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Speciation as Pattern Formation by Competition in a Smooth Fitness Landscape
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We investigate the problem of speciation and coexistence in simple ecosystems when the competition
among individuals is included in the Eigen model for quasispecies. By suggesting an analogy between
the competition among strains and the diffusion of a chemical inhibitor in a reaction-diffusion system,
the speciation phenomenon is considered the analogous of chemical pattern formation in genetic
space. In the limit of vanishing mutation rate we obtain analytically the conditions for speciation.
Using different forms of the competition interaction we show that the speciation is absent for
the genetic equivalent of a normal diffusing inhibitor, and is present for shorter-range interactions.
[S0031-9007(97)04338-X]

PACS numbers: 87.10.+e, 02.50.-r, 05.20.-y, 82.20.Mj

In this work we address the problem of speciationtations are needed to populate newly formed niches, while
(species formation) in simple ecosystems, mirroring soméhe competition actively separates the strains into quasi-
aspects of bacterial and viral evolution. Our model carspecies. One can consider the following analogy with a
be considered as an extension of the Eigen model [1,2]Turing mechanism for chemical pattern formation. The
With respect to the latter, we introduce the competitionmain ingredients are an autocatalytic reaction process
among individuals. (reproduction) with slow diffusion (mutations) coupled

Eigen’s phenomenological theory of self-reproducingwith the emission of a short-lived, fast-diffusing inhibitor
macromolecules (or haploid organisms) illustrates thdcompetition). In this way a local high concentration of
concept of stable quasispecies, i.e., a peaked distributicautocatalytic reactants inhibits the growth in its neighbor-
of genomes around a master sequence, its width beingood, acting as a local negative interaction.
determined by mutations. In its simpler formulation, the In genetic space, the local coupling is given by the com-
various genomes have different reproductive rates, thpetition among genetically kin individuals. For instance,
logarithm of which constitutes the fitness landscape [3-assuming a certain distribution of some resources (such as
5]. The master sequence is located in corresponden@®me essential metabolic component for a bacterial popu-
of the maximum of the fitness. In general, a one tolation), then the more genetically similar two individuals
one correspondence between a given phenotype andaae, the wider the fraction of shared resources is. The ef-
genotype is assumed (no polymorphism nor age structurefects of competition on straim by strainy are modeled
The genomes are coupled by mutations and by a globdly a term proportional to the relative abundance of the lat-
constraint on the total number of individuals (constantter, p(y), modulated by a function that decreases with the
organization). One usually considers only point mutationgjenetic distance betweenandy. Another example of
(the most common ones), which correspond to a diffusiorthis kind of competition can be found in the immune re-
process in genetic space. In this way one can define thgponse in mammals. Since the immune response has a cer-
concept of distance in genetic space as the number d¢éin degree of specificity, a viral straincan suffer from
mutations needed to connect two genomes. The Eigetie response triggered by strainf they are sufficiently
model has also been studied in the context of statisticatear in an appropriate genetic subspace. Again, one can
mechanics [6—9]. think that this effective competition can be modeled by a

Epstein [10] studied the problem without consideringterm, proportional to the relative abundance of the strain
mutations; he showed that the coexistence is possible that originated the response, which decreases with the ge-
the species are self-limiting (i.e., there exists a form ofetic distance.
self-competition, modeled, for instance, by a logistic term) Although Eigen’s model is defined in a hypercubic
and coexisting species does not compete directly. On thgenetic space, and the error threshold transition rigorously
contrary, when two species are in competition (becausexists only in an infinite-dimensional space [9], the
they share some resource—an enzyme in Epstein’s casg@yoposed speciation phenomenon is independent on the
only the fittest one survives. However, he did not intro-dimension of the genetic space. We shall work therefore
duce the genetic distance among species nor presented anya linear genetic space. An instance of a similar (sub-)
evolutionary mechanism for the speciation phenomenon.space in real organisms is given by a repeated gene (say

We think that the direct competition for local resourcesa tRNA gene): a fraction of its copies can mutate, linearly
among strains, coupled with a weak mutation rate, is/arying the fithess of the individual with the “chemi-
the simplest mechanism for modeling both speciation andal composition” of the gene [11]. This degenerate case
stable coexistence in simple smooth landscapes. The mbas been widely studied (see, for instance, Ref. [12]); one
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should introduce the multiplicity of a degenerate state, We can generalize this scenario to nonlinear diffusion

which can be approximated to a Gaussian, but if ong@rocesses of the inhibitor by using the reaction-diffusion

works in the neighborhood of its maximum (the mostequation (2), with the fithesd and the kernek given by

common chemical composition) the multiplicity factors x—y

are nearly constants. Another example is given by the H(x,1) = Ho(x) — Jf K<T>P()’J) dy, (5

level of catalytic activity of a protein. A linear space has N

also been used for modeling the evolution of RNA viruses K(r) = exp(— 7] ) (6)

on Hela cultures [13]. The effect of the finiteness of ed

population, however, should imply a cutoff on the taili.e., a symmetric decreasing function ofwith K(0) =

of the distribution, due to the discreteness of the numbet. The parameters and « control the intensity of

of individuals, and thus the dependence of evolution orthe competition and the steepness of the interaction,

the initial condition (for an application of the cutoff effect, respectively.

see Ref. [13]). We do not consider here these effects. Let us consider the correspondence with the genetic
Let us start with a one dimensional “chemical” modelspace: the quantityx now identifies a genome, the

of cells that reproduce asexually and slowly diffuse (indiffusion ratew is given by mutations, and the inhibitor

real space)p = p(x,t) being their relative abundance at ¢ (which is no more a real substance) represents the

positionx and at timer. These cells constitutively emit competition among genetically related strains. The effects

a short-lived, fast-diffusing mitosys inhibiter = ¢(x,7).  of competition are much faster than the genetic drift

This inhibitor may be simply identified with some waste (mutations), so that the previous hypotheses are valid.

or with the consumption of a local resource (say oxygen)While the genetic interaction kerndéf(r) is not given

The diffusion of the inhibitor is modeled as by a diffusion process, its general form should be similar
aq 9%q to that of Eq. (6): a decreasing function of the genetic
o ~kp + D=5 — kg, (1)  distance between two strains. We shall refer to the

whereko, k;, andD are the production, annihilation, and p-independent contribution to the fitnesf(x) as the

diffusion rates ofy. static fitness I_andscape._ .
The evolutionzf the distributiop is given by Our model is thus defined by Egs. (2)—(6). We are in-
) terested in its asymptotic behavior in the limit— 0.
p _ [Ax,1) — A()]p + p a_p, (2)  Actually, the mutation mechanism is needed only to de-
at dx fine the genetic distance and to allow population of an
_ eventual niche. The results should not change qualita-
At) = [A(y, 1) p(y,t)dy. (3) tively if one includes more realistic mutation mechanisms.
The growth rated can be expressed in terms of the fithess Let us first examine the behavior of Eq. (2) In the ap-
H as sence of competitionJ(= 0) for a smooth static land-
scape and a vanishing mutation rate. This corresponds
Alx, 1) = exdH(x,1)]. (4)  to the Eigen model in one dimension: since it does not
Because of the form of Eq. (2), the distributign is  exhibit any phase transition, the asymptotic distribution
always normalized to one. The diffusion rateqfD, is  is unique. The asymptotic distribution is given by one
assumed to be much larger than The growth rated can  delta function peaked around the global maximum of the
be decomposed in two factors(x, 1) = Ag(x)A[g(x,7)],  static landscape, or more delta functions (coexistence) if
whereA, gives the reproductive rate in the absence;of the global maxima are degenerate. The effect of a small
s0A;(0) = 1. In the presence of a large concentration ofmutation rate is simply that of broadening the distribution
the inhibitor g the reproduction stops, st(») = 0. A  from a delta peak to a bell-shaped curve [14].
possible choice is While the degeneracy of maxima of the static fitness
Alx, 1) = exdHo(x) — q(x,1)]. landscape is a very particular condition, we shall show in
For i the following that in the presence of competition this is
or instance Hy(x) could model the sources of food or, : . : —
a generic case. For illustration, we report in Fig. 1 the

for algae culture, the distribution of light. ; . ; .
i S numerical computation of the asymptotic behavior of the
Since we assumed a strong separation in time scales

we look for a stationary distributiofi(x, 7) of the inhibitor Model for a possible evolutive scenario that leads to

, ) A the coexistence of three species. We have chosen a
EE}?} é:il\gyd:;etﬁghr}[?gng?(ed' This is given by a convolu- smooth static fithesgd, [see Eq. (7)] and a Gaussian

(a = 2) competition kernel. The effective fitnegs is
Gg(x, 1) = Jf ex;(— lx — y|>p(y’,) dy, almost degenerate (hege > 0 and the competition ef-

R fect extends on the neighborhood of the maxima), and this
whereJ and R depend on the parametets, ki, D. In leads to the coexistence. One could show that the curva-
the following we shall usd andR as control parameters, ture of the maxima affects the width and the height of the
disregarding their origin. quasispecies distribution in presence of mutations [14].

3303



VOLUME 79, NUMBER 17 PHYSICAL REVIEW LETTERS 27 OTOBER 1997

04 We assume that the static fithelg(x) is a symmetric
linear decreasing function except in the vicinityxof= 0,
where it has a quadratic maximum:

103 Ho(x) = (1 _ b ;> (7)

r 1+ |xl/r

o1 b {035

02 F
{025
so that close tor = 0 one hasHy(x) = —bx?/r? and
102 p for x — o, Hy(x) = b(1 — |x|/r). We have checked
numerically that the results are qualitatively independent
101 on the exact form of the static fithess, providing that it is
a smooth decreasing function.

Because of the symmetries of the problem, we have one
guasispecies at = 0 and two symmetric quasispecies
at x = =y. Neglecting the mutual influence of the

-03

04 F

-05

4 0.1

-0.6 H

0.05

07 s s 0 two marginal quasispecies, and considering #tig) =
-50 -30 0 0 30 0 K'(0) =0, K'(y/R) = —K'(—=y/r), K(0) = J, and that
the three-species threshold is givenfay= 1 andy, =
FIG. 1. Static fitnes#,, effective fitnessH, and asymptotic 0. we havep 9 Y N
distribution p numerically computed for the following values of '
parameterso = 2, u = 0.01, Hy = 1.0, b = 0.04, J = 0.6, - v B
R =10, r =3, andN = 100. b1 =2 - K(§5) = —1,
We shall now derive the conditions for the coexistence 3

of multiple species. Let us assume that the asymptotic = + K'(y) =0,

distribution is formed, for a vanishing mutation rate, by _
L delta peakpy, k = 0,...,L — 1 (or L nonoverlapping wherej = y/R, 7 = r/R, andb = b/J. We introduce
bell-shaped curves for a small mutation rate), centered dhe parameteiG = 7#/b = (J/R)/(b/r), that is the ra-

yk- The weight of each quasispeciesyis i.e., tio of two quantities, one related to the strength of in-
Ll terspecies interactiond (R) and the other to intraspecies
[ pr(x)dx = vy, Z Ye = 1. ones {/r). In the following we drop the tildes for con-
_ _ k=0 venience. Thus
The quasispecies are ordered suchygs= vy,...,= N
YL-1- ) . r—z—GeX&—Z—>=—G,
The evolution equations for the, are (w — 0) @
aPk _ Y a
Ty A — Alpe, Gz“‘lex;<— %) —
whereA(x) = exdH and
&) HH )] Ll ey Fora = 1 we have the coexistence condition
— J
H(X)—Ho(x)—JZK< R >7j~ ING)=r—-1+6G.

=0
The stability condition of the asymptotic distribution The only parameters that satisfy these equationssare

is [A(yr) — Alpx = 0, i.e., eitherA(y;) = A = const 1 and( =0, e, a flat Iano[scapeb(= 0) Wlth |nf|n|te_

(degeneracy of maxima) gr, = 0 (all other points). In fange mteracthnl( = oo). S_lnpe the coexistence region

other terms one can say that in a stable environment th@duces to a single point, it is suggested that= 1 is

fitness of all individuals is the same, independently or® Marginal case. Thus for less steep potentials, such as

the species. power law decrease, the coexistence condition is supposed
The positiony, and the weighty, of the quasispecies MOt to be fulfilled. o

are given byA(y;) = A = const anddA(x)/dxl,, = 0, For a = 2 the coexistence condition is given by

or, in terms of the fitnes#, by 22— (G+r)z+1=0,

(v =y
Ho(y) = J > K<—R ")yj = const,
j=0

J & Ve = Yj
i - 25 (B0, o
R & R J

2
Z
Grexd - <) = 1.
‘ p( 2>

One can solve numerically this system and obtain the

Let us compute the phase boundary for coexistence &2u?d?;yGC(r) Ifor trtnfel ioemstﬁnce. In the limit = 0
three species for two kinds of kernels: the exponentia{s atic fitness almost flat) one has
(diffusion) one ¢ = 1) and a Gaussian one (= 2). G.(r) =G.(0) — r (8)
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of a short-range competition induces a transition from
a single species distribution to a stable environment in
which multiple genetically distinct species are present.
The comparison of the analytical approximation with the
numerical integration of the original differential equations
is very good. We think that the mechanism that we
proposed is the simplest one for modeling speciation and
species coexistence in a smooth (or flat) fithess landscape.
We wish to thank G. Guasti, G. Cocho, L. Peliti,
G. Martinez-Mekler, and P. Lio for fruitful discussions.
M. B. thanks the Dipartimento di Matematica Applicata
“G. Sansone” for friendly hospitality. Part of this work
was done during the workshop on Chaos and Complexity
at ISI-Villa Gualino (Torino, Italy) under CE Contract

1.0 :

0.0 0.2 0.4 0.6 0.8 No. ERBCHBGCT930295.

p
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