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Noiseless Quantum Codes
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In this paper we study a model quantum registerR made ofN replicas (cells) of a given finite-
dimensional quantum system S. Assuming that all cells are coupled with a common environmen
with equal strength we show that, forN large enough, in the Hilbert space ofR there exists a linear
subspaceCN which is dynamically decoupled from the environment. The states inCN evolve unitarily
and are therefore decoherence-dissipation free. The spaceCN realizes a noiseless quantum code in
which information can be stored, in principle, for an arbitrarily long time without being affected by
errors. [S0031-9007(97)04311-1]

PACS numbers: 89.70.+c, 03.65.Fd, 42.50.Dv
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Since the early days of quantum computation [1] th
ory it has been clear that maintaining quantum cohe
ence in any computing system is an essential requirem
in order to fully exploit the new possibilities opened
by quantum mechanics. This issue is known as t
decoherenceproblem [2]. Indeed, any real-life device
unavoidably interacts with its environment, which is
typically, made by a huge amount of uncontrollable d
grees of freedom. This interaction causes a corruption
the information stored in the system as well as errors
computation steps that eventually lead to wrong outpu
One of the possible approaches for overcoming such d
ficulty, in analogy with classical computation, is to re
sort to redundancy in encoding information, by mea
of the so-callederror correcting codes(ECC). In these
schemes—pioneered in [3] and raised to a high lev
of mathematical sophistication in [4]—information is en
coded in linear subspacesC (codes) of the total Hilbert
space in such a way that “errors” induced by the intera
tion with the environment can be detected and correct
The essential point is that the detection of errors, if th
belong to the class of errors correctable by the giv
code, should be performed without gaining any inform
tion about the actual state of the computing system pr
to corruption. Otherwise, this would result in a furthe
decoherence. The ECC approach can thus be conside
as a sort ofactive stabilization of a quantum state in
which, by monitoring the system and conditionally ca
rying on suitable operations, one prevents the loss
information. The typical system considered in quantum
information context is aN-qubit registerR made ofN
replicas of a two-level system S (the qubit). In the EC
literature, once more in analogy with the classical cas
it is assumed that each qubit ofR is coupled with an
independent environment.

In this Letter we will show that the so far neglecte
case in which all the qubits can be considered sym
metrically coupled with the same environment migh
provide a new strategy in the struggle for preserving qua
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tum coherence. The idea is that, in the presence of s
a “coherent” environmental noise, one can design sta
that are hardly corrupted rather than states that can
easily corrected. In other words, the present appro
consists in apassive(i.e., intrinsic) stabilization of quan-
tum information, and in this sense it is complementa
to EC. The resulting codes could be callederror avoid-
ing. Furthermore, from the broader point of view of th
theory of open quantum systems, our result shows a s
tematic way of building nontrivial models in which dy
namical symmetry allows unitary evolution of a subspa
while the remaining part of the Hilbert space gets strong
entangled with the environment. In the following we fir
briefly recall the basic mechanism of decoherence.
HS , HB denote, respectively, the system and the en
ronment Hilbert spaces, the total Hilbert space is giv
by the tensor productH ­ HS ≠ HB. Let rS srBd
be a state overHS sHBd (i.e., ra [ EndsHad, ra ­
ry

a , ra $ 0, trsrad ­ 1, a ­ S, B). According to quan-
tum mechanics, time evolution of the overall (close
system is unitary; therefore, ifrs0d ­ rS ≠ rB is the ini-
tial state, then for anyt $ 0 one hasrstd ­ Utrs0dUy

t ,
sU21

t ­ U
y
t d. The induced (Liouvillian) evolution onHS

(open) is given byL
rB
t : rS ! trBrstd, where trB denotes

partial trace overHB. The crucial point is that, even if
rS is a pure statesr2

S ­ rSd, in a very short time it gets
entangled with the bath and becomes mixedsr2

S fi rSd.
Typically, in a suitableHS basis, the off-diagonal ele-
ments of rS behave like exps2tytDecod. The energy
h̄t

21
Deco is a measure of the rate at which the informatio

loss occurs. If an EC strategy is not used,tDeco sets an
upper bound to the duration of any reliable computatio
Notice that this mechanism, due to quantum fluctuatio
is active at finite as well as zero temperature and d
not necessarily imply that dissipation takes place. L
us then begin by considering a simple example, imp
tant for quantum information applications—N identical
two-level systems (N-qubit register) coupled with asingle
© 1997 The American Physical Society
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thermal bath described by a collection of noninteractin
linear oscillators. The Hamiltonian of the register (bath
is given byHS ­ e

PN
i­1 s

z
i , sHB ­

P
k vkb

y
k bkd. The

bath-register interaction Hamiltonian is

HI ­
NX

k,i­1

sgkis
1
i bk 1 fkis

1
i by 1 hkis

z
i bk 1 H.c.d .

(1)

The operatorshsa
i j spanN local sls2d algebras

fsz
i , s6

j g ­ 6dijs
6
i , fs1

i , s2
j g ­ 2dijsz

i . (2)

These commutation relations make clear the physic
meaning of the interaction (1) in terms of elementa
processes: The first (second) term describes the excita
of the qubit by the absorption (emission) of a bath mod
with probability amplitudefki sgkid. This (together with
the conjugate processes) is the dissipative part of
interaction, responsible for the (irreversible) exchan
of energy between register and bath. The third ter
in Eq. (1) is a conservative coupling that induces pu
dephasing between states corresponding to differ
eigenvalues of operatorshsz

i j. Now we make the basic
physical assumption: The coupling functionsgkj , fkj, hkj

do not depend on the replica indexj. This is a generali-
zation of the Dicke limit of quantum optics [5]. Such
an assumption can be justified if the replicas have ve
close spatial positions with respect to the bath coheren
length jC . Indeed if, for instance,gkj ­ gkeikRj (hRjj
denoting the replica positions), withgk not negligible
for k # j

21
C , one has to imposeeika . 1, a being the

typical distance between the replicas. In other term
in (1) the systems have to be coupled only with ba
modes with k ø a21. Now the whole Hamiltonian
HSB ­ HS 1 HB 1 HI , can be written by means of
the global operatorsSa ­

PN
i­1 s

a
i sa ­ 6, zd. In

particular, the interaction reads

HI ­
X

k

sgkS1bk 1 fkS2b
y
k 1 hkSzbk 1 H.c.d . (3)

In such a case only the global generatorsSa are effec-
tively coupled with the environment, whereby only co
lective coherent modes ofR are involved in the system
dynamics. Despite this simplification, the model de
scribed byHSB is, in general, a nonintegrable interactin
system, and therefore nontrivial. The exact eigensta
of HSB are generally given by highly entangled state
of R and the bath. Nevertheless, since theSa ’s span
an algebra isomorphic with sls2d, for N even, one can
build a family of eigenstates ofHSB given by simple
tensor products. For N ­ 2 let us consider the singlet
statejcl ­ 221y2sj01l 2 j10ld (in an obvious binary no-
tation): sinceSajcl ­ 0, sa ­ 6, zd, one has that forev-
ery jcBl [ HB the statejcl ≠ jcBl is annihilated by the
interaction Hamiltonian. Moreover, it is aHSB eigen-
state if jcBl is a HB eigenstate, namely,jcBl has the
form jcBl ­

Q
j b

y
kj

j0lB ; jKl, whereK ­ sk1, . . . , knd
denotes an tuple of wave vectorsk sn [ Nd. Let EK
g
)
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be the corresponding eigenvalue. ForN . 2 (even) the
existence of statesjc

sNd
j l behaving like the singletjcl

is ensured by the elementary sls2d representation theory.
The irreducible representations (irreps)Dj of sls2d are la-
beled by the total angular momentum eigenvaluej and
are s2j 1 1d dimensional. Whenj ­ 0, one has one-
dimensional representations. The corresponding sta
(singlets) are the many-qubit generalization ofjcl. In
general, given a (reducible) representationD of sls2d, one
has the Clebsch-Gordan (CG) decomposition in terms
theDj ’s

D ≠N ­
M
j[J

njDj , (4)

the integernj being the multiplicity with whichDj occurs
in the resolution ofD . The Sa ’s realize a (reducible)
representationD ≠N

1y2 of sls2d in HS > sC2d≠N , that is the
N-fold tensor product of the (defining) two-dimensiona
representationD1y2. The Clebsch-Gordan series reads fo
N ­ 2, 4, and6

D
≠2
1y2 ­ D1 © D0, D

≠4
1y2 ­ D2 © 3D1 © 2D0,

D
≠6
1y2 ­ D3 © 5D2 © 9D1 © 5D0 .

Therefore, ifnsNd denotes the multiplicity of thej ­
0 representation, one hasns2d ­ 1, ns4d ­ 2, ns6d ­ 5.
Let CN be thensNd-dimensional space spanned by the
singlets: It is immediate—by reasoning as in theN ­ 2
case—to verify that, ifjc sNdl [ CN then;jcBl [ HB,
one hasHI jc

sNdl ≠ jcBl ­ 0. From this property comes
the following result:

Theorem 1.—Let MN be the manifold of states built
over the singlet spaceCN . If r ­

P
ij Rij jc

sNd
i l kc sNd

j j [

MN , then for any initial bath staterB one hasL
rB
t srd ­

r, ;t . 0.
Proof.—Let rB ­

P
K 0,K RK 0K jK 0l kKj, and r ­P

ij rij jc
sNd
i l kc sNd

j j. Then, ifrstd ­ Ustdr ≠ rBUystd,

rstd ­
X

ij,K 0K

rijRK 0K

3 Ustdjc sNd
i l ≠ jK 0lskc sNd

j j ≠ kKjdUystd

­
X

ij,K 0K

rijRK 0K jc
sNd
i l ≠ jK 0l

3 kc sNd
j j ≠ kKje2isEK0 2EK dt , (5)

and taking the trace over the bath one gets

rt ­
X
ij

rijjc
sNd
i l kc sNd

j j

3
X
K 0K

RK 0Ke2isEK0 2EK dt trBjK 0l kKj

­
X
ij

rijjc
sNd
i l kc sNd

j j
X
K

RKK ­ r , (6)
3307
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where we used trsjK 0l kKjd ­ dK 0KB, and
P

K RKK ­
trBrB ­ 1.

The result stated by theorem 1 can be rephras
in the following way which emphasizes its strength
In the manifold of the states overHS there exists
a submanifoldMN of fixed points (stationary states)
of the Liouvillian evolution. The dynamics overMN

is thereforea fortiori unitary. Notice that this result
relies only on algebra-theoretic properties and not
any “perturbative” assumptions; in other words, it hold
for arbitrary strength of the system-bath coupling. Th
suggests the possibility of encoding inMN decoherence-
free information, namely, the states ofMN realize a
noiseless quantum code. For example, a (nonorthogonal
basis ofC4 is

jc
s4d
1 l ­ 221sj1001l 2 j0101l 1 j0110l 2 j1010ld,

jc
s4d
2 l ­ 221sj1001l 2 j0011l 1 j0110l 2 j1100ld .

Orthonormalizingjc
s4d
j l s j ­ 1, 2d, one generates anoise-

lessqubit.
It is remarkable that this result can be considerably ge

eralized in many respects. In the sequel we shall disc
such generalizations with no proofs; the mathematical d
tails will be given elsewhere [6]. Basic ingredients are th
concept ofdynamical algebra[7] and the standard Lie-
algebra representation theory tools [8]. In what follow
by dynamical algebraAS of a system, with Hamiltonian
H [ EndsH d, we mean the minimal Lie subalgebra o
glsH d, such that (i)H [ AS and (ii) H can be cast in
diagonal form (i.e., linear combination of the Cartan ge
erators) by means of a Lie-algebra inner automorphis
F : AS ! AS (generalized Bogolubov rotation).

A systemS endowed with the dynamical algebraAS

with Chevalley basis,hea , e2a , hajr
a­1, can be thought of

as a collection of elementary excitations generated ov
the “vacuum” by the raising operatorsea of AS. These
excitations are destroyed by the lowering generato
e2a ­ ey

a . The Cartan (Abelian) subalgebra spanne
by the ha ’s acts diagonally. The sls2d (qubit) case
corresponds tor ­ 1, the ea ’s (ey

a ’s) are the analog
of s2 ss1d, whereas theha ’s correspond tosz . The
Hamiltonian can be written, in view of (ii) above, in a
diagonal form asH ­

Pr
a­1 eaha . We consider now

the N noninteracting replicas ofS. The Hilbert space
becomesHS ­ H ≠N , with dimsHSd ­ dN . As in the
qubit case it is useful to introduce the global operato
Xa ;

PN
j­1 x

j
a, where xi

a acts asxa [ AS in the ith
factor of the tensor product, and as the identity in th
remaining factors. The operatorshEa , E2a , Haj span an
algebra isomorphic withAS. The global Hamiltonian
of the register can be written then in terms of th
generatorsHa of the Cartan subalgebra ofAS asHS ­Pr

a­1 eaHa. We assume that the system-bath interacti
couples directly the bosonic modes with the elementa
excitations of the system. The interaction Hamiltonia
3308
ed
:

on
s
is

)

n-
uss
e-
e

s

f

n-
m

er

rs
d

rs

e

e

on
ry
n

has the form, analog to that of Eq. (3),

HI ­
X
ka

tasga
k Eabk 1 fa

k Ey
ab

y
k 1 ha

k Habk 1 H.c. d ,

where we have already assumed the replica symme
of the coupling functions. The elementary processe
associated with thisHI have the same interpretation as in
the qubit case. As far as our basic result is concerned t
assumption—physically motivated—thatS is bilinearly
coupled with the bath by the Chevalley basis operato
of the A

i
S ’s is not restrictive. Indeed, if one were

given as initial data not the dynamical algebraAS but
the system operators coupled with the environment,
well as H, one could reconstructAS by closing all
possible commutation relations. In the generic case th
algebraAS thus generated turns out to be semisimpl
and acts irreducibly onH . Since the global operators
span an algebraisomorphicwith AS, one can use the
AS representation theory to splitHSB ­ HS ≠ HB

according to the irreps ofAS. In the following, without
loss of generality, we letAS ; slsr 1 1d and let D

denote the defining representation ofAS in H sd ­
dimH ­ r 1 1d. We need to consider the CG series o
theN-fold tensor product representation ofAS in H ≠N .
It has the same form of (4), the setJ being now the label
set for the irreps of slsr 1 1d, andnj the multiplicity of
the irrepDj.

An easy way to compute the CG series is to reso
to the Young diagrams which relate the representatio
theory of slsr 1 1d with that of the symmetric groupSN

[8]. Each Young diagramY is associated with an irrep
of SN . Indeed, if jcl ­ ≠

N
j­1jcjl is a basis vector of

H ≠N , the formulasjcl ­ ≠
N
j­1jcss jdl defines, for any

s [ SN , by linear extension, a naturalSN action over
H ≠N . The multiplicitiesnj are the dimensions of the
SN irreps associated withY . The dimensiondj of Dj

is given by the number of different Young tableaux tha
one can obtain fromY , and is equal to the multiplicity
of the associatedSN irrep. For N ­ r 1 1 one finds,
with multiplicity one, the (fundamental) antisymmetric
representationDA, associated with thesr 1 1, 1d Young
diagram with just one column ofN boxes [we use the
notationsn, md for the rectangularYoung diagram withn
rows andm columns]. DA is one dimensional and given
by the vector,

jcAl ­ N!21y2
X

s[SN

s21djsjs ≠N
j­1 jjl ,

hjiljN
i­1 being a basis forH , andjsj denoting the parity

of s. Now we observe that, sincejcAl is a slsr 1 1d
singlet, one must haveHa jcAl ­ Eajcl ­ E2a jcl ­ 0
sa ­ 1, . . . , rd. Therefore forjcBl any vector ofHB,
jcAl ≠ jcBl is annihilated by the interaction Hamiltonian
and is an eigenstate ofHS 1 HB if jcBl is an eigenstate
of HB. More generally forN ­ msr 1 1d, sm [ Nd, one
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has thesr 1 1, md Young diagram with multiplicitynsNd,
still corresponding to one-dimensional representatio
of slsr 1 1d. Let jc

sNd
j l, f j ­ 1, . . . , nsNdg denote the

associated vectors, then, reasoning as above, we h
jc

sNd
j l ≠ jKlB as an eigenstate ofHSB with eigenvalue

EK ­
P

j vkj
. With the procedure described above, w

have therefore built an infinite family ofexacteigenstates
of the interacting HamiltonianHSB that is given by simple
tensor products. This allows us to state straightforward
the following generalization of Theorem 1:

Theorem 2.—Let CN ­ spanhjc sNd
j ljj ­ 1, . . . , nsNdj,

with N ­ 0 modsr 1 1d, and MN the manifold of the
states overCN . Then, ifr [ MN , for any staterB over
HB one hasL

rB
t r ­ r.

Proof.—The proof proceeds as in the qubit case. Th
code is nothing butCN itself. ForN ­ 2sr 1 1d, one has
nsNd ­ 2 and a singlequbitcan be encoded. As far as the
encoding efficiency is concerned, we observe that, in t
r ­ 1 case, one hasnsNd ­ N!fsNy2d!sNy2 1 1d!g21

(N even) from which follows, for largeN , the asymptotic
form log2 nsNd . N 2 3y2 log2 N . The latter equation
tells us that, for a large replica number, one has a
encoding efficiencyN21 log2 nsNd approximately of one
qubit per replica, whereas the fraction22N nsNd of the
Hilbert space occupied by the code is vanishingly sma
In the general case,r . 1, the multiplicitiesnsNd are the
Littlewood-Richardson coefficients [9].

A few important remarks extending theorem 2 follow
(i) When only the dephasing terms are present, due
the fact that the resulting model can be diagonalized
a unitary transformation in eachAS-weight space [10],
if r is a state overHSsld, thenL

rB
t r ­ r. This latter

result, in its simplest form (i.e.,r ­ 1), can be found in
[11] and [12]. Notice that this model does not take int
account the amplitude errors induced by the bath. (
We can allow also for interactionsHSS between replicas,
provided they leaveCN invariant. For example, it would
be sufficient thatAS were a symmetry algebra for
HSS. There resultsL

rB
t r ­ USstdrU

y
S std, whereUSstd ­

e2iHSSt ; therefore the Liouvillian dynamics is still unitary
but no longer trivial. (iii) SinceCN is an irreducible
SN representation space, the theorem still holds if th
Hamiltonian HS and the system operators coupled wit
the bath belong to the symmetric subspace of EndsHSd.
From the physical point of view this means that w
can allow for replica-replica and replica-bath interaction
involving many excitations (powers of theei

a ’s), provided
that all the replicas are treated symmetrically.

We expect that if the key assumption of a replica
symmetric coupling with the bath is slightly violated—
for example, the system is coupled with modes wit
wavelengths shorter than the inter-replica distance—t
proposed encodings have a low error rate, in analogy w
the “subdecoherent” states in [11].
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In summary, we have shown that, for open quantu
systems, made ofN replicas of a given systemS, cou-
pled with a common environment in a replica-symmetr
fashion, one can build—for sufficiently largeN —a sub-
spaceCN of H ≠N that does not get entangled with th
environment. The whole class of (possibly nonlinea
replica-replica interactions which leaveCN invariant to-
gether with the replica-symmetric system-bath intera
tions (which possibly annihilateCN ) is consistent with
this scheme. Such subspace is nothing but the sin
sector of the dynamical algebraAS of S, the direct sum
of the one-dimensional representations ofAS. This ele-
gant result allows us, in principle, to design noiseless (i
dissipation-decoherence-free) quantum codes. From
point of view of the practical implementation, the diffi
culties one may expect to face with these codes dep
on the limitations inherent with the code words prepa
tion and on the large bath coherence length required. T
question of the code stability, in the case in which the l
ter requirement is not satisfied, can be addressed in
framework of the Liouville–von Neumann equation fo
malism [13]. Another open question is whether the a
proach discussed may possibly be extended to the c
when H is infinite dimensional. Work is in progres
along these lines.
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