VOLUME 79, NUMBER 17 PHYSICAL REVIEW LETTERS 27 OTOBER 1997
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In this paper we study a model quantum regisiermade of N replicas (cells) of a given finite-
dimensional quantum system S. Assuming that all cells are coupled with a common environment
with equal strength we show that, fof large enough, in the Hilbert space # there exists a linear
subspacé”y which is dynamically decoupled from the environment. The staté&Syirevolve unitarily
and are therefore decoherence-dissipation free. The dpaceealizes a noiseless quantum code in
which information can be stored, in principle, for an arbitrarily long time without being affected by
errors.  [S0031-9007(97)04311-1]

PACS numbers: 89.70.+c, 03.65.Fd, 42.50.Dv

Since the early days of quantum computation [1] thetum coherence. The idea is that, in the presence of such
ory it has been clear that maintaining quantum cohera “coherent” environmental noise, one can design states
ence in any computing system is an essential requiremestiat are hardly corrupted rather than states that can be
in order to fully exploit the new possibilities opened easily corrected. In other words, the present approach
by quantum mechanics. This issue is known as theonsists in gassive(i.e., intrinsic) stabilization of quan-
decoherenceproblem [2]. Indeed, any real-life device tum information, and in this sense it is complementary
unavoidably interacts with its environment, which is,{5 EC. The resulting codes could be calledor avoid-
typically, made by a huge amount of uncontrollable de<ng. Furthermore, from the broader point of view of the
grees of freedom. This interaction causes a corruption qineory of open guantum systems, our result shows a sys-
the information stored in the system as well as errors iRamatic way of building nontrivial models in which dy-
computation steps that eventually lead to wrong Outputs,mica| symmetry allows unitary evolution of a subspace
?crli?t;f itireaﬁgi)sg;t;/liviﬁp{:cl);scsri]ce;l fgg;\r/)etjrt(;%?r']n%ss‘:ghrg_' while the remaining part of the Hilbert space gets Strongly

' dundancy in encoding information ’b mean entangled with the environment. In the following we first
2?rtthéosge-c;;?ecbrrgr correcting go de{ECC) ,In{hese Soriefly recall the basic mechanism of decoherence. if
' I7—[5,5'-[3 denote, respectively, the system and the envi-

schemes—pioneered in [3] and raised to a high Ieveronment Hilbert spaces, the total Hilbert space is given
of mathematical sophistication in [4]—information is en- by the tensor productd = Hs ® Hjy. Let ps (ps)

codd i s sibpace code) of el Hibr, 1 ) e < Ena
Y pa = 0,tr(pe) = 1, = S,B). According to quan-

tion with the environment can be detected and corrected. . . k
The essential point is that the detection of errors, if the um mgchanics, _time evolu_tion Ef the ove_rall (qlqsed)
belong to the class of errors correctable by the giver%yStem is unitary; therefore, jf(0) = ps ® pj is the 'T'
code, should be performed without gaining any informaial state, ELhen for any = 0 one hasp(r) = U;p(0)U/,
tion about the actual state of the computing system priofU; ' = U/ ). The induced (Liouvillian) evolution ot
to corruption. Otherwise, this would result in a further (open) is given byL/” : ps — tr®p (1), where tf denotes
decoherence. The ECC approach can thus be considerpartial trace ovetHg. The crucial point is that, even if
as a sort ofactive stabilization of a quantum state in ps is a pure statéps = ps), in a very short time it gets
which, by monitoring the system and conditionally car-entangled with the bath and becomes mixgd # ps).
rying on suitable operations, one prevents the loss ofypically, in a suitable basis, the off-diagonal ele-
information. The typical system considered in quantum-ments of pg behave like exp-t/7pe;). The energy
information context is av-qubit registerR made of N liThdo IS @ measure of the rate at which the information
replicas of a two-level system S (the qubit). In the ECCloss occurs. If an EC strategy is not useg.., sets an
literature, once more in analogy with the classical caseypper bound to the duration of any reliable computation.
it is assumed that each qubit & is coupled with an Notice that this mechanism, due to quantum fluctuations,
independent environment. is active at finite as well as zero temperature and does
In this Letter we will show that the so far neglected not necessarily imply that dissipation takes place. Let
case in which all the qubits can be considered symus then begin by considering a simple example, impor-
metrically coupled with the same environment mighttant for quantum information applicationsA-identical
provide a new strategy in the struggle for preserving quantwo-level systems)-qubit register) coupled with single
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thermal bath described by a collection of noninteractingoe the corresponding eigenvalue. Pér> 2 (even) the

linear oscillators. The Hamiltonian of the register (bath)existence of statehp](N)> behaving like the singlety)
is given byHs = € >V, o, (Hp = 3, wkb;:rbk). The is ensured by the elementary3l representation theory.

bath-register interaction Hamiltonian is The irreducible representations (irre@®) of sl(2) are la-
N N - . beled by the total angular momentum eigenvajuand

Hp = kZl (grioi bi + frio; b + hyoibe + H.C). are (2j + 1) dimensional. Whenj = 0, one has one-
J=

(1) dimensional representations. The corresponding states
(singlets) are the many-qubit generalization [¢f. In

N N L general, given a (reducible) representatiBnof sl(2), one
lof.o;]= %6807, lo;,0;1=26ij0{. (2) has the Clebsch-Gordan (CG) decomposition in terms of

These commutation relations make clear the physicahe D;'’s

meaning of the interaction (1) in terms of elementary

processes: The first (second) term describes the excitation DN — @ n;D; (4)

of the qubit by the absorption (emission) of a bath mode =4

with probability amplitudefy; (g;). This (together with

the conjugate processes) is the dissipative part of t

interaction, responsible for the (irreversible) exchang

of energy between register and bath. The third ter

in Eq. (1) is a conservative coupling that induces pur ) .

dephqas(in)g between states corFrJesgonding to diﬁgreijgpresentatloml/z. The Clebsch-Gordan series reads for

eigenvalues of operatofgi}. Now we make the basic = 2,4, and6
physical assumption: The coupling functiogys, fx;, A 13322 =D, o Dy, D{% =D, 3D, 2D,
do not depend on the replica indgx This is a generali- 6
zation of the Dicke limit of quantum optics [5]. Such Dip,=Dse5D; 9D, @ 5D.
an assumption can be justified if the replicas have very Therefore, ifn(N) denotes the multiplicity of thg =
close spatial positions with respect to the bath coherengg representa’ltion one hag?2) = 1,n(4) = 2,n(6) = 5

i i = ikR/ . ) . - > ’ ’
length £c. Indeed if, for instancegy; = gre™ (R;} | ot ¢, be then(N)-dimensional space spanned by the
denoting the replica positions), with, not negligible singlets: It is immediate—by reasoning as in fie= 2

for k = §El’ one has to impose’™ = 1, a being the age” 4 verify that, ify™) € Cy thenV|yz) € Hj,
typical distance between the replicas. In other termsg ., hasH; |4 ™) ® |y = 0. From this property comes
in (1) the systems have to be coupled only with bat

g ith 1 he whol iitoni Nhe following result:
modes withk < a~". Now the whole Hamiltonian — rhegrem 1 —Let M, be the manifold of states built
Hsg = Hs + Hp + H;, can be written by means of

' =5 Rl (™
the global operatorss® = 3%, of(a = *,z). In %ert?he sn;glet SPQC_@;NI- blft[r)1 t%u Ru"ﬁa s>L<’l’ij | f
particular, the interaction reads v, then for any initial bath statp; one hasl;"(p) =

The operator$o;*} spanN local s(2) algebras

h@e integen; being the multiplicity with whichD; occurs

dn the resolution ofD. The §¢’s realize a (reducible)
epresentatiod)fa/zV of sl(2) in Hg = (C?)®V, that is the
-fold tensor product of the (defining) two-dimensional

p,Vt > 0.
Hy = (&SThe + fiS™hi + hS%hy + H.c). (3) Proof.zvl)-et o= Yk RexlK)(K|, and p =
k PN YA : i = 1

In such a case only the global generat§fsare effec- 25 pilti YWyl Then,itp(1) = Ulnp ® ppUT(@),
tively coupled with the environment, whereby only col- p(t) = Z piiRkik
lective coherent modes @R are involved in the system Tk Y
dynamics. Despite this simplification, the model de- ' ™) ) +
scribed byHsg is, in general, a nonintegrable interacting X UMD ) ® |KNKy; | @ (KNU ()
system, and therefore nontrivial. The exact eigenstates ) ,
of Hsg are generally given by highly entangled states = Z piiRxx|yi ") ® |K')
of R and the bath. Nevertheless, since $®s span ij.K'K
an algebra isomorphic with (&), for N even,one can X <¢j(.N)| ® (K|e Ex~Ex)t (5)

build a family of eigenstates affsg given by simple )
tensor products For N = 2 let us consider the singlet @nd taking the trace over the bath one gets

state|y) = 271/2(|01) — |10)) (in an obvious binary no- _ L Ny (V)
tation): sinceS®|y) = 0,(a = =+, z), one has that foev- P % pijli ) Wl
ery |z) € Hp the statdy) ® |p) is annihilated by the ‘ ,
interaction Hamiltonian. Moreover, it is &sg eigen- X Z Riige "Ev BB KTY (K|
state if [p) is a{{B eigenstate, namelylyz) has the K'K
form y) = [1; b4,10)s = |K), whereK = (ki,..., k) — ™y (™) -
J ! ’ > Pi '701 ><d/ | R P (6)
denotes an tuple of wave vectork (n € N). Let Eg % / ! ; KK

3307



VOLUME 79, NUMBER 17 PHYSICAL REVIEW LETTERS 27 OTOBER 1997

where we used tfK')(K|) = dgxB, and X x Rxx = has the form, analog to that of Eq. (3),
terB = 1.

The result stated by theorem 1 can be rephraseg;, = Z Ta(gF Eaby + f,f‘E:{b,f + hifHu,by + H.C. ),
in the following way which emphasizes its strength: ka

In the manifold of the states ovefs there exists \yhere we have already assumed the replica symmetry
a submanifold My of fixed points (stationary states) of the coupling functions. The elementary processes
of the Liouvillian evolution. The dynamics oveMy  associated with thigl; have the same interpretation as in
is thereforea fortiori unitary. Notice that this result the qubit case. As far as our basic result is concerned the
relies only on algebra-theoretic properties and not omyssumption— physically motivated—th4tis bilinearly
any “perturbative” assumptions; in other words, it holdscoypled with the bath by the Chevalley basis operators
for arbitrary strength of the system-bath coupling. Thisgf the Al’s is not restrictive. Indeed, if one were
suggests the possibility of encoding #y decoherence- giyen as initial data not the dynamical algebfs but
free information, namely, the states oMy realize a the system operators coupled with the environment, as
n0|§eless quantum codd~or example, a (nonorthogonal) \ell as #, one could reconstructAs by closing all
basis ofC; is possible commutation relations. In the generic case the
@ _ algebra A thus generated turns out to be semisimple
lg17) = 271(11001) — 10101) + 10110 = [1010)), and acts irreducibly or{. Since the global operators
wa)} = 27'(]1001) — [0011) + [0110) — [1100)). span an algebrésomorphicwith Ag, one can use the
Ay representation theory to splif{sg = Hs ® Hp
according to the irreps afds. In the following, without
loss of generality, we letAg = sl(r + 1) and let D
denote the defining representation &g in H (d =
HmH = + 1). We need to consider the CG series of
he N-fold tensor product representation &t s in JH V.
8t has the same form of (4), the sgtbeing now the label
set for the irreps of ét + 1), andn; the multiplicity of
the irrepD;.
> : An easy way to compute the CG series is to resort
H € EndJ), we mean the m'”'m.?" Lie subalgebrq of to the Yo)l/mg )(;iagramspwhich relate the representation
g!(:]—[), such thf’ﬂ (')H € As ar_1d (!') H can be cast in theory of s{r + 1) with that of the symmetric groufSy
diagonal form (i.e., linear combination of the Cartan gen 8]. Each Young diagrany/ is associated with an irrep
erators) by means of a Lie-algebra inner automorphis f Sy. Indeed, if i) = N l¢) is a basis vector of
d: Ag — Ay (generalized Bogolubov rotation). g_[m' the f ’ lao| :JQ%, |] - defi ;
A systemS endowed with the dynamical algebr@ s , the formulas v &)= Vo)) de Ines, for any
o € Sy, by linear extension, a naturdly action over

with Chevalley basise,, e—«, ho}o=1, can be thought of oN s ; .
as a collection of elementary excitations generated ovef:[ .' The mul_t|pI|C|t|e_Sn.,- are the_ dlme_nS|ons of the
v irreps associated with/. The dimensiord; of D;

the “vacuum” by the raising operatoeg of Ag. These % . .
excitations are destroyed by the lowering generatoréS given by the number of different Young tableaux that

e, = el. The Cartan (Abelian) subalgebra spanneaone can obtain fromy, and is equal to the multiplicity

) : : f the associatedby irrep. ForN = r + 1 one finds
by the h,’s acts diagonally. The @) (qubit) case ot o N . -
corresponds tor = 1, the e,’s (e}’s) are the analog with multiplicity one, the (fundamental) antisymmetric

of o~ (o*), whereas thei,’s correspond too*. The rgpresenta_tion.DA, associated with thér + 1,1) Young
Hamiltonian can be written, in view of (ii) above, in a d|agr§1m with just one column o boxeg [we use the
diagonal form asi = 3'_, e,h,. We consider now notation(n, m) for therectangularYoung diagram withz
- La=1 Calla- . . . .
the N noninteracting replicas of. The Hilbert space rows andm columns]. D is one dimensional and given

becomesHg = H ®V, with dim(Hs) = dV. As in the by the vector,
qubit case it is useful to introduce the global operators i PN N
Xo =31, x&, wherex!, acts asx, € Ay in the ith lipay = NUV Z (=D & 1)),
. . . ogESy
factor of the tensor product, and as the identity in the
remaining factors. The operato{B,,E_,, H,} span an {|i)}'_, being a basis fotH{, and|o| denoting the parity
algebra isomorphic withAg. The global Hamiltonian of o. Now we observe that, sinci,) is a slr + 1)
of the register can be written then in terms of thesinglet one must havél,|y) = E.l) = E_,|p) = 0
generatordd,, of the Cartan subalgebra oLy asHg = (¢ =1,...,r). Therefore for|yp) any vector of Hp,
> _, €aH,. We assume that the system-bath interactiorfyrs) ® |¢5) is annihilated by the interaction Hamiltonian
couples directly the bosonic modes with the elementanand is an eigenstate éfs + Hjp if [p) is an eigenstate
excitations of the system. The interaction Hamiltonianof Hz. More generally fotv = m(r + 1),(m € N), one

Orthonormalizingzp](-4)> (j = 1,2), one generatesrmise-
lessqubit.

It is remarkable that this result can be considerably gen
eralized in many respects. In the sequel we shall discu
such generalizations with no proofs; the mathematical d
tails will be given elsewhere [6]. Basic ingredients are th
concept ofdynamical algebrg7] and the standard Lie-
algebra representation theory tools [8]. In what follows
by dynamical algebraA s of a system, with Hamiltonian

3308



VOLUME 79, NUMBER 17 PHYSICAL REVIEW LETTERS 27 OTOBER 1997

has the(r + 1, m) Young diagram with multiplicityz(N), In summary, we have shown that, for open quantum
still corresponding to one-dimensional representationsystems, made oW replicas of a given systerfi, cou-
of sl(ir + 1). Let |¢;N)>, [j =1,....,n(N)] denote the pled with a common environment in a replica-symmetric
associated vectors, then, reasoning as above, we hafgshion, one can build—for sufficiently largé—a sub-

(V) spaceCy of H ®V that does not get entangled with the

7Y ® |K)p as an eigenstate dffsg with eigenvalue ) . )
%g =>Z-| w>]f_ With thg proceduresgescribedgabove, Weenw_ronmen_t. _The whole cla_ss of (posglbly _nonllnear)
)t replica-replica interactions which lea¥&y invariant to-

have therefore built an infinite family afxacteigenstates ) X . .
gether with the replica-symmetric system-bath interac-

of the interacting Hamiltoniaffsp that is given by simple ¥ hich " ilate) i . ith
tensor products. This allows us to state straightforwardifions (Which possibly annihilat€y) is consistent witl
the following generalization of Theorem 1: this scheme. Such subspace is nothing but the singlet

Theorem 2—Let Cy — Span{|¢;N)>|j — 1) sector of the dynamical algebtd s of S, the direct sum

with N = 0modr + 1), and My the manifold of the of the one-dimensional representations’df. This ele-

; gant result allows us, in principle, to design noiseless (i.e.,
states oveCN.pBThen, ifp & My, for any statep; over dissipation-decoherence-free) quantum codes. From the
Hp one hadli’p = p.

. . oint of view of the practical implementation, the diffi-
Proof—The proof proceeds as in the qubit case. Thep ; :
code is nothing bu€'y itself. ForN = 2(r + 1), one has tulties one may expect to face with these codes depend

= . , on the limitations inherent with the code words prepara-
n(N) d_' 2 ar;fc_i a smglqubltcan bzencodgd. As :ﬁr ?S. thtehtion and on the large bath coherence length required. The
enEol ng € |C|enc¥] IS ?;r)]cfr?vﬁ[(’]vvﬁ)?(;%vi 1)?]’,:“ ‘auestion of the code stability, in the case in which the lat-
r = 1 case, oné has o : - .. ter requirement is not satisfied, can be addressed in the
(N even) from which follows, for large/, the asympltotic ¢ mework of the Liouville—von Neumann equation for-
Iolrlm IOthﬁ(lg) f: N _I 3/2 Iong}/. The I;\tter equa;]tlon malism [13]. Another open question is whether the ap-
ells us that, for a _allrge replica number, oneé Nas af,.,,qh giscussed may possibly be extended to the case
encoding efficiencyV ~' log, n(N) approximately of one

qubit per replica, whereas the fractian¥n(N) of the \glg?]g fr;[eslz I:ggrsute dimensional. Work is in progress
Hilbert space occupied by the Co_de_ i.5. vanishingly small. Discussions with R. Zecchina are acknowledged. P.Z.
In the general case, > 1, the multiplicitiesn(N) are the thanks C. Calandra for hospitality at the University of

Littlewood-Richardson coefficients [9]. i ! ;
A few important remarks extending theorem 2 follow. Modena, and Elsag-Bailey for financial support.
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