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Phase-Space Approach to the Tunnel Effect: A New Semiclassical Traversal Time
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We determine the semiclassical coherent-state propagator for a particle going through one-
dimensional evolution in a simple barrier potential. The described semiclassical method makes use of
complex trajectories which, by its turn, enables the definition of (real) traversal times in the complexified
phase space. We then discuss the behavior of this time for a wave packet whose average energy is
below the barrier height. [S0031-9007(97)04310-X]

PACS numbers: 03.65.Sq

One of the most interesting questions [1] in general The stationary phase approximation of (2) results in
physics concerns the amount of time a particle spenda new classical dynamics governed by Hamilton-like
during its movement through a potential barrier. The subequations
ject has been considered controversial given the variety of > -

. . . . oH . oH
methods and alternative approaches trying to give an an- huy = —, thy = ——, 4)
swer to that question. In fact the very meaning of it is v Ou
debatable [2], since the notion of trajectory is devoid ofwhere

meaning in quantum mechanics or, if it makes any sense, 1 /(g p 1 (q P
it bears no resemblance to the classical one to which they = NG <; + ¢ —>, v = NG <; - —), (5)
concept of time is so intimately attached. 2 ¢ 2 ¢

_Theoretical_ proposa_ls of tunneling times_ can be_ob-andg — (z|H|z). The solutions of (4) contributing to
tained by using path integral methods which constltutqz) satisfyu(0) = u' = 7/ and v(T) = v" = 7", while
one of the possible approaches. In general it is based 90) = v’ and u(T) = u" are defined by the dynamics
some kind of extension to the quantum domain of the clasig). " These correspond to stationary trajectories existing in

sical relation, . a complex phase space, where position and momentum are
I = complex valued quantities. The approximated propagator
= ft,- dat fsz 8lx = x(0)ldx, @) K is written in the form

in which the transition time\  is the time that a patrticle, . L . -
moving according to the pathi(r), spends in the space K = > ﬁexp{ﬁ S+ wit T U] (6)
region Q from 7; to 77. This relation, if applied in the all paths

form of a functional, leads to some interesting resultswhere
[3], but the appearance of imaginary times complicates its

physical interpretation. We also remark that alternative A = 1 ‘ ) exd -2/ = 12"1?] 7)
views of quantum mechanics [2,4] seemingly provide a ho| ou'dv” ’
direct treatment to the question, being also based on the T i . i
notion of trajectory. S = [ dt[—(vzk — Yu) — H} - —@"" + V'),

The semiclassical method described here [5,6] is based 0 2
on the stationary approximation of the coherent-state (8)
propagator, ) Y

"o _ (M ,—tHT/h| 1 -
KGT) = eI, @) 1- [ S ©

where A is the Hamiltonian operator and is the total )
evolution time between the harmonic oscillator coherenfnd o accounts for the phases ol. The termS is

states labeled by the complex action, the quantity containsz corrections
1 " " 1 / / and it is necessary to correctly treat low energy states
"= — (q— + p—) = — (q— + 1 p—), [7]. In Eq.(6) all complex trajectories satisfying the same
Va\b ¢ v2\ b ¢ boundary conditions (3) must be included. The validity of

(3) () hinges upon the value @f. ldeally the approximation
whereb andc are, respectively, the position and momen-is thoroughly valid in the classical limit, that is, if — 0.

tum uncertainties conveniently chosen so that= 7. It is indeed exact for certain simple systems (quadratic
The dynamics generated by the present semiclassical aptamiltonians) and accurate for others [8]. The problem
proximation also depends on these parameters [7]. here is to know whether complex trajectories can also be
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used as useful and accurate tools in determining tunneling
amplitudes.

For this task, we apply the method to calculate the
semiclassical time evolution of an initially coherent wave
packet launched against a simple barrier of height=
10.0 and widtha = 4.0 located between-a/2 anda/2.
Writing explicitly ¢ = x; + ¢p; andp = p; + wx; and
using the analyticity of the smoothéd, Egs. (4) become
equivalent to Hamilton’s equations fat, p,, p1, and x;

[8] governed by the real part &. In the present case, the
dynamics generated by (4) are those of a particle governed
by the Hamiltonian

Rd:H] = %p% — %x% + Re[V(thz)],

>

(10)

where

RAT(Q)] = o /b1 f

—oo

FIG. 1. Equipotential lines of HR&(x,p,)] and complex
trajectories withg’ 7.0, p' =40, ¢" =170, andT = 3.6
for different final momentay(, = 10.0 anda = 4.0).

oo

e Py () dx, (11)

and Re stands for the real part. This is the complexi-

fied smoothed version of the barrier potential. Notice thaffibution moves to the right. Fof" = 3.6, the maxi-

RV (x1, p» = 0)] represents a broader but lower poten-mum probability corresponds to the poigt = 6.5 and

tial barrier. p” =50. At T = 3.7, the maximum is approximately
If we fix z/, the map inz of |K(z,z,T)|* gives at q" = 7.0, the point for which the stationary trajectory

phase-space information about the evolved system. ThHE shown in Fig. 1. As one can see, in this cépé <

exact calculation ofK(z,z’,T) using barrier eigenstates +2Vo), the maximum is given by a complex trajectory. If

W, (x) [9] provides elements of comparison with the
semiclassical version. The exact propagator is given by

K(z,7/,T) = f CiyCrze BT Mgk, (12)
where
* h2k?
Ck,z = f ‘I’k(x) <Z|x>dx, Ek = T, (13)
and
e il G —a? | px
= — -2 4+ = |.
(x|z) N ex;{ % . } (14)

Figure 1 shows two complex trajectories in the p>
plane together with the equipotential lines of Réx,, p»)]
for a wave packet whose initial average enef@y) =

p?/2 < V,. Both trajectories connect phase-space points

for whichg' = —=7.0, p' =4.0,9¢" =7.0,b =1.0,¢c =
1.0, andT = 3.7. The final momenta are, however, differ-
ent. The trajectory labeled by” = 5.0 gives the largest

contribution to the propagator amplitude &t= 3.7 as

shown later. Such trajectory lies completely outside the

real plane (the lingp, = 0). In Fig. 2 contour plot maps
of |K(z", 7/, T)|? for a propagated coherent state wjth=
-7.0, p' = 4.0, b = 1.0, andc = 1.0 are shown at the
timeT = 3.6. The semiclassical result (6) is shown in (a)

the initial momentum were increased, the corresponding
most contributing complex trajectory would approximate

the real one. In the limip’ — o, the initial packet would

be free and the approximation exact (quadratic Hamilton-
ian). One also notes that the final maximum is such that
(p"y > (p')y which corresponds to the already known phe-

nomenon [10] of barrier induced acceleration. The barrier
acts like a filter through which high energy components are
preferably passed.

6.0

and the exact one (12) in (b). There is a remarkable agree-

ment of the semiclassical calculation with the exact one

For each point in phase space in the case (b), a compl
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FIG. 2. Isoprobability curves diK(z",z', T)|* in the z” space
for an initial state withg’ = —7.0, p’ = 4.0, b = 1.0, and
&=10at T =36 (a) Semiclassical calculation, (b) exact

trajectory was determined and its contribution in the propacajculation ¢, = 10.0 anda = 4.0). The level curves go from

gator was calculated. AEincreases, the probability dis-
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zero to one at steps of 0.05.
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Having thus established the accuracy of the semiclas-
sical method, we can proceed to the determination of tra- 55+ 227
versal times as defined by complex trajectories. Resorting
to Eq. (1), we extend the definition of traversal times to 221
the complex space and define, for any practical purposes,
the regionQ) given by|x;| < a/2 as the potential limits
in the x;-p, plane. It is straightforward to calculate for a

2.32

//

50 2.17

given trajectory the timé o (z”, z/, T), which is the differ- 3 N
ence between the entrance and exit times in the defihed 45 | 2.07 1
region for that trajectory. In the examples of Fig. 1, the 2.02
trajectory labeled byp” = 4.0 has Aq = 1.673, while

the one forp” = 5.0 hasAq = 1.654. If we admit a free 40 |

movement fromg” = —7.0 to ¢ = —2.0 with p/ = 4.0 L9,

and fromg = 2.0 to ¢” = 7.0 with p” = 5.0, the total

time givesr = 2.25, the difference of which with respect

to T =3.7is A = 1.45. This value approximates very 355 65 70 .

well the same value of 1.65 obtained by complex trajecto- ) ’ Q” ) )

ries. Soitis clear that, as well as the movement in phase

space described b¥(z”,z/,T) is concerned, there is a FIG. 3. _Iso?ronous cur/ves @i\ (', z")) for the initial wave

delay of the transmitted packet together with an increas g%ket withg’ = —7.0, p' = 4.0, = 1.0, ande = 1.0 (Vo =
. . . .0 anda = 4.0).

of the average final momentum. More information about

Ag is obtained if we introduce averages. The most prob-

able time for the system to go fropito z” is given by

i

In summary, we have shown that the present semi-
classical approximation for the coherent-state propagator
K(z",7',T) leads to accurate calculations (with respect to
the exact result). This approximation makes use of sta-

Ty = N1 f TIKG", . T)2dT,  (15)
0

with tionary trajectories which exist in a complexified phase
o space, but which propagate in real time. In this new

N = f |K(z",z/,T)*dT, (16)  space, the barrier is complex valued and smoothed. A

0 new traversal time is then simply defined as the time spent

which is the average total time. Similarly the time in the potential region by the particle moving according to

" the complex trajectory from the initial positiofi to z”
(Ag) = j\[*lf AolK(Z", 7, T)*dT (17)  during the whole timé.

0 As a final remark we recall that Gaussian wave pack-
ets of minimum uncertainty are the closest quantum rep-
resentations of classical particles. Therefore, the times
measured along the related classical trajectories contribut-
ing to their evolution must be relevant in the semiclassical
limit. Of course it is only in this limit that the concept of
classical trajectories, and the very concept of time along
and Aq (2", 7', T) were calculated. This figure gives the them, makes any sense. We have shown here that the time

values of ¢” and p” for which the initial state with spent by the trajectories in the barrier region can be com-
= 70, p' = 40,c = 1.0, andb = 1.0 has spent the puted even for average energies below the barrier height,

same time within the barrier. As one can see, the averag%onsmUting a sensible candid.ate fo_r a tunneling time.
traversal time increases wigl’, that is, the larger the final The authors acknowledge financial support from CNPq,

momentum, the longer the time the packet spends in thEAP.E”SP’ ?(nd F:NdEP' One of ﬂ;e auerle(AIIDL.FXH}I) es-
potential region. There is also a weaker dependence d(;\ecf y ac n\ov;/)e ges SLépp?Ert rgmd SNS P( | nd
the final¢”, which shows that the farther the final point, ¢ AMParo a resquisa do stado de Sdo Paulo) under

the larger the value oA. This shows that there is still Contract No. 932490-0.

a residual interaction between the particle and the barrier

due to both the width of the packet and the smoothed

barrier in the studied region. A detailed analysis of the 1] £ H. Hauge and J. A. Stevneng, Rev. Mod. PH/.917
role of the widthb and other barrier parameters, as well (1989); R. Landauer and Th. Martin, Rev. Mod. Phgs.
as comparisons between the traversal time proposed here 217 (1994), and references therein.

and other definitions [1], will be published elsewhere. [2] C.R. Leavens, Found. Phy25, 229 (1995).

is the average transition time within the regifn

In Fig. 3 we show the “isocronous” lines of the average
times (17) for a part of the” plane shown in Fig. 2. In
(17), the limits were set equal t,;,, = 2.0 and 7, =
5.5 for which |K (2", z/, T)|? is sufficiently close to zero.
Then, for each integral element if, the propagator
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