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Stationary Properties of a Randomly Driven Ising Ferromagnet
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We consider the behavior of an Ising ferromagnet obeying the Glauber dynamics under the influence
of a fast switching, random external field. Analytic results for the stationary state are presented in
mean-field approximation, exhibiting a novel type of first order phase transition related to dynamic
freezing. Monte Carlo simulations performed on a quadratic lattice indicate that many features of the
mean-field theory may survive the presence of fluctuations. [S0031-9007(97)04477-3]
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Many information processing systems, natural or artiis invariant under such orthogonal transformations. The
ficial, have a macroscopic number of connected elementdowest relaxation time corresponds to the decay of
subject to external stimuli changing faster than the charthe order parameter (the total magnetization) and is
acteristic thermal relaxation time. However, attempts atlenoted byr,,. The typical phonon-spin interaction
handling nonequilibrium stationary states of such system8me is 7pin-riip < 7o In What follows we assume
have been made only recently [1]. As illustrated by thethat the external fieldB is a random variable sampled
randomly driven Ising model (RDIM) presented in this identically and independently at discrete tintfgs= n7p
Letter, stationary states far from equilibrium might be(n = 0, 1,...) from the symmetric distribution
many times more effective in dynamically storing infor- | |
mation than thermal equilibrium states. p(B(t,)) = — 8(B(tx) — Bo) + — 6(B(ty) + Bo).

The Ising ferromagnet in a time-dependent sinusoidally 2 2
oscillating field has received recently a lot of attention, 3)

from both a theoretical and experimental point of view. .
) . : As long as7tp > 7, the spin system relaxes to global
On the theoretical side, Rao, Krishnamurthy, and PanOIl1thermal equilibrium. The situation is very different if

[2] have presented a larg&-expansion of the cubic T > 75 3> Tomrip. NOW the stationary state is de-

0.(1.V) model in three dimensions and calculated th?termined by the distribution of the external field. By
critical exponents related to the area of the hysteresi
loop. The underlying dynamic phase transition has bee

then studied within both mean-field [3] and Monte Carlo

ﬁ‘ltegrating Eq. (1) over thér,,r, + 75) intervals, one
btains a “coarse grained” discrete master equation

simulations [4—7]. The theory presented in this paper w(ty + 78) — 7(t,) Pz 4

is a generalization of these ideas for the case when the . = ~Loey7(ta), 4)

external field is generated by chaotic dynamics and/or is ) ) ) )

a random variable. which still descrll_oes correctly the long-time bghawor
Let @ SPin SYSeML = (51,52, ., Sis.r s SN), Si = pf Eq. (2). E_quatlons (3)—(4) map our problem into an

+1, be inlocal thermal equilibrium and denote (4, r) ~ iterated function system (IFS) [9].

the probability of finding the system in stateat timez. The invariant probability densitf;[ 7] induced by the

The master equation used first by Glauber [8] for defininglynamics (4) satisfies the Chapman-Kolmogorov equation:
a stochastic dynamics for the Ising model reads then

N S N - *ﬁ T8 2./
dP _);l N . R R N Lo ?v(ﬂ') = f dﬂlg)s('ﬂ'/)] dBp(B)6(7T —e B7T)
% = D w@lg)P (i) = P(ist) Y wiiuili), ; R
; f (1) = 5(7 — e Lz = KP(7), ®)
Where s = (5150 —sin...sw). w(Bli) denotes where A  denotes the  dynamic average

the transition rate from configuratio into state 3. Jd7'Pi(#') [ dBp(B)A and X the Frobenius-Perron
Note thatP(i; ) can be represented a9¥ dimensional ~Operator. _ _ _
vector. It is useful to expan# (i, ¢) in the orthonormal ~ AsS an example, we consider the mean field Ising

basis formed by all possible spin produc®(i;) = model. In this case all multispin correlations factorize
%NZZN (7o [lica si, wheremry = ([icy si): [8]. In this in the thermodynamic limit and the stationary distribution
a= a 1€Ea Pl a 1€Ea V1 .

“spin-correlation basis” the time-dependent distribution isge]?_engs solely ?n the total magnetization. The energy is
given by (7). The spectrum of the Liouville operatdt elined as usual,

o J
dm AL E=— > E o Bz ; 6
7 — Ly (1) 2) N #js ST hE - $ ©
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where up is the Bohr magneton. For the transition rate () 1
w(;| ) we use the Glauber form
1 K
Sln) = — |1 — =2 0.5t
w(gilp) = 7 [1 s tanl'<N Zsj + Hﬂ, @)

JFi

where 8 = 1/kgT, K = BJ, H = BugB, and a sets E 0 /
the time constant. Applying Eg. (4) one obtains after /
performing the thermodynamic limN — oo:

05 f
m(t + 1) = tanHKm(t) + H(r)], (8)
where time is measured in units ofg. The field » , )
distribution Eq. (3) leads to the one-dimensional map -1 05 0 0.5 1
m
- 1
+ — =
mt + 1) = tanfKm(t) + Ho], probab!I!ty 2> (b) 0014
tanHKm(t) — Hy), probability = 5.
0.012 +
)
Since in the stationary state, Eq. (B)¢(r + 1) = m*(¢), 0.01
using Eq. (8) and simple algebraic manipulations we — 0.008 ¢ |
obtain that th&th moment of the stationary magnetization EE_/ 0.006 |
is given by '
k 0.004 |
mE = (2 th > k=1,2 10
" <1+vh ’ e (10) 0.002 |
where v = tanh(Km) and h = tanhH). For example, 0
when expanding up to fourth order iy = tanh Hy) we 02 -01 0 01 02
get for the second moment m
L hé FIG. 1. Mean-field map (a) and the stationary distribution in
2 ~

= i (11)  the paramagnetic phase (b) fkr= 0.4 andHy/K = 0.21.
1 — K2(1 — 4h3 + 3hy)
Higher moments can be calculated recursively in fullwith the capacity dimensiody, < 1. The border of the
analogy to methods introduced in [10]. (SC-F) region is given byKm; = H, in the para- and
The two graphs in Figs.1 and 2 show how theK(m; + m3) = 2H, in the ferromagnetic phase. In the
map Eg. (9) changes between high and low temperatureegion betweend, = 1 and d. = 1- the distribution is
For further use let us denote by, m,, and m3 the  singular-continuous with Euclidean support (SC-E) [11].
possible real roots of the equatiom = tanhKm +  Using the ideas developed in [12—15], we obtdin= 1
Hy) in descending order. The stationary magnetizationf K(1 — m?}) = % The density distribution is absolutely
distribution undergoes a tangential bifurcation at thecontinuous (AC) if all generalized dimensions [16] equal

critical field one,d, =1, (g =0,...,2). These results are graphi-
1 1 — mt cally summarized in the lower part of Fig. 3.
H. =+ In T+t * Km', (12) The generalized free energy of such a driven system

can be defined as 8F = A, whereA is the largest Lya-
wherem, = m; = mt = + KT—l for K > 1. The cor- Punov exponent of the map Eq. (9). As expected, in the

responding phase diagram is shown in the upper part dhermodynamic limit we obtain a dynamic average over
Fig. 3. Below the phase transition the stationary magnethe thermal mean field free energy at magnetizaiion
tization distribution bifurcates into two symmetric, stable After performing the average over(B) the generalized
“spontaneous magnetization distributions” and a centraifee energy per spin is given by
repellor. The phase transition is first order; the average gF
stationary magnetization jumps at the phase border. TN f dmPy(m)

A different kind of transition is related to the ana-
lytic structure of th(_e invariant densiyy. Eollowi_ng the X 1 In 2[cosi2Km) + coshH2H,)]. (13)
notation introduced in [11], one can identify a singular- 2
continuous density with fractal support (SC-F) in bothStrictly speaking, Eq. (13) is the average free energy.
the paramagnetic and the ferromagnetic phase. When\When considering a finite system or a long but finite dy-
gap opens between the upper and the lower branch efamic trajectory, the free energy is normally distributed.
the map, the invariant distribution has a fractal supporiAs shown in [14] for the one-dimensional random field
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(a) 1 - - Consider now Fig. 2 at negative magnetization values.
Close to but above the critical field (12) the upper branch
of the map comes close but does not touch yet the
diagonal. Letn be the average number of iterations
needed to pass through this region starting from the
" 0 lower corner by following the upper branch of the map.
According to the general theory of type-l intermittency
in one-dimensional maps, ~ (Hy — H.)~/2. Since in
05 ¢ T each iteration step the probability of jumping back along
the lower branch id/2, the total time spent in the lower
corner is proportional t@", or

05

05 1 o~ 2N~ Zc[Ho—Hf]’é (14)

30

(b) 014 with ¢~ 0(1)_ a constant. This behayior suggests a
' dynamic freezingransition (for more details, see [17]).

0.12 t 1 In order to test the predictions of the mean field the-
ory in a more realistic setting, we performed Monte Carlo
simulations for an Ising model with nearest neighbor in-
0.08 1 teractions on a square lattice. The driving field is sampled
from the distribution Eq. (3) after each Monte Carlo step
(MCS). The left side of Fig. 4 shows the measured mag-
0.04 ¢ 1 netization distribution in the paramagnetic phase, which
is similar to Fig. 1. Below the critical temperature one

01 |

P(m)

0.06 | -

0.0z 1 obtains distributions similar to the ones displayed on the
o Wi : L right side of Fig. 4, to be compared with Fig. 2. Note
s 005 that the critical fieldH.(K) is not a universal quantity

FG 2 S 1 Fig. 1 but close o the critical field val and the square lattice values are different from the mean
- €. >ame as n Fig. 1 but close 1o the crilical Nield valu€fie|d ones. More details will be published elsewhere.
K = 2.0 and Hy/K = 0.266). Two disjoint distributions are . - :
S:reatedoaroundotﬁe sta(t))Ie6f?2<ed points,]a repellor in the middle.-l_-hermal fluctuations an_d finite size effect; Wa,Sh 'out_the
fine structure of the multifractal magnetization distribution
predicted by the mean-field theory. However, the sharp
Ising model, in the SC-F region the multifractal spectrumpeaks and the presence of gaps indicate that at least the
can be directly related to the second cumulant of the fregnain features of the magnetization distribution are pre-
energy distribution. The arguments presented in [14] apserved in two dimensions.
ply also to our case, a broad multifractal distribution leads Besides the theoretical interest in describing such sys-
to large free energy fluctuations. tems, we believe that our predictions can be tested
with recently developed experimental techniques. Dy-
namic magnetization measurements have been recently
04l . performed in ultrathin Au(11¥)Cu(0001YAu(111) sand-
oz | PARA _ wiches or epitaxial COAu(111) films [18—20]. Similarly,
hysteresis measurements on the ultrathin filnd Qg001)
[21] indicate that belowl'. these systems undergo a dy-
namic phase transition belonging to the Ising-universality
class. More relevant to our theory, the time evolution
of magnetization clusters can be optically recorded. The
typical relaxation times range from minutes to a few sec-
onds with increasing field amplitudes [20]. This relatively
slow relaxation rate allows for a simple experimental re-
A2 o5 ] e > 25 alization of the randomly driven external field.
K Ultrathin films are potential candidates for magneto-
FIG. 3. Mean-field phase diagram. The upper gakf > 0)  optical storage devices. Atwell chosen control parameters
shows the border between the para- and ferromagnetic phasgie stationary magnetization distribution of the RDIM

In the lower part(Hy, < 0) the regions denoted by SC-F, 4: ;
SC-E correspond to a singular-continuous invariant densit)gISplayS several well separated peaks. Hence, by coding

with fractal and Euclidean support, respectively, while in theapproprlate'ly.the time sequence of field swﬂcheg, one
AC region the density is absolutely continuous. Note that thec@n—in principle—store locally more than two binary
diagram is actually symmetric if. states.
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FIG. 4. Left: Magnetization distribution for the square lattice RDIM averaged over eight different initial conditiofhs, = 0.4,
K. = 0.4407, Hy/K = 0.5, lattice size415 X 415. The simulation was run faz X 10° MCS. Compare to Fig. 1. Right: Same
parameters buk = 2K., Hy/K = 1. Compare to Fig. 2.
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