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We study the kinetic temperature and the localization of cesium atoms in a three dimens
quasiperiodic optical potential created by the interference of five or six laser beams. Bragg scatt
experiments show evidence of a quasiperiodic order for the atomic density. Temperature measure
are consistent with the topological invariance of the optical potential under phase variations of the
beams. Numerical semiclassical Monte Carlo simulations show results in reasonable agreemen
the experimental observations. [S0031-9007(97)04387-1]

PACS numbers: 32.80.Pj, 61.44.Br
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The discovery of quasicrystals by Shechtmanet al. in
1984 [1] has opened a research field of considerable i
portance. Quasicrystals are long-range ordered mater
that are not invariant under space translation [2,3]. F
this reason, the electronic wave functions as well as t
macroscopic properties of such materials display intriguin
new features compared to crystals which possess tran
tional and rotational symmetries [4]. The long-range ord
of quasicrystals appears, for example, in Bragg scatt
ing experiments [1] where sharp diffraction peaks are o
served. In optics, such kinds of long-range order can al
be achieved by combining several monochromatic trave
ing waves to create an interference pattern. Indeed suc
light field was used to trap polystyrene microspheres in
two dimensional (2D) quasiperiodic pattern by Burnset al.
[5]. More recently, several groups used the interferen
pattern of several laser beams to cool and trap atoms i
lattice of micron-sized optical potential wells originating
from the space-dependent light shift of the atomic leve
However, all the experiments on these structures, call
optical lattices [6], used laser beam configurations that le
to periodic optical potentials. It is the aim of this pape
to present an experimental and a numerical study of t
behavior of cesium atoms in a quasiperiodic optical pote
tial. We describe laser beam configurations suited to t
generation of quasiperiodic potentials and show that ato
are efficiently trapped and cooled in such potentials. Usi
Bragg scattering [7,8], we show that the atomic density di
plays a quasiperiodic order. We also show that the atom
kinetic temperature does not depend on the relative pha
of the laser beams in spite of the fact that phase variatio
are not equivalent to space translations for a quasiperio
potential.

Consider an atom having a resonance frequencyv0 in-
teracting withn laser beams having the same frequencyv

and wave vectorski (i ­ 1, . . . , n). The light shift and the
optical pumping at a given point are completely determine
by the interference pattern of the laser beams. The spa
dependent light shift acts as a potential for the atomic exte
nal degrees of freedom [9]. With four noncoplanar beam
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one obtains a three dimensional (3D) periodic optical po
tential [10]. The resulting reciprocal space is spanned b
three basis vectorsei ­ ki11 2 k1 (i ­ 1, 2, 3) obtained
from the differences between the wave vectors of the tra
ping beams [11]. If there are more than four beams, an
if the expansions ofe4 ­ k5 2 k1, . . . , en ­ kn11 2 k1
on e1, e2, e3 involve irrational numbers, the optical poten-
tial becomes quasiperiodic [12,13]. This potential can b
described as the slice inR3 of a periodic potential in a
higher dimensional spaceRn21 exactly as in the case of
solid state materials [14]. The role of the relative phase
between the lattice beams is crucial here. In the case
a four-beam configuration, the topography is phase ind
pendent, and a phase variation just leads to a translati
of the potential [10]. In the quasiperiodic case, a phas
variation gives a translation of the potential inRn21, but
because the cut spaceR3 (i.e., the physical space) is fixed,
one obtains a new cut that cannot be superposed on
initial one through a space translation. Nevertheless,
certain circumstances, the new potential is topological
similar to the initial one [15]. In the experiment, we
start from the four-beam tetrahedron geometry shown
Fig. 1 [16]. The beamsk1 andk2 (respectively,k3 and
k4) propagating in thexOz (respectively,yOz) plane are
polarized alongey (respectively,ex), and the angle be-
tween the wave vectors is2Qx ­ 110± 6 2± (respectively,
2Qy ­ 110± 6 2±). We add to this configuration either a
traveling or a standing wave along thez axis (see Fig. 1).
All the beams have the same wavelengthl ­ 852 nm and
the supplementary wave iss1 polarized with respect to
Oz. The resulting optical potential is still periodic in the
x andy directions but becomes quasiperiodic in thez di-
rection. In the case of the traveling wave (k5 ­ kez),
we have a five-beam configuration, and for the standin
wave (k5 ­ kez , k6 ­ 2kez) we have a six-beam con-
figuration [17].

To analyze the distribution of atoms in the quasiper
odic lattice as well as their temperature, we first report th
results of a semiclassical Monte Carlo simulation of th
atomic motion for the five-beam configuration of Fig. 1
© 1997 The American Physical Society 3363
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FIG. 1. Beam configuration used to create a quasiperio
optical lattice. In the experiment, the angles areQx ­ 55± 6
1± andQy ­ 55± 6 1±. The supplementary beamsk5 andk6
are aligned along thez direction and ares1 polarized.

For the sake of simplicity, we consider the model sit
ation of aJ ­ 1y2 ! J 0 ­ 3y2 transition and constrain
the atomic motion in thexOz plane [18]. These approxi
mations were already used in the case of 3D periodic
tices and gave results in good agreement with experime
studies [19]. Moreover, as is usually done for quasicryst
[3,20], we use a rational approximant for the quasiperio
lattice [the modulus of the projection ofki (i ­ 1, . . . , 4)
alongOz is assumed to bejki ? ezj ­ 4ky7]. With such
an assumption, the potential becomes periodic but the
tial period alongOz (7l) is much larger than the typica
distance between two potential wells (,ly2). Figure 2(a)
shows a map of the atomic density in thexOz plane. Con-
trary to the case of periodic optical lattices where ato
are randomly distributed among the wells, the atoms
here located in a few wells which correspond to the de
est potentials (these wells have an elliptical polarizat
with a dominants1 component because of the polariz
tion of the fifth beam). For these deepest wells, the occu
tion probability is much larger than the average occupat
probability in a periodic lattice. The Fourier transfor
of the atomic density that contains all the information f
Bragg scattering experiments exhibits peaks of various
tensity shown in Fig. 2(b). The comparison with the pa
tern [Fig. 2(c)] obtained with a four-beam periodic lattic
(I5 ­ 0) shows the occurrence of extra peaks in Fig. 2(
characteristic of the quasiperiodic structure.

To check experimentally that the atomic density
quasiperiodic, we performed Bragg scattering on cesi
atoms in the five-beam quasiperiodic lattice. The ato
are first cooled and trapped in a magneto-optical t
(MOT). The laser beams and the inhomogeneous m
netic field of the MOT are then switched off, and th
five beams of the lattice (originating from the same las
3364
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FIG. 2. (a) Atomic density in the case of a five-beam
quasiperiodic optical lattice obtained from a 2D semiclassic
Monte Carlo simulation for aJ ­ 1y2 ! J 0 ­ 3y2 atomic
transition (andD

0
1 ­ 100Er , D ­ 230G). The five beams

have the same intensity and detuning. (b) Atomic densi
in the reciprocal space (i.e., Fourier transform of (a) for th
five-beam quasiperiodic lattice). (c) Atomic density in the
reciprocal space for a periodic optical lattice (I5 ­ 0). Natural
units areky7 for the z axis andk sins55±d . 0.82k for the x
axis. The area of the dots is proportional to the peak intensi
The weakest peaks are not shown.

diode) are applied to the atoms. As shown in solid sta
textbooks, the Bragg condition states that the differen
between the wave vectors of the incident and diffracte
beams belongs to the reciprocal lattice. Because the
ciprocal lattice is spanned by vectorsei ­ ki11 2 k1, a
probe beamP having almost the same wave vector as
lattice beamkp . k5 is diffracted in directions close to
the other lattice beamski [7,10]. In the experiment, the
five beams of the quasiperiodic lattice have intensitiesI up
to 15 mWycm2 and a detuning10G # jDj # 30G from
the 6S1y2sF ­ 4d ! 6P3y2sF0 ­ 5d transition (Gy2p ­
5.3 MHz is the natural width of the upper level). The
probe beam is nearly parallel tok5, its intensity and detun-
ing beingIp ­ 50 mWycm2, Dp ­ 2G. The large fre-
quency difference [typicallysDp 2 Ddy2p . 100 MHz]
between the probe and lattice beams ensures that no re
nant four-wave mixing process [10] disturbs the measur
ments [8]. Note that in these experimental condition
we are probing the peak atkx ­ 0.82k, kz ­ 3ky7 of
Fig. 2(b), i.e., a Fourier component of the density whic
is characteristic of the quasiperiodic order. The alignme
of the probe beam along the fifth beam direction has a
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accuracy of about 0.5 mrad, and in order to maximize t
scattered signal, the probe beam diameter is matched to
cloud dimension (. 1.5 mm). We record the beat note a
the frequencyDp 2 D between the diffracted probe and
lattice beam using a fast photodiode coupled to a spectr
analyzer. The heterodyne detection sensitivity allows p
tential exploration of the domain of very low Bragg re
flectivity. Moreover, by using the zero span feature o
the spectrum analyzer it is possible to extract a time r
solved Bragg signal. Bragg reflectivities on the order
1024 1023 are observed. Furthermore, it is possible
follow the buildup of the quasiperiodic order by varying
the relative intensityI5yI of the fifth beam. The experi-
mental dependence of the Bragg reflectivity is in satisfa
tory agreement with the dependence found in the numeri
simulation (Fig. 3) [21].

In another series of experiment, we measured the kine
temperature of the cesium atoms. We used a ballis
method to measure the velocity distribution, the beam us
for the measurement being located 15 cm below the latti
For these experiments the lattice beams were applied
150 ms, a time much longer than the time needed
reach steady state (less than 1 ms). The variation of
temperature versus the light shifth̄D

0
1 per beam [22] is

shown in Fig. 4. The temperatures obtained for the fiv
beam and six-beam quasiperiodic lattices are compared
the values found for the four-beam lattice (I5 ­ I6 ­ 0).
The three curves of Fig. 4 have similar shapes. In partic
lar, a linear dependence with a slopean (n ­ 4, 5, 6) is
found for large light shifts. The ratiosa5ya4 and a6ya4

are, respectively, equal to1.55 6 0.12 and 2.12 6 0.11.
The numerical simulation predicts a value1.49 6 0.06 for
a5ya4 in good agreement with the experiment [23].

Another interesting measurement is the statistical dist
bution of temperatures for a time sufficiently long that th
beam phases have drifted in a random way. Although t
experimental setup is sufficiently stable to maintain co

FIG. 3. Variation of the Bragg scattering reflectivity versu
I5yI. The experimental results forD ­ 230G and I ­
7.5 mWycm2 are compared with a theoretical curve obtaine
from the 2D semiclassical Monte Carlo simulation. The Brag
reflectivity grows linearly withI5yI for I5 ø I.
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stant relative phases over 1 sec, the relative phases h
kept no memory of their initial values after a few min-
utes. We recorded the value of the temperature in th
six-beam quasiperiodic lattice during two hours with a
measurement made every 20 sec. For a given value
I andD, the temperature does not exhibit any significan
variation and appears as a flat curve with a constant no
(which corresponds to a spread of temperature). In th
range15 # T # 25 mK (and D ­ 210G) that we stud-
ied, this spread is0.3 mK (i.e., 1.5Er where Er is the
recoil energy), a value identical to the spread measured
the case of a periodic lattice. This spread is probably du
to intensity and frequency fluctuations in the laser diode
This result shows that the modification of the optical po
tential due to phase variation has no measurable effect
the temperature. This is expected because the same
tistical distribution of potential depths is found whateve
the phases.

This experiment gave additional information on the
capture efficiency in a quasiperiodic lattice. From the are
of the time-of-flight signal, it was possible to deduce tha
the number of atoms captured in the quasiperiodic lattic
is about 40% larger than in the four-beam lattice. B
measuring the number of atoms as a function of the d
ration of the lattice phase, we found that the decay tim
of the six-beam quasiperiodic lattice is 0.6 sec, a valu
20% larger than in the four-beam lattice in the same e
perimental conditions. The six-beam quasiperiodic lattic
thus appears to be more efficient and more robust th
the four-beam lattice [24]. These results may be assoc
ated with two observations in the numerical simulation
first an increase in the velocity capture range and seco

FIG. 4. Variation of the kinetic temperature of cesium atom
as a function of the light shift per beam̄hD

0
1 for periodic

and quasiperiodic optical lattices (the data were taken forD ­
210G, 220G, 230G and for several lattice beam intensities).
For comparison with other experiments note thatD0 ­ 8D

0
1 in

a four-beam lattice.
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a significant reduction in the spatial diffusion along th
quasiperiodic direction.

Additional information is obtained using probe transmis
sion spectroscopy [6,25]. The probeP0 is aligned along
Oz. As expected from the numerical study of the atomi
density, the signal obtained with as1 probe is larger than
the signal obtained with as2 probe by about 1 order of
magnitude. Because the depth and the curvature of t
s1 wells are, on the average, larger than those of thes2

wells, the Raman transition for as1 probe is centered on
a frequencyV1 larger than the oneV2 found with as2

probe. Furthermore, following the idea of Weidemülle
et al. [8], we checked that the Bragg reflectivity measure
with the Bragg probeP is strongly reduced when the sec
ond probe beamP0 is tuned to the Raman transition with
an intensity sufficient to reach saturation.

Future experiments should include more complex stru
tures such as a Penrose-like tiling [26]. One interestin
feature of optical lattices is that we have a wide rang
of possibilities for the laser beam directions (and pola
izations). In particular, contrary to the presently observe
quasicrystals, it might be possible to achieve quasiperiod
potentials where different “local isomorphism classes
could be visited [27]. The study of atomic transport insid
a quasiperiodic lattice is also very promising, particularl
in the case of nondissipative optical lattices where qua
tum effects associated with the atomic wave function a
crucial [28].

The authors are indebted to D. Gratias, R. Mosse
and J.-Y. Courtois for several fruitful discussions. The
also wish to thank S. Guibal and D. R. Meacher for the
assistance in the early stages of this experiment. Th
work was supported in part by the European Communi
(Contracts No. FMRX-CT-96-0077 and No. ERBCHBI-
CT-94-1690).
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