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Tailored Complex Potentials and Friedel’s Law in Atom Optics
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Tailored complex potentials for atoms can be made of two overlapping standing light waves, one
resonance and one far detuned. The observed diffraction asymmetry of Bragg diffraction of such l
structures is due to a corresponding asymmetry of the Fourier components of the potential. In cry
physics this is known as a violation of Friedel’s law. [S0031-9007(97)04304-4]
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It is often found that concepts of photon optics can b
adapted to matter-wave optics. In our article we choo
the conjugate approach. We use the simplicity of the inte
action between light and matter waves to design compl
periodic potentials for the matter waves and reveal op
cal concepts. As an example, we investigate a violatio
of Friedel’s law due to fundamental optical principles in
very controlled system.

Typically, diffraction phenomena are invariant under a
inversion of the crystal, even when the elementary cell
the crystal possesses no symmetry. This empirical rule
generally referred to as Friedel’s law [1]. However, vio
lations of this rule are known from diffraction experi-
ments of x rays or electrons at solid state crystals [2
for example, due to the presence of “anomalous” (abso
tive) scatterers. In this Letter we present a violation o
Friedel’s law in a very different system, where atomic ma
ter waves are diffracted at specially designed “crystals”
light [3,4]. The diffraction asymmetry is due to the interac
tion of both “normal” and anomalous scattering at supe
posed refractive and absorptive subcrystals, respectiv
[5]. This mechanism even works although our light crys
tal obviously cannot be really absorptive for the atoms, b
only changes their internal state.

In our experiment (Fig. 1), we detect atom intensitie
depending on the atom’s incidence angle at the light cry
tals, and their diffraction angle. In the case of spatial coi
cidence between the refractive and the absorptive parts
the crystals we obtain symmetric diffraction, as shown
Fig. 1(b). This corresponds to the normal situation in sol
state crystals, where Friedel’s law is obeyed. However
violation of Friedel’s law is demonstrated in Figs. 1(a) an
1(c), where Bragg diffraction is dominant in one direction
There, the absorptive and refractive index parts of the cry
tals are arranged such that they are out of phase by6py2.

In the remainder of this Letter, we will show that this
diffraction asymmetry can be understood by evaluatin
the Fourier composition of the resultingcomplexpotential,
and employing dynamical diffraction theory. This mean
specifically that the effect of the total crystal potentia
cannot be separated into the individual actions of i
components. However, in the weak diffraction limit a
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more intuitive picture can be justified, which is present
in the following.

The asymmetry can be understood as an interference
fect between diffraction at refractive and absorptive “su
crystals” spatially displaced with respect to each oth
(Fig. 2). Generally, there is apy2 phase shift even be
tween waves diffracted atcoinciding refractive and ab-
sorptive structures. This results from the Kramers-Kron
relations [6], i.e., ultimately from causality. This phas
difference is the same for diffraction into the two symme
ric orders (Fig. 2, situations 1 and 2). Thus, if the refra
tive and the absorptive structures coincide, diffraction
symmetric and Friedel’s law is obeyed.

An additional spatial displacement of the two gratin
by s6d a quarter of a grating constant yields an addition
phase shift of6py2 which changes sign for the two Brag
diffraction orders (situations 3 and 4). Then, depend
on the diffraction order, the two scattered components

FIG. 1(color). Scattering of atoms at a superposition of a
sorptive and refractive crystals of light for three different sp
tial phases between the absorptive and refractive compone
The atoms are registered as a function of their incidence
their diffraction angles. The red bar in the middle represe
to transmitted atoms (0 order), whereas the two yellow isla
on either side of the center bar represent the11 and the21
order diffracted atoms. If the two crystals are in phase (
the intensities in the two diffraction orders are nearly identic
However, the symmetry is clearly broken in (a) and (c), whe
the refractive and the absorptive crystal are6py2 out of phase.
This asymmetry is a violation of Friedel’s law.
© 1997 The American Physical Society 3327
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FIG. 2. “Intuitive” picture for the appearance of asymmetric
diffraction in conjugate Bragg orders as an interplay betwee
two phase contributions. The waves diffracted at the refractiv
and absorptive gratings are represented by the solid and
broken lines indicating the wave fronts. In the case where th
two crystals are spatially in phase (situations 1 and 2), the
is always apy2 phase difference between the solid and broke
lines, and the diffraction is symmetric. However, if the crystal
are spatially displaced by one quarter of a grating perio
interference between the two components leads to increas
diffraction into one order (situation 3, solid and broken line
in phase), and to reduced diffraction in the conjugate ord
(situation 4, solid and broken linesp out of phase).

either in phase orp out of phase, resulting in construc-
tive or in destructive interference, and consequently in e
hanced or in suppressed diffraction, respectively.

In the following we will first show how to build
a complex periodic potential with an arbitrary spatia
phase between its real and imaginary components, th
discuss our experiments in detail, and finally give
comprehensive discussion of our results.

The interaction between a light field and a two leve
atom with an additional decay channel of the excited sta
to a third noninteracting state can be described by t
complex optical potential [7]

V sx, yd ­
1
h̄

d2E2sx, yd
D 1 igy2

. (1)

Here, D is the detuning of the light frequency from an
electronic transition with a dipole matrix elementd of the
atom,Esx, yd is the electric field of the light wave, andg
is the loss rate from the excited level to a noninteractin
state. A standing light wave creates a periodic potenti
for atomic de Broglie waves—a crystal made of light. By
scanning the light frequency it is possible to vary betwee
an effectively realsjDj ¿ gd and an imaginarysD ­ 0d
periodic potential.

A significant advantage of crystals of light is tha
one can, in principle, realize a huge variety of potentia
structure by the superposition of light fields. In ou
experiments, we use this to create a periodic potential w
an arbitrary spatial phase between its refractive (real) a
absorptive (imaginary) parts.

Our experiments (Fig. 3) are performed with a beam o
metastable argon atoms produced in a dc gas discha
3328
n
e

the
e

re
n
s
d,
ed

s
er

n-

l
en
a

l
te

he

g
al

n

t
l

r
ith
nd

f
rge

FIG. 3. Experimental setup (not to scale): A collimated
beam of metastable atoms crosses a crystal made of two lig
wavelengths 801 and 811 nm. In the far field behind th
light crystal, the atoms are registered by a channeltron detect
which is only sensitive to metastable atoms. The incidenc
angle of the atoms at the crystal can be varied by tilting
the retroreflection mirror, used to set up the standing ligh
waves. The phase between the two crystals can be controll
by adjusting the distance between the mirror surface and th
atomic beam. The inset shows the level scheme of meta
table argon.

[8]. The atoms are thermally distributed with an averag
velocity of y ­ 600 mys sldB ­ myyh ­ 17 pmd, and
65% (FWHM) velocity spread. This is in the range of
the velocity acceptance of our light crystal (55%) at Brag
incidence, as determined by the limited crystal lengt
(3.5 cm). Before passing the light crystal, the beam i
collimated transversely with two slits (10 and 5 mm)
separated by1.4 m (divergence5 mrad, corresponding to
one-fourth of the Bragg diffraction angleQBragg). At a
distance of1.4 m behind the interaction region, the atoms
are registered using a “channeltron” detector, which is on
sensitive to atoms in the metastable state.

Argon offers a level scheme (see inset of Fig. 3) whic
allows a straightforward realization of an arbitrary com
plex potential. There are two transitions starting from
the 1s5 metastable state (lifetime about 40 s [9]). The
first, with a wavelength of 801 nm to the2p8 statesAik ­
9.6 3 106 s21d, is open and decays with a probability of
72% to the ground state, which is not detected with ou
channeltron. Using this transition on resonance (detunin
,0.1g, intensity 0.3 mW cm22, VRabi ­ 500 kHz), we
obtain an effectively absorptive (imaginary) potential. Fo
this purpose we use a diode laser which is locked by sat
ration spectroscopy at a gas cell. Additionally, we use th
closed transition to the2p9 statesAik ­ 36.6 3 106 s21d
with a wavelength of 811 nm. Far-detuned light (detun
ing 10 GHz, intensity45 mW cm22, VRabi ­ 15 MHz)
of a Titanium/Sapphire laser realizes the phase crysta
To form the complex potential the two light fields are
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overlapped at a beam splitter and enter the vacuum cha
ber collinearly (Fig. 3). The light crystal is set up by
retroreflecting the central part (3.5 cm) of a collimate
Gaussian laser beam (FWHM ca. 3.5 cm) at a mirror
the vacuum.

At the metallic mirror surface the two light fields are in
phase. However, as a function of distance from the mirr
surface, their relative spatial phase oscillates with a beat
period of32 mm, due to their wavelength difference [10]
This means that by controlling the distance between t
atomic beam (5 mm wide) and the mirror surface we can
vary the spatial phase between the two superposed crys
of light.

To study asymmetric diffraction our experiments wer
performed at 12 different distances from the mirror su
face corresponding to 12 different relative phases betwe
the absorptive and refractive index gratings. For each p
sition, the incidence angle of the atoms was scanned
tween21.5QBragg and 11.5QBragg sQBragg ­ ky2G ­
17 mradd by changing the mirror angle in 40 steps (x
axis in Fig. 1) using a piezoactuator. For every ste
the far-field diffraction pattern was measured by sca
ning a 10 mm slit in front of the detector (y axis in
Fig. 1). Thus, the mirror angle (x axis) and the detec-
tion slit position (y axis) were proportional to the angle
of incidence and to the diffraction angle of the atoms, r
spectively. Data for three different distances between t
mirror and the atomic beam, corresponding to the thr
relative phases (2py2, 0, and 1py2) between the ab-
sorptive and the refractive index crystals, are shown
Fig. 1. The red bar in the middle of each picture co
responds to atoms which pass the crystal without b
ing diffracted [11]. For incidence angles near the Brag
angles, there is an additional peak of Bragg diffracte
atoms ( yellow island). Picture 1(b) corresponds to th
normal case obeying Friedel’s law. Diffracted atoms a
pear at symmetric incidence angles at different sides of t
peak of undeflected atoms. On the other hand, pictur
1(a) and 1(c) show very clearly an asymmetric diffrac
tion into the two Bragg orders. There, one dominant pe
of diffracted atoms on either side of the center bar
observed [12].

For a more detailed analysis of the asymmetric diffra
tion behavior, we have to analyze the structure of th
crystal of light: The potential is proportional to the ligh
intensity, and is therefore a periodic sinusoidal function fo
our standing light wave. A superposition of a far-detune
(refractive) and a resonant (absorptive) standing wave w
an arbitrary spatial phase leads to a complex potent
[13],

V sxd ­ af1 1 cossGxdg 1 ibf1 1 cossGx 1 fdg . (2)

Here, the parametersa andb describe the strength of the
real and the imaginary potential and are proportional
the intensities of the detuned and resonant light field
respectively, andf is the spatial phase between the tw
fields. In our case of two counterpropagating light wave
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the grating vector$G is given by $G ­ 2$kL, where$kL is the
wave vector of the light [10].

A very basic principle in diffraction theory is that the
Fourier transform of the potential determines the scatte
ing amplitude in the corresponding diffraction peaks. In
our case, the Fourier transform of the potential is

V skd ­ sa 1 ibdd0,k 1 sa 1 ibesifdddG,k

1 sa 1 ibes2ifddd2G,k

­ Fs0dd0,k 1 FsGddG,k 1 Fs2Gdd2G,k .
(3)

Kinematic diffraction theory, which is applicable in
the weak scattering limit, states that the squared absolu
value of the Fourier amplitudes is proportional to the
efficiency of diffraction at an order with the corresponding
momentum transfers0, h̄G, 2h̄Gd. Therefore, the values
of jFsGdj2 andjFs2Gdj2,

jFsGdj2 ­ a2 1 b2 2 2ab sinf ,

jFs2Gdj2 ­ a2 1 b2 1 2ab sinf ,
(4)

are proportional to the intensities of the respective Brag
peaks. Friedel’s law states thatjFsGdj2 ­ jFs2Gdj2
(symmetric diffraction) [14]. However, this is only true
for f ­ 0, p , 2p , . . ., corresponding to the cases where
the two crystals are either exactly in phase orp out of
phase. This situation appears, for example, in the ca
of a cosine potential, since cossGxd , eiGx 1 e2iGx . On
the other hand, a maximal difference betweenjFsGdj2 and
jFs2Gdj2 arises if the phase difference ispy2 or 3py2.
For a ­ b the potential is proportional to eithereiGx or
e2iGx , and thus a momentum transfer is possible only i
the 1G or 2G directions, respectively. Consequently
the diffraction efficiency for conjugate diffraction orders
is maximally asymmetric.

Our experimental results for the Bragg diffraction
efficiencies at various phases between the two crysta
are summarized in Fig. 4. The two curves in the uppe
graph show the number of atoms diffracted at the11
and 21 Bragg orders, respectively. At the intersection
points, the diffraction is symmetric. These points ar
at the predicted spatial phase positions of0, p, 2p,
where the absolute values of the Fourier componen
[Eq. (4)] are equal. Our simple argument with the Fourie
coefficients predicts that the two graphs should be tw
sine waves which arep out of phase. As stated above,
the description is only valid in the regime of weak
scattering. For stronger scattering, as in our experimen
situation, a full integration of the Schrödinger equation i
more appropriate. This is usually done in the framewor
of the theory of dynamical diffraction, which treats
the wave field in the periodic potential as a coheren
superposition of all scattered wavelets [15]. The resul
of such a numerical calculation are shown in the lowe
graph of Fig. 4, and explain the deviations from the
purely sinusoidal intensity oscillations as observed in ou
experiment.
3329
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FIG. 4. Diffracted atoms in the two conjugates11d and
s21d Bragg orders as a function of the relative spatial phas
between the two superposed light fields. The upper grap
shows our experimental results (the solid and the broken lin
used as guides for the eyes). The error of the relative pha
determination (x axis) is less than6py30. At relative phases
of multiples of p, the diffraction is symmetric. For all other
phases the number of atoms in the two orders is different. Th
indicates a violation of Friedel’s law. The lower graph show
the results of an exact calculation using dynamical diffractio
theory with our experimental parameters, reproducing th
observed deviations from purely harmonic functions predicte
by the simple kinematic theory. The different amplitudes in th
two experimental curves are not reproduced in the calculation
They are probably due to a not completely parallel alignmen
of the collimation slits and the mirror surface.

In conclusion, we have shown that Friedel’s law ca
be broken for atoms moving in crystals of light. Simi-
larly to the case of light optics, the basic reason for th
behavior results from the specific diffraction properties o
absorptive and refractive index crystals. In atom optic
as well as in photon optics, the scattering processes
absorptive and refractive index structures are fundame
tally different. The diffraction at a phase structure canno
be modeled by any combination of absorptive structure
alone, and vice versa. This demonstrates the analogy b
tween matter wave diffraction and light wave diffraction
down to a very fundamental level, which is based on th
validity of the Kramers-Kronig relations. Our experimen
shows that atoms moving in crystals of light are a ver
versatile model system to study in detail the propagatio
phenomena in periodic structures.
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