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Speciation as Pattern Formation by Competition in a Smooth Fitness Landscape
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We investigate the problem of speciation and coexistence in simple ecosystems when the competitio
among individuals is included in the Eigen model for quasispecies. By suggesting an analogy betwee
the competition among strains and the diffusion of a chemical inhibitor in a reaction-diffusion system,
the speciation phenomenon is considered the analogous of chemical pattern formation in geneti
space. In the limit of vanishing mutation rate we obtain analytically the conditions for speciation.
Using different forms of the competition interaction we show that the speciation is absent for
the genetic equivalent of a normal diffusing inhibitor, and is present for shorter-range interactions.
[S0031-9007(97)04338-X]
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In this work we address the problem of speciatio
(species formation) in simple ecosystems, mirroring som
aspects of bacterial and viral evolution. Our model ca
be considered as an extension of the Eigen model [1,
With respect to the latter, we introduce the competitio
among individuals.

Eigen’s phenomenological theory of self-reproducin
macromolecules (or haploid organisms) illustrates th
concept of stable quasispecies, i.e., a peaked distribut
of genomes around a master sequence, its width be
determined by mutations. In its simpler formulation, th
various genomes have different reproductive rates, t
logarithm of which constitutes the fitness landscape [3
5]. The master sequence is located in corresponden
of the maximum of the fitness. In general, a one t
one correspondence between a given phenotype an
genotype is assumed (no polymorphism nor age structur
The genomes are coupled by mutations and by a glo
constraint on the total number of individuals (constan
organization). One usually considers only point mutation
(the most common ones), which correspond to a diffusio
process in genetic space. In this way one can define
concept of distance in genetic space as the number
mutations needed to connect two genomes. The Eig
model has also been studied in the context of statistic
mechanics [6–9].

Epstein [10] studied the problem without considerin
mutations; he showed that the coexistence is possible
the species are self-limiting (i.e., there exists a form
self-competition, modeled, for instance, by a logistic term
and coexisting species does not compete directly. On
contrary, when two species are in competition (becau
they share some resource—an enzyme in Epstein’s ca
only the fittest one survives. However, he did not intro
duce the genetic distance among species nor presented
evolutionary mechanism for the speciation phenomenon

We think that the direct competition for local resource
among strains, coupled with a weak mutation rate,
the simplest mechanism for modeling both speciation a
stable coexistence in simple smooth landscapes. The m
0031-9007y97y79(17)y3302(4)$10.00
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tations are needed to populate newly formed niches, wh
the competition actively separates the strains into qua
species. One can consider the following analogy with
Turing mechanism for chemical pattern formation. Th
main ingredients are an autocatalytic reaction proce
(reproduction) with slow diffusion (mutations) couple
with the emission of a short-lived, fast-diffusing inhibito
(competition). In this way a local high concentration o
autocatalytic reactants inhibits the growth in its neighbo
hood, acting as a local negative interaction.

In genetic space, the local coupling is given by the com
petition among genetically kin individuals. For instanc
assuming a certain distribution of some resources (such
some essential metabolic component for a bacterial po
lation), then the more genetically similar two individual
are, the wider the fraction of shared resources is. The
fects of competition on strainx by strainy are modeled
by a term proportional to the relative abundance of the l
ter, ps yd, modulated by a function that decreases with t
genetic distance betweenx and y. Another example of
this kind of competition can be found in the immune re
sponse in mammals. Since the immune response has a
tain degree of specificity, a viral strainx can suffer from
the response triggered by strainy if they are sufficiently
near in an appropriate genetic subspace. Again, one
think that this effective competition can be modeled by
term, proportional to the relative abundance of the stra
that originated the response, which decreases with the
netic distance.

Although Eigen’s model is defined in a hypercub
genetic space, and the error threshold transition rigorou
exists only in an infinite-dimensional space [9], th
proposed speciation phenomenon is independent on
dimension of the genetic space. We shall work therefo
in a linear genetic space. An instance of a similar (sub
space in real organisms is given by a repeated gene (
a tRNA gene): a fraction of its copies can mutate, linear
varying the fitness of the individual with the “chemi
cal composition” of the gene [11]. This degenerate ca
has been widely studied (see, for instance, Ref. [12]); o
© 1997 The American Physical Society
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should introduce the multiplicity of a degenerate stat
which can be approximated to a Gaussian, but if on
works in the neighborhood of its maximum (the mos
common chemical composition) the multiplicity factors
are nearly constants. Another example is given by th
level of catalytic activity of a protein. A linear space ha
also been used for modeling the evolution of RNA viruse
on HeLa cultures [13]. The effect of the finiteness o
population, however, should imply a cutoff on the tai
of the distribution, due to the discreteness of the numb
of individuals, and thus the dependence of evolution o
the initial condition (for an application of the cutoff effect,
see Ref. [13]). We do not consider here these effects.

Let us start with a one dimensional “chemical” mode
of cells that reproduce asexually and slowly diffuse (i
real space),p ­ psx, td being their relative abundance a
position x and at timet. These cells constitutively emit
a short-lived, fast-diffusing mitosys inhibitorq ­ qsx, td.
This inhibitor may be simply identified with some waste
or with the consumption of a local resource (say oxygen
The diffusion of the inhibitor is modeled as

≠q
≠t

­ k0p 1 D
≠2q
≠x2 2 k1q , (1)

wherek0, k1, andD are the production, annihilation, and
diffusion rates ofq.

The evolution of the distributionp is given by
≠p
≠t

­ fAsx, td 2 Astdg p 1 m
≠2p
≠x2

, (2)

Astd ­
Z

As y, td ps y, td dy . (3)

The growth rateA can be expressed in terms of the fitnes
H as

Asx, td ­ expfHsx, tdg . (4)

Because of the form of Eq. (2), the distributionp is
always normalized to one. The diffusion rate ofq, D, is
assumed to be much larger thanm. The growth rateA can
be decomposed in two factors,Asx, td ­ A0sxdA1fqsx, tdg,
whereA0 gives the reproductive rate in the absence ofq,
soA1s0d ­ 1. In the presence of a large concentration o
the inhibitor q the reproduction stops, soA1s`d ­ 0. A
possible choice is

Asx, td ­ expfH0sxd 2 qsx, tdg .

For instance,H0sxd could model the sources of food or,
for algae culture, the distribution of light.

Since we assumed a strong separation in time scal
we look for a stationary distributioñqsx, td of the inhibitor
[Eq. (1)] by keepingp fixed. This is given by a convolu-
tion of the distributionp:

q̃sx, td ­ J
Z

exp

µ
2

jx 2 yj

R

∂
ps y, td dy ,

whereJ and R depend on the parametersk0, k1, D. In
the following we shall useJ andR as control parameters,
disregarding their origin.
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We can generalize this scenario to nonlinear diffusio
processes of the inhibitor by using the reaction-diffusio
equation (2), with the fitnessH and the kernelK given by

Hsx, td ­ H0sxd 2 J
Z

K

µ
x 2 y

R

∂
psy, td dy , (5)

Ksrd ­ exp

µ
2

jrja

a

∂
, (6)

i.e., a symmetric decreasing function ofr with Ks0d ­
1. The parametersJ and a control the intensity of
the competition and the steepness of the interactio
respectively.

Let us consider the correspondence with the gene
space: the quantityx now identifies a genome, the
diffusion ratem is given by mutations, and the inhibitor
q (which is no more a real substance) represents t
competition among genetically related strains. The effec
of competition are much faster than the genetic dri
(mutations), so that the previous hypotheses are val
While the genetic interaction kernelKsrd is not given
by a diffusion process, its general form should be simila
to that of Eq. (6): a decreasing function of the genet
distance between two strains. We shall refer to th
p-independent contribution to the fitnessH0sxd as the
static fitness landscape.

Our model is thus defined by Eqs. (2)–(6). We are in
terested in its asymptotic behavior in the limitm ! 0.
Actually, the mutation mechanism is needed only to de
fine the genetic distance and to allow population of a
eventual niche. The results should not change qualit
tively if one includes more realistic mutation mechanism

Let us first examine the behavior of Eq. (2) in the ab
sence of competition (J ­ 0) for a smooth static land-
scape and a vanishing mutation rate. This correspon
to the Eigen model in one dimension: since it does n
exhibit any phase transition, the asymptotic distributio
is unique. The asymptotic distribution is given by on
delta function peaked around the global maximum of th
static landscape, or more delta functions (coexistence)
the global maxima are degenerate. The effect of a sm
mutation rate is simply that of broadening the distributio
from a delta peak to a bell-shaped curve [14].

While the degeneracy of maxima of the static fitnes
landscape is a very particular condition, we shall show
the following that in the presence of competition this i
a generic case. For illustration, we report in Fig. 1 th
numerical computation of the asymptotic behavior of th
model for a possible evolutive scenario that leads
the coexistence of three species. We have chosen
smooth static fitnessH0 [see Eq. (7)] and a Gaussian
(a ­ 2) competition kernel. The effective fitnessH is
almost degenerate (herem . 0 and the competition ef-
fect extends on the neighborhood of the maxima), and th
leads to the coexistence. One could show that the curv
ture of the maxima affects the width and the height of th
quasispecies distribution in presence of mutations [14].
3303
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FIG. 1. Static fitnessH0, effective fitnessH, and asymptotic
distributionp numerically computed for the following values of
parameters:a ­ 2, m ­ 0.01, H0 ­ 1.0, b ­ 0.04, J ­ 0.6,
R ­ 10, r ­ 3, andN ­ 100.

We shall now derive the conditions for the coexistenc
of multiple species. Let us assume that the asymptot
distribution is formed, for a vanishing mutation rate, by
L delta peakspk, k ­ 0, . . . , L 2 1 (or L nonoverlapping
bell-shaped curves for a small mutation rate), centered
yk. The weight of each quasispecies isgk, i.e.,Z

pksxd dx ­ gk ,
L21X
k­0

gk ­ 1 .

The quasispecies are ordered such asg0 $ g1, . . . , $

gL21.
The evolution equations for thepk are (m ! 0)

≠pk

≠t
­ fAs ykd 2 A g pk ,

whereAsxd ­ expfHsxdg and

Hsxd ­ H0sxd 2 J
L21X
j­0

K

µ
x 2 yj

R

∂
gj .

The stability condition of the asymptotic distribution
is fAs ykd 2 A gpk ­ 0, i.e., either As ykd ­ A ­ const
(degeneracy of maxima) orpk ­ 0 (all other points). In
other terms one can say that in a stable environment t
fitness of all individuals is the same, independently o
the species.

The positionyk and the weightgk of the quasispecies
are given byAs ykd ­ A ­ const and≠Asxdy≠xjyk ­ 0,
or, in terms of the fitnessH, by

H0s ykd 2 J
L21X
j­0

K

µ
yk 2 yj

R

∂
gj ­ const,

H 0
0s ykd 2

J
R

L21X
j­0

K 0

µ
yk 2 yj

R

∂
gj ­ 0 .

Let us compute the phase boundary for coexistence
three species for two kinds of kernels: the exponenti
(diffusion) one (a ­ 1) and a Gaussian one (a ­ 2).
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We assume that the static fitnessH0sxd is a symmetric
linear decreasing function except in the vicinity ofx ­ 0,
where it has a quadratic maximum:

H0sxd ­ b

µ
1 2

jxj

r
2

1
1 1 jxjyr

∂
, (7)

so that close tox ­ 0 one hasH0sxd . 2bx2yr2 and
for x ! `, H0sxd . bs1 2 jxjyrd. We have checked
numerically that the results are qualitatively independe
on the exact form of the static fitness, providing that it
a smooth decreasing function.

Because of the symmetries of the problem, we have o
quasispecies atx ­ 0 and two symmetric quasispecie
at x ­ 6y. Neglecting the mutual influence of the
two marginal quasispecies, and considering thatH 0

0s0d ­
K 0s0d ­ 0, K 0syyRd ­ 2K 0s2yyrd, Ks0d ­ J, and that
the three-species threshold is given byg0 ­ 1 andg1 ­
0, we have

b̃

µ
1 2

ỹ
r̃

∂
2 Ks ỹd ­ 21 ,

b̃
r̃

1 K 0s ỹd ­ 0 ,

whereỹ ­ yyR, r̃ ­ ryR, andb̃ ­ byJ. We introduce
the parameterG ­ r̃yb̃ ­ sJyRdysbyrd, that is the ra-
tio of two quantities, one related to the strength of in
terspecies interactions (JyR) and the other to intraspecie
ones (byr). In the following we drop the tildes for con-
venience. Thus

r 2 z 2 G exp

µ
2

za

a

∂
­ 2G ,

Gza21 exp

µ
2

za

a

∂
­ 1.

For a ­ 1 we have the coexistence condition

lnsGd ­ r 2 1 1 G .

The only parameters that satisfy these equations areG ­
1 and r ­ 0, i.e., a flat landscape (b ­ 0) with infinite
range interaction (R ­ `). Since the coexistence region
reduces to a single point, it is suggested thata ­ 1 is
a marginal case. Thus for less steep potentials, such
power law decrease, the coexistence condition is suppo
not to be fulfilled.

For a ­ 2 the coexistence condition is given by

z2 2 sG 1 rdz 1 1 ­ 0 ,

Gz exp

µ
2

z2

2

∂
­ 1 .

One can solve numerically this system and obtain t
boundaryGcsrd for the coexistence. In the limitr ! 0
(static fitness almost flat) one has

Gcsrd . Gcs0d 2 r (8)
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FIG. 2. Three-species coexistence boundaryGc for a ­ 2.
The continuous line represents the analytical approximatio
Eq. (8); the circles are obtained from numerical simulation
The error bars represent the maximum error (see text
details).

with Gcs0d ­ 2.216 . . . . Thus for G . Gcsrd we have
coexistence of three or more quasispecies, while forG ,

Gcsrd only the fittest one survives.
We have solved numerically Eqs. (2)–(6) for sever

different values of the parameterG. We have considered
a discrete genetic space, withN points, and a simple
Euler algorithm. The results, presented in Fig. 2, are n
strongly affected by the integration step. The error ba
are due to the discreteness of the changing parame
G. The boundary of the multispecies phase is we
approximated by Eq. (8); in particular, we have checke
that this boundary does not depend on the mutation ra
m, at least form , 0.1, which can be considered a very
high mutation rate for real organisms. The most importa
effect of m is the broadening of quasispecies curve
which can eventually merge.

In conclusion, we have introduced a model for th
genetic evolution of haploid organisms under the pressu
of a static fitness landscape and competition. This mod
exhibits the phenomenon of species formation in a w
reminiscent of a chemical pattern formation via a Turing
like mechanism. We have analyzed analytically th
system in the limit of vanishing mutation rate and
linear genetic space, showing that an increasing lev
n,
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of a short-range competition induces a transition from
a single species distribution to a stable environment
which multiple genetically distinct species are presen
The comparison of the analytical approximation with th
numerical integration of the original differential equations
is very good. We think that the mechanism that w
proposed is the simplest one for modeling speciation an
species coexistence in a smooth (or flat) fitness landsca
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