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Non-Abelian Bogomol'nyi-Prasad-Sommerfield Monopoles inV = 4 Gauged Supergravity
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We study static, spherically symmetric, and purely magnetic solutions @2)S¥ SU(2) gauge
supergravity in four dimensions. A systematic analysis of the supersymmetry conditions reveals
solutions which preserve/4 of the supersymmetries and are characterized by a BPS-monopole-type
gauge field and a globally hyperbolic, everywhere regular geometry. These present the first known
example of non-Abelian backgrounds in gauge supergravity and in leading order effective string theory.
[S0031-9007(97)04309-3]
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In the last few years there has been considerable intev = 4 gauged SI2) X SU(2) supergravity [6], which
est in supersymmetric solitons originating from effectivecan be regarded & = 1, d = 10 supergravity compacti-
field theories of superstrings and heterotic strings (see [Ifjed on the group manifolds® X S3. The nongauged
for review). These solutions play an important role in theversion of the same model, corresponding to the toroidal
study of the nonperturbative sector of string theory and ircompactification of ten-dimensional supergravity, has
understanding string dualities. A characteristic feature obeen extensively studied in the past [7]. We investi-
such solutions is that supersymmetry is only partially bro-gate static, spherically symmetric, purely magnetic field
ken, and associated with each of the unbroken supersyngonfigurations and find in this case analyticaly super-
metries there is a Killing spinor fulfilling a set of linear symmetric solutions. Among them we discover globally
differential constraints. The corresponding integrabilityregular solutions characterized by a Bogomol'nyi-Prasad-
conditions can be formulated as a set of nonlinear BogoSommerfield (BPS)-monopole-type gauge field. The
molny equations for the solitonic background, which cancorresponding geometry is globally hyperbolic and does
often be solved analytically. not belong to any standard type. It is worth noting that,

The analysis of the supersymmetry conditions haslthough the Abelian solutions in the model were studied
proven to be the efficient way of studying the nonperturdong ago [8], to our knowledge, we present here the first
bative sector. So far, however, the investigations havexample of non-Abelian backgrounds. At the same time,
mainly been restricted to the Abelian theory, whereaghese are the first non-Abelian solutions of tleading
little is known about supergravity solitons with non- order equations of motion of the effective string action.
Abelian gauge fields, which presumably is due to theAll other known solutions [1-4] have gauge fields which
complexity of the problem. The known solutions appearoriginate from string corrections.
to be somewhat special, since they are constructed either The model—The action of theV = 4 gauged S(2) X
from the flat space configurations of the Yang-Mills field, SU(2) supergravity theory includes a vierbeirj, four
by making use of the conformal invariance (see [1-3]Majorana spin-32 fieldsy, = ML (I =1,...,4), vector
and references therein), or from the gravitating Abeliarand pseudovector non-Abelian gauge fields and B¢,
solitons, by identifying gravitational and gauge connec-with independent gauge coupling constaafs and e,
tions [4]. At the same time, the example of the well- respectively, four Majorana spin/2 fields y = x/, the
known (nonsupersymmetric) Bartnik-McKinnon particles axion, and the dilaton [6]. We consider the truncated
[5] shows that the generic behavior of a gravitating Yangtheory specified by the conditiongg = B¢ = 0. In
Mills field can be far more complex. addition, we require the vector field] to be purely

Motivated by this, we study solitons in a four- magnetic, which allows us to set the axion to zero. After
dimensional supergravity model with non-Abelian a suitable rescaling of the fields, the bosonic part of the
Yang-Mills multiplets. The model we consider is the action reads

_ 1 1 1 2¢ a any 1 —2¢ 4
S—f(—zR'i‘?a,u‘ﬁaM%b_ze F,quM +§e J—gd'x, (1)

WhereFZV = d,A7 — 9,A5 + sabcAZAi, and the dilaton potential can be viewed as an effective negative, position-

dependent cosmological term(¢) = —% e 2®.
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For a purely bosonic configuration, the supersymmetry transformation laws are [6]

] 1 1
oy = —Léy"a#d) - Ee"b Ea’F,, oM + Zef‘ﬁé,

V2

- _ara %%
€a’F,,v,0

- - 1 1 |
oY, = E(ap - 3(»,),",10'”’" + Ea“AZ) — 23 e? 4\/_ e eyp, (2)
the variations of the bosonic fields being zero. In thesgems of homogeneous algebraic equations for the remain-
formulas,e = €’ are four Majorana spinor supersymme- ing eight spinor components, each system containing eight
try parametersq® = «of; are the SU(2) gauge group gen- equations, while thet = r gravitino constraint becomes
erators, whose explicit form is given in [6], andl,,,, iS  a system of radial differential equations.
the tetrad connection. The consistency of the algebraic constraints requires
We shall consider static, spherically symmetric, purelythat the determinants of the corresponding coefficient
magnetic configurations of the bosonic fields, and for thisnatrices vanish and that the matrices commute with each

we parametrize the fields as follows: other. These consistency conditions can be expressed by
) . o dr? . _ ) the following relations for the background:
ds® = No~dt —T—r(dﬁ + sif 0 de?), No? = 26—, 5)
aa T _ 2 1 «;
Al dx w(—a“df + a sinfdo) v 1 + Wz 2 (w? — 1) . r_e—2¢ ©)
+ a® cosfde, (3) 2 2r2 8 ’
whereN, o, w, as well as the dilatorp, are functions 5 (w? — 1)
of the radial coordinate. The field equations, following rg! = — e2¢<1 4ot W—4> @)
from the action (1), read 8N r
(rN) + r*N¢'? + U + r*A(¢) = 1, 2 2
rw' = —2w£—Nez¢<1 + 2020 Y > ), (8)
(oNr?¢") = o [U = r*A(¢)], '
5 26 26 s with constant¢,. Under these conditions, the solution
ri(Noe?w) = geww” — 1), of the algebraic constraints yieldsin terms of only two

;L /2 2. 12 independent functions of. The remaining differential
ol =o(r¢’ "+ 27w r), (4)  constraint then uniquely specifies these two functions up

where U = 2¢2[Nw'? + (w? — 1)2/2r%]. Now, since to two complex integration constants, which finally cor-
we are unable to directly solve these equations, we shafesponds to four unbroken supersymmetries. We there-
consider the supersymmetry conditions for the fields (3)fore conclude that the supersymmetry conditions for the
which will give us a set of first integrals for the sys- bosonic background (3) are given in terms of Egs. (5)—
tem (4). (8). Solutions of these Bogomolny equations describe the

The supersymmetry conditiorsThe field configura- BPS states iV = 4 gauge supergravity with/# of the
tion (3) is supersymmetric, provided that there are nonsupersymmetries preserved (since the maximal possible
trivial supersymmetry Killing spinorse for which the number of supersymmetries in the model is 16). One can
variations of the fermion fields defined by Egs. (2) van-Vverify that the Bogomolny equations are compatible with
ish. Inserting configuration (3) into Egs. (2) and puttingthe field equations (4).
dx = 8¢, = 0, the supersymmetry constraints become The solution—In order to find the general solution of
a system of equations for the four spine’s The pro- the Bogomolny equations, we start from the case where
cedure which solves these equations is rather involvedy(r) is constant. The only possibilities are(r) = =1
For this reason we describe here only the principal stepsr w(r) = 0. Forw(r) = =1 the Yang-Mills field is a
of the analysis. First, since the background field is statigure gauge, and the equations imply that(expp) = 0,
and spherically symmetric, we choose the spinors to bwhich means thatp(r) = ¢o — *, whereas the met-
time independent and classify them with respect to théic is flat. The w(r) = 0 choice corresponds to the
total angular momentund = L + S + I. Since spinS Dirac monopole gauge field. The general solution of
and isospin/ are half-integer,J is integer, and we re- the remalnlng nontrivial Eq. (7) is then given hy +
strict to theJ = 0 sector. In this sector half of the 16 In(r/ro) = r?e~2?/4, with constantry; the correspond-
independent spinor components vanish (in the special repag metric turns out to be singular at the origin.
resentation chosen), which in effect truncates half of the Suppose now thai/(r) is not a constant Introducing
supersymmetries. Hence, the supersymmetry constraintse new variables = w? andR? = —r e ¢, Egs. (5)—
Sy = 0andéy, = 0for u = 1,6, ¢ reduce to four sys- (8) become equivalent to one flrst order differential
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equation
2 dR 2 2
2xR(R™ + x — l)d—+(x+1)R +(x—-1)7"=0.
X
)

If R(x) is known, the radial dependence of the functions,

x(r) and R(r), can be determined from (7) or (8).
Equation (9) is solved by the following substitution:

y = prefle) g _, B0 o k)
dp
(10)
whereé(p) is obtained from
dzf(ﬂ) £(p)
i =2, (11)

The most general (up to reparametrizations) solution
of this equation which ensures th& > 0 is &(p) =
—2Insinh(p — po). This gives us the general solution FIG. 1. The conformal diagram for the spacetime described
of Egs. (5)—(8). The metric is nonsingular at the origin if by the line element (13).

only po = 0, in which case

p? complete and globally hyperbolic. The latter property is
R*(p) = 2pcothp — — no 1 (12)  quite remarkable, since global hyperbolicity is usually
sinfrp lacking for the known supersymmetry backgrounds in
one haskR*(p) = p? + O(p*) asp — 0, andR*(p) = gauged supergravity models. The geodesics through a

2p + O(1) asp — . The last step is to obtair(s) from  spacetime pointp are shown in the diagram, each
Eq. (8), which finally gives us a family of completely geodesic approaching infinity for large absolute values

regular solutions of the Bogomolny equations, of the affine parameter. Although the global behavior
) ,sinhp 5 s of geodesics is similar to that for Minkowski space, they
ds” =a Tp){dt —dp” — R°(p) locally behave differently. Fop < < the cosmological

5 ) 5 term A(¢) is nonzero and negative, thus having the
X (d9* + siP 9de?)},  (13)  focusing effect on timelike geodesics, which makes them
oscillate around the origin. Unlike the situation in the

w = + _p , e2? = 42 sinhp , (14) anti—de Sitter case, each geodesic has its own period of
sinhp 2R(p) oscillations, such that the geodesics from a ppintever
where0 = p < =, R(p) is given by Eq. (12), and we refocus again.
have chosen in Eq. ()¢9 = —In2. The appearance of = The shape of the gauge field amplituddp), given

the free parametes in the solution reflects the scaling by Eq. (14), corresponds to the gauge field of the regular
symmetry of Egs. (5)—(8y — ar, ¢ — ¢ + Ina. The  magnetic monopole type. In fact, replacipgby r, the
geometry described by the line element (13) is everywheramplitude exactly coincides with that for the flat space
regular, the coordinates covering the whole space whod8PS solution. This result is quite surprising, since the
topology is R*. The geometry becomes flat at the model has no Higgs field, in which case it would be
origin, but asymptotically it is not flat, even though the natural to expect the existence of only neutral solutions
cosmological termA(¢) vanishes at infinity. We thus [5]. Note that all known stringy monopoles in four
cannot assign a total energy to the solution. Specificallydimensions [1,3] contain a Higgs field.
in the asymptotic region all curvature invariants tend In conclusion, Egs. (13) and (14) describe globally
to zero, however, not fast enough. The Schwarzschildegular, supersymmetric backgrounds of a new type. The
metric functions forr — « are N « Inr and No?> =  existence of unbroken supersymmetries suggests that the
r?/4Inr, the nonvanishing Weyl tensor invariant being configurations should be stable, and we expect that
¥, o« —1/6r2. the stability proof can be given along the same lines as
The global structure of the solution is well illustrated in [9]. Being solutions ofN = 4 quantum supergravity
by the conformal diagram. Inspecting thep part of the in four dimensions, they presumably receive no quantum
metric, it is not difficult to see that the conformal diagram corrections. On the other hand, they can be considered
in this case is actually identical to the one for Minkowski in the framework of string theory, and then the issue of
space, even though the geometry is not asymptoticallgtring corrections can be addressed. In order to study this
flat (see Fig. 1). The spacetime is therefore geodesicallgroblem, we first of all need to lift the solutions to ten
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