
VOLUME 79, NUMBER 18 P H Y S I C A L R E V I E W L E T T E R S 3 NOVEMBER 1997

any

ence
d in
mic
the
Stationary Properties of a Randomly Driven Ising Ferromagnet

Johannes Hausmann1 and Pál Ruján1,2

1Fachbereich 8 Physik, Postfach 2503, Carl von Ossietzky Universität, D-26111 Oldenburg, Germ
2ICBM, Postfach 2503, Carl von Ossietzky Universität, D-26111 Oldenburg, Germany

(Received 7 February 1997)

We consider the behavior of an Ising ferromagnet obeying the Glauber dynamics under the influ
of a fast switching, random external field. Analytic results for the stationary state are presente
mean-field approximation, exhibiting a novel type of first order phase transition related to dyna
freezing. Monte Carlo simulations performed on a quadratic lattice indicate that many features of
mean-field theory may survive the presence of fluctuations. [S0031-9007(97)04477-3]
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Many information processing systems, natural or ar
ficial, have a macroscopic number of connected eleme
subject to external stimuli changing faster than the cha
acteristic thermal relaxation time. However, attempts
handling nonequilibrium stationary states of such syste
have been made only recently [1]. As illustrated by th
randomly driven Ising model (RDIM) presented in thi
Letter, stationary states far from equilibrium might b
many times more effective in dynamically storing infor
mation than thermal equilibrium states.

The Ising ferromagnet in a time-dependent sinusoida
oscillating field has received recently a lot of attentio
from both a theoretical and experimental point of view
On the theoretical side, Rao, Krishnamurthy, and Pan
[2] have presented a largeN-expansion of the cubic
OsNd model in three dimensions and calculated th
critical exponents related to the area of the hystere
loop. The underlying dynamic phase transition has be
then studied within both mean-field [3] and Monte Carl
simulations [4–7]. The theory presented in this pap
is a generalization of these ideas for the case when
external field is generated by chaotic dynamics and/or
a random variable.

Let a spin system$m ­ ss1, s2, . . . , si , . . . , sN d, si ­
61, be in local thermal equilibrium and denote byPs $m, td
the probability of finding the system in state$m at time t.
The master equation used first by Glauber [8] for definin
a stochastic dynamics for the Ising model reads then
dPs $m; td

dt
­

NX
i

ws $mj $midPs $mi ; td 2 Ps $m; td
NX
i

ws $mi j $md ,

(1)
where $mi ­ ss1, s2, . . . , 2si, . . . , sN d. ws $nj $md denotes
the transition rate from configuration$m into state $n.
Note thatPs $m; td can be represented as a2N dimensional
vector. It is useful to expandPs $m, td in the orthonormal
basis formed by all possible spin products,Ps $m; td ­
1

2N

P2N

a­1 pa

Q
i[a si , wherepa ­ k

Q
i[a silt [8]. In this

“spin-correlation basis” the time-dependent distribution
given by $pstd. The spectrum of the Liouville operator̂L

d $p
dt

­ 2L̂Bstd $pstd (2)
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is invariant under such orthogonal transformations. T
slowest relaxation time corresponds to the decay
the order parameter (the total magnetization) and
denoted bytsys. The typical phonon-spin interaction
time is tspin-flip ø tsys. In what follows we assume
that the external fieldB is a random variable sampled
identically and independently at discrete timestn ­ ntB

sn ­ 0, 1, . . .d from the symmetric distribution

rsssBstndddd ­
1
2

dsssBstnd 2 B0ddd 1
1
2

dsssBstnd 1 B0ddd .

(3)

As long astB ¿ tsys the spin system relaxes to globa
thermal equilibrium. The situation is very different if
tsys ¿ tB ¿ tspin-flip . Now the stationary state is de-
termined by the distribution of the external field. B
integrating Eq. (1) over thestn, tn 1 tBd intervals, one
obtains a “coarse grained” discrete master equation

$pstn 1 tBd 2 $pstnd
tB

­ 2L̂Bstnd $pstnd , (4)

which still describes correctly the long-time behavio
of Eq. (1). Equations (3)–(4) map our problem into a
iterated function system (IFS) [9].

The invariant probability densityPsf $pg induced by the
dynamics (4) satisfies the Chapman-Kolmogorov equatio

Pss $pd ­
Z

d $p 0Pss $p 0d
Z

dB rsBddsss $p 2 e2L̂BtB $p 0ddd

­ dsss $p 2 e2L̂BtB $p 0ddd ; K̂Pss $pd , (5)

where A denotes the dynamic averagR
d $p 0Pss $p 0d

R
dB rsBdA and K̂ the Frobenius-Perron

operator.
As an example, we consider the mean field Isin

model. In this case all multispin correlations factoriz
in the thermodynamic limit and the stationary distributio
depends solely on the total magnetization. The energy
defined as usual,

E ­ 2
J
N

X
ifij

sisj 2 mBB
X

i

si (6)
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wheremB is the Bohr magneton. For the transition rat
ws $mi j $md we use the Glauber form

ws $mi j $md ­
1

2a

∑
1 2 si tanh

µ
K
N

X
jfii

sj 1 H

∂∏
, (7)

where b ­ 1ykBT , K ­ bJ, H ­ bmBB, and a sets
the time constant. Applying Eq. (4) one obtains afte
performing the thermodynamic limitN ! `:

mst 1 1d ­ tanhfKmstd 1 Hstdg , (8)

where time is measured in units oftB. The field
distribution Eq. (3) leads to the one-dimensional map

mst 1 1d ­

(
tanhfKmstd 1 H0g, probability ­

1
2 ,

tanhfKmstd 2 H0g, probability ­
1
2 .

(9)

Since in the stationary state, Eq. (5),mkst 1 1d ­ mkstd,
using Eq. (8) and simple algebraic manipulations w
obtain that thekth moment of the stationary magnetization
is given by

mk ­

µ
y 1 h

1 1 yh

∂k

, k ­ 1, 2, . . . , (10)

where y ­ tanhsKmd and h ­ tanhsHd. For example,
when expanding up to fourth order inh0 ­ tanhsH0d we
get for the second moment

m2 .
h2

0

1 2 K2s1 2 4h2
0 1 3h4

0d
. (11)

Higher moments can be calculated recursively in fu
analogy to methods introduced in [10].

The two graphs in Figs. 1 and 2 show how th
map Eq. (9) changes between high and low temperatu
For further use let us denote bym1, m2, and m3 the
possible real roots of the equationm ­ tanhsKm 1

H0d in descending order. The stationary magnetizatio
distribution undergoes a tangential bifurcation at th
critical field

Hc ­
1
2

ln
1 2 my

1 1 my
1 Kmy, (12)

wherem2 ­ m3 ­ my ­ 6

q
K21

K for K . 1. The cor-
responding phase diagram is shown in the upper part
Fig. 3. Below the phase transition the stationary magn
tization distribution bifurcates into two symmetric, stabl
“spontaneous magnetization distributions” and a cent
repellor. The phase transition is first order; the avera
stationary magnetization jumps at the phase border.

A different kind of transition is related to the ana
lytic structure of the invariant density. Following the
notation introduced in [11], one can identify a singular
continuous density with fractal support (SC-F) in bot
the paramagnetic and the ferromagnetic phase. Whe
gap opens between the upper and the lower branch
the map, the invariant distribution has a fractal suppo
3340
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FIG. 1. Mean-field map (a) and the stationary distribution
the paramagnetic phase (b) forK ­ 0.4 andH0yK ­ 0.21.

with the capacity dimensiond0 , 1. The border of the
(SC-F) region is given byKm1 ­ H0 in the para- and
Ksm1 1 m3d ­ 2H0 in the ferromagnetic phase. In the
region betweend0 ­ 1 and d` ­ 12 the distribution is
singular-continuous with Euclidean support (SC-E) [11
Using the ideas developed in [12–15], we obtaind` ­ 1
if Ks1 2 m2

1d ­ 1
2 . The density distribution is absolutely

continuous (AC) if all generalized dimensions [16] equ
one, dq ­ 1, sq ­ 0, . . . , `d. These results are graphi
cally summarized in the lower part of Fig. 3.

The generalized free energy of such a driven syste
can be defined as2bF ­ L, whereL is the largest Lya-
punov exponent of the map Eq. (9). As expected, in t
thermodynamic limit we obtain a dynamic average ov
the thermal mean field free energy at magnetizationm.
After performing the average overrsBd the generalized
free energy per spin is given by

2
bF

N
­

Z
dmPssmd

3
1
2

ln 2fcoshs2Kmd 1 coshs2H0dg . (13)

Strictly speaking, Eq. (13) is the average free energ
When considering a finite system or a long but finite d
namic trajectory, the free energy is normally distribute
As shown in [14] for the one-dimensional random fiel
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FIG. 2. Same as in Fig. 1 but close to the critical field valu
(K ­ 2.0 and H0yK ­ 0.266). Two disjoint distributions are
created around the stable fixed points, a repellor in the midd

Ising model, in the SC-F region the multifractal spectru
can be directly related to the second cumulant of the fr
energy distribution. The arguments presented in [14] a
ply also to our case, a broad multifractal distribution lea
to large free energy fluctuations.

FIG. 3. Mean-field phase diagram. The upper partsH0 . 0d
shows the border between the para- and ferromagnetic ph
In the lower part sH0 , 0d the regions denoted by SC-F
SC-E correspond to a singular-continuous invariant dens
with fractal and Euclidean support, respectively, while in th
AC region the density is absolutely continuous. Note that t
diagram is actually symmetric inH0.
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Consider now Fig. 2 at negative magnetization value
Close to but above the critical field (12) the upper bran
of the map comes close but does not touch yet t
diagonal. Let n be the average number of iteration
needed to pass through this region starting from t
lower corner by following the upper branch of the map
According to the general theory of type-I intermittenc
in one-dimensional maps,n , sH0 2 Hcd21y2. Since in
each iteration step the probability of jumping back alon
the lower branch is1y2, the total time spent in the lower
corner is proportional to2n, or

t , 2n , 2cfH02Hcg2 1
2 (14)

with c , Os1d a constant. This behavior suggests
dynamic freezingtransition (for more details, see [17]).

In order to test the predictions of the mean field th
ory in a more realistic setting, we performed Monte Car
simulations for an Ising model with nearest neighbor in
teractions on a square lattice. The driving field is sampl
from the distribution Eq. (3) after each Monte Carlo ste
(MCS). The left side of Fig. 4 shows the measured ma
netization distribution in the paramagnetic phase, whi
is similar to Fig. 1. Below the critical temperature on
obtains distributions similar to the ones displayed on t
right side of Fig. 4, to be compared with Fig. 2. Not
that the critical fieldHcsKd is not a universal quantity
and the square lattice values are different from the me
field ones. More details will be published elsewher
Thermal fluctuations and finite size effects wash out t
fine structure of the multifractal magnetization distributio
predicted by the mean-field theory. However, the sha
peaks and the presence of gaps indicate that at least
main features of the magnetization distribution are pr
served in two dimensions.

Besides the theoretical interest in describing such s
tems, we believe that our predictions can be test
with recently developed experimental techniques. D
namic magnetization measurements have been rece
performed in ultrathin Au(111)yCu(0001)yAu(111) sand-
wiches or epitaxial CoyAu(111) films [18–20]. Similarly,
hysteresis measurements on the ultrathin film CoyAu(001)
[21] indicate that belowTc these systems undergo a dy
namic phase transition belonging to the Ising-universal
class. More relevant to our theory, the time evolutio
of magnetization clusters can be optically recorded. T
typical relaxation times range from minutes to a few se
onds with increasing field amplitudes [20]. This relativel
slow relaxation rate allows for a simple experimental r
alization of the randomly driven external field.

Ultrathin films are potential candidates for magneto
optical storage devices. At well chosen control paramet
the stationary magnetization distribution of the RDIM
displays several well separated peaks. Hence, by cod
appropriately the time sequence of field switches, o
can—in principle—store locally more than two binary
states.
3341
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FIG. 4. Left: Magnetization distribution for the square lattice RDIM averaged over eight different initial conditions.KyKc ­ 0.4,
Kc ­ 0.4407, H0yK ­ 0.5, lattice size415 3 415. The simulation was run for2 3 105 MCS. Compare to Fig. 1. Right: Same
parameters butK ­ 2Kc, H0yK ­ 1. Compare to Fig. 2.
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