in the condensate data is due
e m at all o € density- .epe'n en _OSS Weis terms involving mixtures of condensate and noncondensate
observe is due to three-body recombination. This can bgtoms. These terms are included in the analysis by which rate

seen in Fig. 3. Equation (2) shows that when the dataonstants are determined, but left out here for clarity.
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We could see no indication of a loss rate that was linear
in density which would be the signature of the two-body
process dipolar relaxation. With our statistical uncertain-

ties,

we can set an upper bound on the dipolar relaxation

loss rate constant for the = 1, my = —1 state of¥’Rb

in a 1.6 G field of K3 = 1.6 X 107 cm®/s. This is
consistent with the small values predicted for alkali atoms

inthe F = 1, my = —1 state [24].
This work represents a quantitative demonstration that

BEC atoms have the higher-order coherence characteris-

has been probed in atom interferometry experiments [see,
e.g., J. Schmiedmayet al., Adv. At. Mol. Phys., Suppl3,

2 (1997)]. First-order coherence is a natural and dramatic
consequence of the macroscopic single-particle BEC state,
and it should extend over the entire condensed sample.
This was beautifully confirmed by Andreves al[4].

[9] The thermal field which gives the noncondensate surface

in Fig. 1 obeys Gaussian statistics with zero mean am-
plitude. Consequently Wick's theorem may be iteratively
applied to reduce all higher-order correlation functions to
simple functionals of the first-order correlation function.

tic, for instance, of laser photons. We have also show0] R.Hanbury Brown and R. Q. Twiss, Nature (Londdy,

that the dominant loss process for cold noncondensates
[11] M. Yasuda and F. Shimizu, Phys. Rev. Leffz, 3090

and

recombination. The rate constant that we have determined

condensates in the = 1 state of*’Rb is three-body

sets a limit on attainable lifetimes and densities in conden-

sate samples 6f Rb.
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