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Non-Abelian Bogomol’nyi-Prasad-Sommerfield Monopoles inN 5 4 Gauged Supergravity
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We study static, spherically symmetric, and purely magnetic solutions of SUs2d 3 SUs2d gauge
supergravity in four dimensions. A systematic analysis of the supersymmetry conditions reveals
solutions which preserve 1y4 of the supersymmetries and are characterized by a BPS-monopole-type
gauge field and a globally hyperbolic, everywhere regular geometry. These present the first known
example of non-Abelian backgrounds in gauge supergravity and in leading order effective string theory.
[S0031-9007(97)04309-3]
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In the last few years there has been considerable int
est in supersymmetric solitons originating from effectiv
field theories of superstrings and heterotic strings (see
for review). These solutions play an important role in th
study of the nonperturbative sector of string theory and
understanding string dualities. A characteristic feature
such solutions is that supersymmetry is only partially bro
ken, and associated with each of the unbroken supersy
metries there is a Killing spinor fulfilling a set of linear
differential constraints. The corresponding integrabilit
conditions can be formulated as a set of nonlinear Bog
molny equations for the solitonic background, which ca
often be solved analytically.

The analysis of the supersymmetry conditions ha
proven to be the efficient way of studying the nonpertu
bative sector. So far, however, the investigations ha
mainly been restricted to the Abelian theory, wherea
little is known about supergravity solitons with non
Abelian gauge fields, which presumably is due to th
complexity of the problem. The known solutions appea
to be somewhat special, since they are constructed eit
from the flat space configurations of the Yang-Mills field
by making use of the conformal invariance (see [1–3
and references therein), or from the gravitating Abelia
solitons, by identifying gravitational and gauge conne
tions [4]. At the same time, the example of the well
known (nonsupersymmetric) Bartnik-McKinnon particle
[5] shows that the generic behavior of a gravitating Yan
Mills field can be far more complex.

Motivated by this, we study solitons in a four-
dimensional supergravity model with non-Abelian
Yang-Mills multiplets. The model we consider is the
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N ­ 4 gauged SUs2d 3 SUs2d supergravity [6], which
can be regarded asN ­ 1, d ­ 10 supergravity compacti-
fied on the group manifoldS3 3 S3. The nongauged
version of the same model, corresponding to the toroid
compactification of ten-dimensional supergravity, ha
been extensively studied in the past [7]. We inves
gate static, spherically symmetric, purely magnetic fie
configurations and find in this case analyticallyall super-
symmetric solutions. Among them we discover global
regular solutions characterized by a Bogomol’nyi-Prasa
Sommerfield (BPS)-monopole-type gauge field. Th
corresponding geometry is globally hyperbolic and do
not belong to any standard type. It is worth noting tha
although the Abelian solutions in the model were studie
long ago [8], to our knowledge, we present here the fir
example of non-Abelian backgrounds. At the same tim
these are the first non-Abelian solutions of theleading
order equations of motion of the effective string action
All other known solutions [1–4] have gauge fields whic
originate from string corrections.

The model.—The action of theN ­ 4 gauged SUs2d 3

SUs2d supergravity theory includes a vierbeinem
m , four

Majorana spin-3y2 fieldscm ; cI
m sI ­ 1, . . . , 4d, vector

and pseudovector non-Abelian gauge fieldsAa
m and Ba

m

with independent gauge coupling constantseA and eB,
respectively, four Majorana spin-1y2 fields x ; xI , the
axion, and the dilaton [6]. We consider the truncate
theory specified by the conditionseB ­ Ba

n ­ 0. In
addition, we require the vector fieldAa

m to be purely
magnetic, which allows us to set the axion to zero. Aft
a suitable rescaling of the fields, the bosonic part of t
action reads
n-
S ­
Z √
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whereFa
mn ­ ≠mAa

n 2 ≠nAa
m 1 ´abcAb

mAc
n, and the dilaton potential can be viewed as an effective negative, positio

dependent cosmological termLsfd ­ 2
1
4 e22f.
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For a purely bosonic configuration, the supersymmetry transformation laws are [6]
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the variations of the bosonic fields being zero. In th
formulas,e ; eI are four Majorana spinor supersymm
try parameters,aa ; a

a
IJ are the SU(2) gauge group ge

erators, whose explicit form is given in [6], andvrmn is
the tetrad connection.

We shall consider static, spherically symmetric, pur
magnetic configurations of the bosonic fields, and for
we parametrize the fields as follows:

ds2 ­ Ns2 dt2 2
dr2

N
2 r2sdu2 1 sin2 u dw2d ,

aaAa
m dxm ­ ws2a2 du 1 a1 sinu dwd

1 a3 cosu dw , (3)

where N , s, w, as well as the dilatonf, are functions
of the radial coordinater. The field equations, following
from the action (1), read

srNd0 1 r2Nf0 2 1 U 1 r2Lsfd ­ 1 ,

ssNr2f0d0 ­ s fU 2 r2Lsfdg ,

r2sNse2fw0d0 ­ se2fwsw2 2 1d ,

s0 ­ s srf0 2 1 2e2fw0 2yrd , (4)

where U ­ 2e2ffNw0 2 1 sw2 2 1d2y2r2g. Now, since
we are unable to directly solve these equations, we s
consider the supersymmetry conditions for the fields
which will give us a set of first integrals for the sy
tem (4).

The supersymmetry conditions.—The field configura-
tion (3) is supersymmetric, provided that there are n
trivial supersymmetry Killing spinorse for which the
variations of the fermion fields defined by Eqs. (2) va
ish. Inserting configuration (3) into Eqs. (2) and putti
dx̄ ­ dc̄m ­ 0, the supersymmetry constraints beco
a system of equations for the four spinorseI . The pro-
cedure which solves these equations is rather invol
For this reason we describe here only the principal s
of the analysis. First, since the background field is st
and spherically symmetric, we choose the spinors to
time independent and classify them with respect to
total angular momentumJ ­ L 1 S 1 I . Since spinS
and isospinI are half-integer,J is integer, and we re
strict to theJ ­ 0 sector. In this sector half of the 1
independent spinor components vanish (in the special
resentation chosen), which in effect truncates half of
supersymmetries. Hence, the supersymmetry constr
dx̄ ­ 0 anddc̄m ­ 0 for m ­ t, u, w reduce to four sys
3344
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tems of homogeneous algebraic equations for the rema
ing eight spinor components, each system containing eig
equations, while them ­ r gravitino constraint becomes
a system of radial differential equations.

The consistency of the algebraic constraints require
that the determinants of the corresponding coefficien
matrices vanish and that the matrices commute with ea
other. These consistency conditions can be expressed
the following relations for the background:

Ns2 ­ e2sf2f0d, (5)

N ­
1 1 w2

2
1 e2f sw2 2 1d2

2r2
1

r2

8
e22f, (6)

rf0 ­
r2

8N
e22f

√
1 2 4e4f sw2 2 1d2

r4

!
, (7)

rw0 ­ 22w
r2

8N
e22f

√
1 1 2e2f w2 2 1

r2

!
, (8)

with constantf0. Under these conditions, the solution
of the algebraic constraints yieldse in terms of only two
independent functions ofr. The remaining differential
constraint then uniquely specifies these two functions u
to two complex integration constants, which finally cor-
responds to four unbroken supersymmetries. We ther
fore conclude that the supersymmetry conditions for th
bosonic background (3) are given in terms of Eqs. (5)
(8). Solutions of these Bogomolny equations describe th
BPS states inN ­ 4 gauge supergravity with 1y4 of the
supersymmetries preserved (since the maximal possib
number of supersymmetries in the model is 16). One ca
verify that the Bogomolny equations are compatible with
the field equations (4).

The solution.—In order to find the general solution of
the Bogomolny equations, we start from the case whe
wsrd is constant. The only possibilities arewsrd ­ 61
or wsrd ­ 0. For wsrd ­ 61 the Yang-Mills field is a
pure gauge, and the equations imply that exps22fd ­ 0,
which means thatfsrd ­ f0 ! `, whereas the met-
ric is flat. The wsrd ­ 0 choice corresponds to the
Dirac monopole gauge field. The general solution o
the remaining nontrivial Eq. (7) is then given byf 1

lnsryr0d ­ r2e22fy4, with constantr0; the correspond-
ing metric turns out to be singular at the origin.

Suppose now thatwsrd is not a constant. Introducing
the new variablesx ­ w2 andR2 ­

1
2 r2e22f, Eqs. (5)–

(8) become equivalent to one first order differentia
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2xR sR2 1 x 2 1d
dR
dx

1 sx 1 1d R2 1 sx 2 1d2 ­ 0 .

(9)

If Rsxd is known, the radial dependence of the functions
xsrd and Rsrd, can be determined from (7) or (8).
Equation (9) is solved by the following substitution:

x ­ r2 ejsrd, R2 ­ 2r
djsrd

dr
2 r2ejsrd 2 1 ,

(10)

wherejsrd is obtained from

d2jsrd
dr2 ­ 2 ejsrd. (11)

The most general (up to reparametrizations) solutio
of this equation which ensures thatR2 . 0 is jsrd ­
22 ln sinhsr 2 r0d. This gives us the general solution
of Eqs. (5)–(8). The metric is nonsingular at the origin i
only r0 ­ 0, in which case

R2srd ­ 2r cothr 2
r2

sinh2 r
2 1 ; (12)

one hasR2srd ­ r2 1 Osr4d as r ! 0, and R2srd ­
2r 1 Os1d asr ! `. The last step is to obtainrssd from
Eq. (8), which finally gives us a family of completely
regular solutions of the Bogomolny equations,

ds2 ­ a2 sinhr

Rsrd
hdt2 2 dr2 2 R2srd

3 sdq 2 1 sin2 qdw2dj , (13)

w ­ 6
r

sinhr
, e2f ­ a2 sinhr

2 Rsrd
, (14)

where 0 # r , `, Rsrd is given by Eq. (12), and we
have chosen in Eq. (5)2f0 ­ 2 ln 2. The appearance of
the free parametera in the solution reflects the scaling
symmetry of Eqs. (5)–(8):r ! ar , f ! f 1 ln a. The
geometry described by the line element (13) is everywhe
regular, the coordinates covering the whole space who
topology is R4. The geometry becomes flat at the
origin, but asymptotically it is not flat, even though the
cosmological termLsfd vanishes at infinity. We thus
cannot assign a total energy to the solution. Specificall
in the asymptotic region all curvature invariants ten
to zero, however, not fast enough. The Schwarzschi
metric functions forr ! ` are N ~ ln r and Ns2 ~

r2y4 ln r, the nonvanishing Weyl tensor invariant being
C2 ~ 21y6r2.

The global structure of the solution is well illustrated
by the conformal diagram. Inspecting thet–r part of the
metric, it is not difficult to see that the conformal diagram
in this case is actually identical to the one for Minkowsk
space, even though the geometry is not asymptotica
flat (see Fig. 1). The spacetime is therefore geodesica
,
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FIG. 1. The conformal diagram for the spacetime describ
by the line element (13).

complete and globally hyperbolic. The latter property
quite remarkable, since global hyperbolicity is usual
lacking for the known supersymmetry backgrounds
gauged supergravity models. The geodesics through
spacetime pointp are shown in the diagram, each
geodesic approaching infinity for large absolute valu
of the affine parameter. Although the global behavi
of geodesics is similar to that for Minkowski space, the
locally behave differently. Forr , ` the cosmological
term Lsfd is nonzero and negative, thus having th
focusing effect on timelike geodesics, which makes the
oscillate around the origin. Unlike the situation in th
anti–de Sitter case, each geodesic has its own period
oscillations, such that the geodesics from a pointp never
refocus again.

The shape of the gauge field amplitudewsrd, given
by Eq. (14), corresponds to the gauge field of the regu
magnetic monopole type. In fact, replacingr by r, the
amplitude exactly coincides with that for the flat spac
BPS solution. This result is quite surprising, since th
model has no Higgs field, in which case it would b
natural to expect the existence of only neutral solutio
[5]. Note that all known stringy monopoles in fou
dimensions [1,3] contain a Higgs field.

In conclusion, Eqs. (13) and (14) describe global
regular, supersymmetric backgrounds of a new type. T
existence of unbroken supersymmetries suggests that
configurations should be stable, and we expect th
the stability proof can be given along the same lines
in [9]. Being solutions ofN ­ 4 quantum supergravity
in four dimensions, they presumably receive no quantu
corrections. On the other hand, they can be conside
in the framework of string theory, and then the issue
string corrections can be addressed. In order to study t
problem, we first of all need to lift the solutions to te
3345
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dimensions. Although the process is rather involved, on
can show that such a lifting is indeed possible.
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