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Flux of Particles in Sawtooth Media
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We study Brownian motion in chains of segments with flashing sawtoothlike potentials. In all
former models for stochastic ratchets a coherent switching of the potential is assumed. We consider
the generalized case which allows independent switchings of the potential in single segments. We
introduce three different rules: correlated, anticorrelated, and uncorrelated switchings. On the basis of
a discrete model analytical results for the mean flux are compared with computer simulations. As a
result the mean flux will be enhanced for anticorrelated and uncorrelated sawteeth as compared with the
case of correlated (coherent) segments. [S0031-9007(97)04434-7]

PACS numbers: 05.40.+j, 05.60.+w

Inspired by theoretical studies and biological systemsV segments of the chain is switched simultaneously
the phenomenon of noise induced transport has attractemh and off. This assumption of coherent switching of
great interest in recent years [1]. To move mesoscopiall sawteeth can be reduced mathematically to a single
particles in a certain direction by the help of unbiasedsegment with periodic boundary conditions. We will call
fluctuations the system must have two essential featurethis the correlated switching rule, later on. If the potential
(1) The particles move in a so-called ratchet poteritial U(x) is replaced by—U(x) the mean flux changes the
It consists in the simplest case of a periodic sequencsign, but its absolute value is invariant.

U(x) = U(x + L) of sawtoothlike segments. Itis essen- The main point of this Letter is to introduce local rules
tially that within each segment the reflection symmetryfor the switching of the potential in every segment. The
is broken[U(x + L/2) # U(—x + L/2);x € (0,L/2)]. independent switching of neighboring segments is mod-
(2) The system is driven out of equilibrium [2]. This re- eled by the assignment of a random number= *1
quires the action of, e.g., external colored noise [1,3-5}0 every segmeni = 1,2,...,N, indicating its instan-

or non-Gaussian white noise [6]. taneous switching state (Fig. 1). We will assume that

The combination of both features causes a violatiorthe flashing of a single sawtooth follows from a di-
of the principle of detailed balance. This gives rise tochotomic Markov process, which flips between = 1
an effective transport of particles in a certain directionando; = —1 with a probabilityy per unit time.

[2,7-12]. We will restrict ourselves to three different rules which

Mainly two different types of ratchet devices have beencan be distinguished by the two point correlation function
previously discussed [13,14]. The first class is formed by ;+;0;):
systems where external nonequilibrium forces with zero (a) Correlatedo;+; = o; (oi+10:) = 1).
mean act [1,3,5,6,9,15—17]. These are termed chang- (b) Anticorrelatedo;+; = —o; (o;+10;) = —1).
ing force ratchets and provide an interesting idea for (c) Uncorrelated{o;+,0;) = 0.
separation devices, because the particle flux may changéne angular brackets denote averaging over the di-
direction for certain noise parameters [3,9,18]. Thechotomous noise. Case (a) corresponds to the coherent
second type groups systems with a fluctuating potentiawitching of all segments as formerly discussed. In the
profile U(x, o (1)) [2,4,7,8,10,13]. These are termed flash-anticorrelated case (b) again the chain adopts two states
ing ratchets (FR) and have been discussed in connectiamnly. The potential has a period of two segments. If in
with motor proteins. The simplest case is a simultanethe first state, e.g., every segment with an odd index
ous dichotomic modulation of the potenti&x, o (r)) = is switched on, the neighbors with even numbers are off.
(1/2)[1 + o(1)]JU(x) with o(t) = *1. The whole chain
of the N sawteethlike segments adopts two statéér,

og=1=Uk), and U(x,oc = —1) = 0. A particle ,R\ »
which is first localized in a minimum of the sawtooth po- (O %
tential will diffuse freely after the potential is switched \ ,’ Y Q ,/.
“off.” If the asymmetric potential is turned “on” again A \8'0i:+1 \.o-_i+_1: :1._ ‘

the expanded probability density of the particle will be
cut at different distances to the left and to the right from 12, 3, 1,234
the original minimum. This yields an effective particle FIG. 1. In the uncorrelated ratchet every sawtobswitches

fluxin a Certain direction.' . on (o; = +1) and off (o; = —1) independently of its neigh-
As descrl_bed above in previous works on .FR_ anthors. The points should hint schematically at the three energy
motor proteins [2,4,7,8,10] the sawtooth potential in alllevels of the discrete model.
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Respectively, in the second state the even segments are byv;(r)) excludingn = 1 which by definition depends
and the odd ones off. Compared with former investiga-on the state of the predecesséi(l — 3) = 1/ W3 —
tions a qualitatively new situation is the uncorrelated casé, o;—1).
(c). The switching of each segment is independent from This picture is simplified by introducing the abbrevia-
its adjacent segments. The number of possible configuion k = exp(—Q/4kgT). In the on state forward jumps
rationso = (o, 02,..., o) for this uncorrelated chain occur per unit time fromn = 1,2 with rate k and from
with N segments ig". n =3 with k2. The on states; = 1 corresponds to
We will calculate analytically the mean flux of particles a random walk in the potential/(n). In the off state
for all three situations and support our results by computes- = —1 the walker simply performs random motion with
simulations. The flux is maximum for the anticorrelatedequal rates between all statéé(n — n = 1,—) = a.
case. Also for the uncorrelated chain we find an enhancelor simplicity we will seta = 1, later on.
mean flux compared to the correlated case using a mean The consideration of a chain witN sawteeth can be
field approximation. Surprisingly, the symmetry of the reduced to the analysis of a single segment with given
current with respect to the change of the sign of theadjacent states. Le®(n, oy, d;,¢) be the probability of
potential is broken in the cases (b) and (c). finding the system in the stafe, o;) at timer with given
For a single sawtooth segmentve use an analytically ; = (o;—1,07+1). This probability function obeys the
solvable model of a FR consisting of discrete stepsnaster equation:
(Figs. 1 and 2). The spatial movement of a particle
is modeled as a random walk with jumps— n = 1.
Broken reflection symmetry requires at least three discrete + yP(n,—0i,0,1), (2)

steps per sawtooth. Jumps involving the “inner” stat&yhere AJ(n, o;, 7;) arises from the difference of proba-
n =2 occur with a rateW(n — n * 1,0;). It depends pility fluxes for given values of;, ;. The second part
on the switching stater; of the instantaneous occupied i (2) describes the switching; — —o.

segmeni. The states = 1 andn = 3 are border points  The fluxes involving the internal state = 2 depend

between different segmenisand i = 1. Hence, it is  only implicitly on the states of the adjacent segments. It
implied that the state: = 4 forms staten = 1 of the  fojiows simply

following segment, anad = 0, respectively, stata = 3
of the segment to the left. So in the following we AJQ2,0i,00) = J(,0i1,6:) = JQ2,04,7:),  (3)
will use n in the sense ofimod3. We declare that whereJ(n, o;, &;) is the flux betweem andn + 1
the previous segment defines the transition rates between _ _
adjacent neighbors. Jumps betweenr= 3 andn = 1 J(n,01,01) = Win — n + 1,0)P(n, 07, 57)
occur withWn — n = 1, o). - Whn+1—n,0)

A definition of the forward transition probabilities, by X P(n + 1,015, 4)

using a Arrhenius-like expression simply reads The fi i olving the border stat 3 det
N N AU [0+ 1] 2T e fluxes involving the border states= 1,3 are deter-
W= n + 1,0:(1)) = ae (" mined by the fluxes from the internal state and, addition-
Here AU(n) denotes the difference of the energy levelsa|ly, by fluxes across the border to the adjacent segments.
in the states: andn + 1. In (1) the Boltzmann number e denote the flux from the left between the segment

is denoted by andT is the absolute temperature. Cor- and its predecessaér— 1 pointing inside theith segment
respondence to particle motion in a piecewise linear sawby 7(o,_,, o). It reads

tooth potential is obtained by choosidd/(n) = Q/2 for

9;P(n,o;,di,t) = Al(n,o;,0;) — yP(n,o,0;,1)

n=12andAU(3) = —Q. Backward transitions have J(oi-1,0) = W@ — 1,0-1)PB3,0i-1,0i-1)
reciprocal ratesW(n + 1 — n,0;(t)) = 1/W(nh — n + —~ W1 — 3,0, )P(1,0:,5). (5)
S This expression takes into account that the transition rate
i 5 to the neighbor is determined by the switching state,
3o .)o=""" i k f k 3 L o) of the left predecessor. HetHo;, o;+1) Stands for the
T - ! o ” ikl current on the right border, pointing outside.
Y 'y Iy Hence for the left border state= 1
T e L W o) AI(L,04,0/) = J(oi-1,00) = J(l,0:,5:)  (6)
1 2 3 and forn = 3, respectively,
o.=-1

' AJB,0i,0:) = JQ2,0i,0) — J(oi,0i+1) . (7)
FIG. 2. In the discrete ratchet model one segment consists of he followi i | in the |
three spatial states = 1,2,3 and two switching states. A . In t € 10 %W'ng V‘fe will solve Eq.'(2) in the ong
suitable choice of the boundaries allows the investigation ofime limit 9,P%(n, 0, ;) = 0. The stationary state with
chains with arbitrary length. violated detailed balance implies constant currents
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through the segments/® =3, ; J(n,0;) for all J(-o;0;) and J(o;,0:41) = J(oy,—0;). For the

n. From (6) and (7) it immediately follows that uncorrelated ratchet the exact formulation of similar
=3, 5J(0i-1,0) =2, 5 J(0i,01). Different symmetry relations is not possible. For a given
switching rules will imply the formulation of special the potential statesr;~; of the neighboring sawteeth
closure conditions. In result Eq. (2) in all three cases willare random numbers and the fluxes across the borders
reduce to six coupled linear algebraic equations plus thé(o;—;,0;) and J(—o;,0;+1) are random as well.

normalization condition which can be solved. Hence, dependent on the actual adjacent state we have
First we consider the correlated case= o;+1. As- |
suming periodicity of the solutiorP®(n, oj=1, Gjx) = J(oi—,00) = 3 (1 + gi—10)J (o}, 0y)

P°(n, o;, &;) implies that the fluxes between adjacent seg-
ments are adjusted so théto;—,0;) = J(o;, 0i+1) =
J(o;, o;). This means that in (5);—; has to be replaced
by ag;.

We will not present here the rather long algebraic
expression. The stationary flu¥ versus the switching

s 2= ao)i(-ao) @)
and, respectively,

1
J(op,0i41) = =0 + giogi)J (o, o))

rate y is plotted for k = 0.2 in Fig. 3. Additionally 2
we compare with numerical simulations of our discrete |
model, which were carried out using Gillespie’s algorithm + 3 (1 = gioi+)J(oi,—oi). (9)

[19]. In gqualitative agreement with the results [2,4,10]

for a spatially continuous flashing ratchet we find aExpressions (8) and (9) are valid for all switching rules.
maximal flux for a suitable value. For fast switching In the uncorrelated case we make use of a mean field
the system cannot adjust to the asymmetry of the jumppproximation and replace the actual valugs o; by
rates, so the current vanishes fpor— «. In the absence (g, ;0;) =0

of switching (y = 0) the system decomposes into two In Fig. 3 the fluxes of the three cases are depicted
independent components. For both the statesn  for a given value ofc = 0.2. The flux for uncorrelated
are occupied with the Boltzmann probabiliB(n, o;) ~  and anticorrelated situations, compared to the usually
exd—U(n,o;)/kgT] and the detailed balance is obeyed.considered correlated case, is enhanced for all switching
The fluxes/ for both values ofr; vanish. The location of ratesy. This remains valid qualitatively for all relevant
the maximal current grows monotonically with decreasingvalues 0 < k < 1. The higher flux is caused by the
k. The absolute value of the flux approaches a maximunfollowing: In the correlated case a diffusive transport
for y =23 and k = 0.2. Changing the sign of the of a particle between different segments takes place in
potential or replacingc by k! would reverse the flux the off case only. The particle has to stay at least the

with the same absolute value (Fig. 4). time 7 = y~! of the on state within one segment. The
The closure condition found for the anticorrelatedtransport is interrupted. On the contrary, in the other
ratchet ;- = —o; = 0+ leads to J(o;-1,0;) = cases an effective transport might take place at all times.
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FIG. 3. CurrentJ vs switching ratey (k = 0.2) for corre- FIG. 4. CurrentJ vs switching ratey for valley poten-
lated, uncorrelated, and anticorrelated ratchets (from top to botials (k = 5.0) and anticorrelated, uncorrelated, and correlated
tom). The lines are the analytical calculations described irswitching (from top to bottom). The symbols show computer
the text, while the points are obtained by computer simulasimulations forN = 10 and the lines are analytical calcula-
tions (N = 10). The mean field result for the uncorrelated tions. The dashed line shows the exact solution for uncorre-
ratchet deviates from the exact solution in the cage= 2 lated switching in the cas& = 2, which deviates from the
(dashed line). mean field approximation.
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A UK trollable electrodes. By comparison with biological data
barrier [4] we find that the effect of flux amplification is most
Q important in systems on the length scalel6fnm with
switching times of the ordef0~* s and energy barriers of
N g—————- . r=- 10kgT. The uncorrelated rule (c) enables further insight
N ’ - AN ,' into transport mechanisms in stochastic ratchets. The pro-
RS ,' valley So x posed flux description of many segments is generalizable

to different potential shapes. In particular a two dimen-
FIG. 5. The inversion of the anticorrelated potential leads tosional extension of our model should be possible, where
a valley potential. every sawtooth is taken as an input-output element [20].
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