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Phase-Space Approach to the Tunnel Effect: A New Semiclassical Traversal Time
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We determine the semiclassical coherent-state propagator for a particle going through one
dimensional evolution in a simple barrier potential. The described semiclassical method makes use o
complex trajectories which, by its turn, enables the definition of (real) traversal times in the complexified
phase space. We then discuss the behavior of this time for a wave packet whose average energy
below the barrier height. [S0031-9007(97)04310-X]
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One of the most interesting questions [1] in gene
physics concerns the amount of time a particle spe
during its movement through a potential barrier. The su
ject has been considered controversial given the variet
methods and alternative approaches trying to give an
swer to that question. In fact the very meaning of it
debatable [2], since the notion of trajectory is devoid
meaning in quantum mechanics or, if it makes any sen
it bears no resemblance to the classical one to which
concept of time is so intimately attached.

Theoretical proposals of tunneling times can be o
tained by using path integral methods which constitu
one of the possible approaches. In general it is based
some kind of extension to the quantum domain of the cl
sical relation,

DV ­
Z tf

ti

dt
Z

V
dfx 2 xstdgdx , (1)

in which the transition timeDV is the time that a particle
moving according to the pathxstd, spends in the spac
region V from ti to tf . This relation, if applied in the
form of a functional, leads to some interesting resu
[3], but the appearance of imaginary times complicates
physical interpretation. We also remark that alternat
views of quantum mechanics [2,4] seemingly provide
direct treatment to the question, being also based on
notion of trajectory.

The semiclassical method described here [5,6] is ba
on the stationary approximation of the coherent-st
propagator,

Ksz00, z0, Td ­ kz00je2iĤTy h̄jz0l , (2)

where Ĥ is the Hamiltonian operator andT is the total
evolution time between the harmonic oscillator cohere
states labeled by

z00 ­
1

p
2

√
q00

b
1 i

p00

c

!
, z0 ­

1
p

2

√
q0

b
1 i

p0

c

!
,

(3)
whereb andc are, respectively, the position and mome
tum uncertainties conveniently chosen so thatbc ­ h̄.
The dynamics generated by the present semiclassica
proximation also depends on these parameters [7].
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The stationary phase approximation of (2) results
a new classical dynamics governed by Hamilton-lik
equations

ih̄ Ùu ­
≠H̃
≠y

, ih̄ Ùy ­ 2
≠H̃
≠u

, (4)

where

u ­
1

p
2

µ
q
b

1 i
p
c

∂
, y ­

1
p

2

µ
q
b

2 i
p
c

∂
, (5)

and H̃ ­ kzjĤjzl. The solutions of (4) contributing to
(2) satisfyus0d ; u0 ­ z0 and ysT d ; y00 ­ zp00, while
ys0d ­ y0 and usT d ­ u00 are defined by the dynamics
[8]. These correspond to stationary trajectories existing
a complex phase space, where position and momentum
complex valued quantities. The approximated propaga
K̃ is written in the form

K̃ ­
X

all paths

p
A exp

∑
i

h̄
S 1

i

2h̄
I 1

p

4
s

∏
, (6)

where

A ­
1
h̄

Ç
≠2S

≠u0≠y00

Ç
expf2jz0j2 2 jz00j2g , (7)

S ­
Z T

0
dt

∑
ih̄
2

sy Ùu 2 Ùyud 2 H̃

∏
2

ih̄
2

sy00u00 1 y0u0d ,

(8)

I ­
Z T

0

≠2H̃
≠u≠y

dt , (9)

and s accounts for the phases ofA. The termS is
the complex action, the quantityI containsh̄ corrections
and it is necessary to correctly treat low energy stat
[7]. In Eq. (6) all complex trajectories satisfying the sam
boundary conditions (3) must be included. The validity o
(6) hinges upon the value of̄h. Ideally the approximation
is thoroughly valid in the classical limit, that is, if̄h ! 0.
It is indeed exact for certain simple systems (quadra
Hamiltonians) and accurate for others [8]. The proble
here is to know whether complex trajectories can also
© 1997 The American Physical Society 3323
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t

used as useful and accurate tools in determining tunnel
amplitudes.

For this task, we apply the method to calculate th
semiclassical time evolution of an initially coherent wav
packet launched against a simple barrier of heightV0 ­
10.0 and widtha ­ 4.0 located between2ay2 anday2.
Writing explicitly q ­ x1 1 ip2 andp ­ p1 1 ix2 and
using the analyticity of the smoothed̃H, Eqs. (4) become
equivalent to Hamilton’s equations forx1, p2, p1, and x2
[8] governed by the real part of̃H. In the present case, the
dynamics generated by (4) are those of a particle govern
by the Hamiltonian

RefH̃g ­
1
2 p2

1 2
1
2 x2

2 1 RefṼ sx1, p2dg , (10)

where

RefṼ sqdg ­ p21y4b21y2
Z `

2`

e2sx2qd2yb2

V sxd dx , (11)

and Re stands for the real part. This is the comple
fied smoothed version of the barrier potential. Notice th
RefṼ sx1, p2 ­ 0dg represents a broader but lower poten
tial barrier.

If we fix z0, the map in z of jKsz, z0, T dj2 gives
phase-space information about the evolved system. T
exact calculation ofKsz, z0, T d using barrier eigenstates
Cksxd [9] provides elements of comparison with th
semiclassical version. The exact propagator is given b

Ksz, z0, T d ­
Z `

2`

Cp
k,z0 Ck,ze2iEkTy h̄ dk , (12)

where

Ck,z ­
Z `

2`

Cksxd kz j xl dx, Ek ­
h̄2k2

2
, (13)

and

kx j zl ­
e2ipqy2 h̄
p

p1y2b
exp

∑
2

sx 2 qd2

2b2
1 i

px
h̄

∏
. (14)

Figure 1 shows two complex trajectories in thex1-p2

plane together with the equipotential lines of RefṼ sx1, p2dg
for a wave packet whose initial average energykEl ­
p2y2 , V0. Both trajectories connect phase-space poin
for which q0 ­ 27.0, p0 ­ 4.0, q00 ­ 7.0, b ­ 1.0, c ­
1.0, andT ­ 3.7. The final momenta are, however, differ
ent. The trajectory labeled byp00 ­ 5.0 gives the largest
contribution to the propagator amplitude atT ­ 3.7 as
shown later. Such trajectory lies completely outside t
real plane (the linep2 ­ 0). In Fig. 2 contour plot maps
of jKsz00, z0, T dj2 for a propagated coherent state withq0 ­
27.0, p0 ­ 4.0, b ­ 1.0, andc ­ 1.0 are shown at the
time T ­ 3.6. The semiclassical result (6) is shown in (a
and the exact one (12) in (b). There is a remarkable agr
ment of the semiclassical calculation with the exact on
For each point in phase space in the case (b), a comp
trajectory was determined and its contribution in the prop
gator was calculated. AsT increases, the probability dis-
3324
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FIG. 1. Equipotential lines of RefṼ sx1, p2dg and complex
trajectories withq0 ­ 27.0, p0 ­ 4.0, q00 ­ 7.0, andT ­ 3.6
for different final momenta (V0 ­ 10.0 anda ­ 4.0).

tribution moves to the right. ForT ­ 3.6, the maxi-
mum probability corresponds to the pointq00 . 6.5 and
p00 . 5.0. At T ­ 3.7, the maximum is approximately
at q00 ­ 7.0, the point for which the stationary trajectory
is shown in Fig. 1. As one can see, in this casesp0 ,p

2V0 d, the maximum is given by a complex trajectory. If
the initial momentum were increased, the corresponding
most contributing complex trajectory would approximate
the real one. In the limitp0 ! `, the initial packet would
be free and the approximation exact (quadratic Hamilton-
ian). One also notes that the final maximum is such tha
kp00l . kp0l which corresponds to the already known phe-
nomenon [10] of barrier induced acceleration. The barrier
acts like a filter through which high energy components are
preferably passed.

FIG. 2. Isoprobability curves ofjKsz00, z0, Tdj2 in the z00 space
for an initial state withq0 ­ 27.0, p0 ­ 4.0, b ­ 1.0, and
c ­ 1.0 at T ­ 3.6. (a) Semiclassical calculation, (b) exact
calculation (V0 ­ 10.0 anda ­ 4.0). The level curves go from
zero to one at steps of 0.05.
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Having thus established the accuracy of the semicla
sical method, we can proceed to the determination of tr
versal times as defined by complex trajectories. Resortin
to Eq. (1), we extend the definition of traversal times t
the complex space and define, for any practical purpose
the regionV given by jx1j , ay2 as the potential limits
in the x1-p2 plane. It is straightforward to calculate for a
given trajectory the timeDVsz00, z0, T d, which is the differ-
ence between the entrance and exit times in the definedV

region for that trajectory. In the examples of Fig. 1, the
trajectory labeled byp00 ­ 4.0 has DV ­ 1.673, while
the one forp00 ­ 5.0 hasDV ­ 1.654. If we admit a free
movement fromq00 ­ 27.0 to q ­ 22.0 with p0 ­ 4.0
and fromq ­ 2.0 to q00 ­ 7.0 with p00 ­ 5.0, the total
time givest ø 2.25, the difference of which with respect
to T ­ 3.7 is D ø 1.45. This value approximates very
well the same value of 1.65 obtained by complex trajecto
ries. So it is clear that, as well as the movement in pha
space described byKsz00, z0, Td is concerned, there is a
delay of the transmitted packet together with an increa
of the average final momentum. More information abou
DV is obtained if we introduce averages. The most prob
able time for the system to go fromz0 to z00 is given by

kT l ­ N 21
Z `

0
T jKsz00, z0, Tdj2 dT , (15)

with

N ­
Z `

0
jKsz00, z0, T dj2 dT , (16)

which is the average total time. Similarly the time

kDVl ­ N 21
Z `

0
DVjKsz00, z0, T dj2 dT (17)

is the average transition time within the regionV.
In Fig. 3 we show the “isocronous” lines of the averag

times (17) for a part of thez00 plane shown in Fig. 2. In
(17), the limits were set equal totmin ­ 2.0 andtmax ­
5.5 for which jKsz00, z0, T dj2 is sufficiently close to zero.
Then, for each integral element inT, the propagator
and DVsz00, z0, T d were calculated. This figure gives the
values of q00 and p00 for which the initial state with
q0 ­ 27.0, p0 ­ 4.0, c ­ 1.0, andb ­ 1.0 has spent the
same time within the barrier. As one can see, the avera
traversal time increases withp00, that is, the larger the final
momentum, the longer the time the packet spends in t
potential region. There is also a weaker dependence
the finalq00, which shows that the farther the final point,
the larger the value ofDV. This shows that there is still
a residual interaction between the particle and the barri
due to both the width of the packet and the smoothe
barrier in the studied region. A detailed analysis of th
role of the widthb and other barrier parameters, as wel
as comparisons between the traversal time proposed h
and other definitions [1], will be published elsewhere.
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FIG. 3. Isocronous curves ofkDVsz0, z00dl for the initial wave
packet withq0 ­ 27.0, p0 ­ 4.0, b ­ 1.0, andc ­ 1.0 (V0 ­
10.0 anda ­ 4.0).

In summary, we have shown that the present sem
classical approximation for the coherent-state propagato
Ksz00, z0, T d leads to accurate calculations (with respect to
the exact result). This approximation makes use of sta
tionary trajectories which exist in a complexified phase
space, but which propagate in real time. In this new
space, the barrier is complex valued and smoothed. A
new traversal time is then simply defined as the time spen
in the potential region by the particle moving according to
the complex trajectory from the initial positionz0 to z00

during the whole timeT.
As a final remark we recall that Gaussian wave pack

ets of minimum uncertainty are the closest quantum rep
resentations of classical particles. Therefore, the time
measured along the related classical trajectories contribu
ing to their evolution must be relevant in the semiclassica
limit. Of course it is only in this limit that the concept of
classical trajectories, and the very concept of time alon
them, makes any sense. We have shown here that the tim
spent by the trajectories in the barrier region can be com
puted even for average energies below the barrier heigh
constituting a sensible candidate for a tunneling time.
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