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Quantum Mechanics Helps in Searching for a Needle in a Haystack
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Quantum mechanics can speed up a range of search applications over unsorted data. For example,
imagine a phone directory containig names arranged in completely random order. To find some-
one’s phone number with a probability of 50%, any classical algorithm (whether deterministic or proba-
bilistic) will need to access the database a minimund.6V times. Quantum mechanical systems can
be in a superposition of states and simultaneously examine multiple names. By properly adjusting the
phases of various operations, successful computations reinforce each other while others interfere ran-
domly. As a result, the desired phone number can be obtained indgRIfV ) accesses to the database.
[S0031-9007(97)03564-3]

PACS numbers: 89.70.+c, 03.65.—w

In 1994 Shor discovered a quantum mechanical algoin quantum superpositions (see [1] and [3] for a more de-
rithm for factorization that was exponentially faster thantailed introduction to quantum computers). Quantum me-
any known classical algorithm [1]. This Letter presentschanical operations that can be carried out in a controlled
a quantum mechanical algorithm for search that is onlyay are unitary operations that act on a small number of
polynomially faster than any classical algorithm; however bits in each step. The quantum search algorithm of this
it does not depend for its impact on the unproven diffi-Letter is a sequence of such unitary operations on a pure
culty of the factorization problem. The search problem isstate, followed by a measurement operation. The three ele-
this: there is an unsorted database contaidinigems out  mentary unitary operations needed are the following. First
of which just one item satisfies a given condition—thatis the creation of a superposition in which the amplitude
one item has to be retrieved. Once an item is examinedf the system being in any of thé basic states of the sys-
it is possible to tell whether or not it satisfies the conditiontem is equal; second is the Walsh-Hadamard transforma-
in one step. However, there does not exist any sorting otion operation, and third the selective rotation of the phases
the database that would aid its selection. The most effief states.
cient classical algorithm for this is to examine the items in A basic operation in quantum computing is the opera-
the database one by one. If an item satisfies the requirgtbn M performed on a single bit that is represented by the
condition, stop; if it does not, keep track of this item sofollowing matrix:

that it is not examined again. It is easily seen that this

. . ) . I [1 1
algorithm will need to examine an averageO0d§N items M = T 1 —1
before finding the desired item. 2

It is possible for quantum mechanical systems ta.e., a bit in the state O is transformed into a superposition
makeinteraction-free measuremeniy using the duality in the two states:(1/4/2,1/+/2). Similarly a bit in
properties of photons [2]. In these the presence (othe state 1 is transformed intd/~/2, —1/+/2); i.e., the
absence) of an object can be deduced by allowing anagnitude of the amplitude in each statelis/2, but
small probability of a photon interacting with the object. the phaseof the amplitude in the state 1 is inverted. The
Therefore, most probably the photon will not interact;phase does not have an analog in classical probabilistic
however, just allowing a small probability of interaction algorithms. It comes about in quantum mechanics since
is enough to make the measurement. Thus in the sear¢the amplitudes are in general complex. In a system in
problem also, it might be possible to find the objectwhich the states are described bybits (it hasN = 2"
without examining all of the objects, but just by allowing possible states), we can perform the transformatibon
a certain probability of examining the desired object. each bit independently in sequence thus changing the state

Indeed, this Letter shows that by using the same amountf the system. The state transition matrix representing
of hardware as in the classical case, but by having théhis operation will be of dimensior” X 2". In case
input and output irsuperpositionf states, we can find the initial configuration was the configuration with all
an object inO(+~/N) quantum mechanical stepsstead bits in the first state, the resultant configuration will have
of O(N) classical steps. Eaafuantum mechanical step an identical amplitude o2~"/2 in each of the2” states.
consists of an elementary unitary operation (discussed ifhis is a way of creating a superposition with the same
the following paragraph). amplitude in all2” states.

1. Quantum mechanical algorithms:.In a quantum Next consider the case when the starting state is another
computer, the logic circuitry and time steps are essentiallpne of the2” states, i.e., a state described by:dvit binary
classical, only the memotyits that hold the variables are string with some 0s and some 1s. The result of performing
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the transformationM on each bit will be a superposition (i) Repeat the following unitary operation@(v/N )

of states described by all possibiéit binary strings with  times (the precise number of repetitions is important as
amplitude of each state having a magnitude equaltd>  discussed in [5]).

and sign either+ or —. To deduce the sign, observe that (ii)-(a) Let the system be in any state

from the definition of the matrin/, i.e., In caseC(S) = 1, rotate the phase by radians

M = % [ } _11 } In caseC(S) = 0, leave the system unaltered
the phase of the resulting configuration is changed Wheg
a bit that was previously a 1 remains a 1 after the trans-
formation is performed. Hence if be the n-bit bi- 2, . 2
nary string describing the starting state andhe n-bit Dij = Wi#j and Dy =—-1+ .
binary string describing the resulting string, the sign of the(D can be implemented as a product of 3 elementary
amplitude ofy is determined by the parity of the bitwise 5trices as discussed in Sec. 5).
dot product ofr andy, i.e.,(—1)*~. This transformation iy Measure the resulting state. This will be the
is referred to as the Walsh-Hadamard transformation  giates, [i.e., the desired state that satisfies the condition
[4]. This operation (or a closely related operation caIIedC(Sv) — 1] with a probability of at least 0.5.
the Fourier Transformation) is one of the things that makes \ote that step (i)-(a) is a phase rotation of the
quantum mechanical algorithms more powerful than clasfype discussed in the last paragraph of Sec. 1. In an
sical algorithms and forms the basis for most significaniyiementation it would involve a portion of the quantum
quantum mechanical algorithms. _ _ system sensing the state and then deciding whether or not
The third transformation that we will need is the (J (qiate the phase. It would do it in a way so that no
selective rotation of the phase of the amplitude in certaif ;e of the state of the system be left after this operation
states. _The transformation describing this for a 2-state, a5 to ensure that paths leading to the same final state
system is of the form were indistinguishable and could interfere. Reference [5]
|:e-f‘/" 0 } gives a way of doing this with a single quantum query.

(ii)-(b) Apply the diffusion transformD which is
efined by the matriD as follows:

0 el Note that this doesotinvolve a classical measurement.

4. Convergence—The loop in step (i) above is the
where j = /=1 and ¢, ¢, are arbitrary real numbers. heart of the algorithm. Each iteration of this loop
Note that, unlike the Walsh-Hadamard transformation anghcreases the amplitude in the desired state@ly//N ),
other state transition matrices, the probability in each statgs a result ir0(+/N ) repetitions of the loop, the amplitude
stays the same since the square of the absolute value of thAd hence the probability in the desired state reach
amplitude in each state stays the same. O(1). In order to see that the amplitude increases by

2. The abstracted probler-Let a system haveV =  0(1/4/N) in each repetition, we first show that the
2" states which are labelesl, S,...Sy. These2" states  diffusion transformD, can be interpreted as amversion
are represented as bit strings. Let there be a unique about averageoperation. Just a simple inversion is a
state, sayS,, that satisfies the conditio€(S,) = 1, phase rotation operation, and by the discussion in the
whereas for all other statels C(S) = 0 [assume that for |ast paragraph of Sec. 1 is unitary. In the following
any stateS, the conditionC(S) can be evaluated in unit discussion we show that thmversion about average
time]. The problem is to identify the stasg. operation (defined more precisely below) is also a unitary

This could represent a database search problem wheggeration and is equivalent to the diffusion transfafm
the functionC(S) is based on the contents of memory as used in step (ii)-(a) of the algorithm.
location corresponding to statg (as discussed in the  Let o denote the average amplitude over all states;
abstract).  Alternatively it could represent a problemie,, if «; be the amplitude in theth state, then the
where the functionC(S) was being evaluated by the zyerage is% N @;. As a result of the operatiod,
computer. Various important computer science problemgne amplitude in each state increases (decreases) so that
can be represented in this form [3,5,6]. after this operation it is as much below (above) as it

3. Algorithm—Steps (i) and (ii) are a sequence of yas above (below) before the operation (see Fig. 1).
elementary unitary operations of the type discussed in The diffusion transformp, is defined as follows:

Sec. 1. Step (iii) is the finaheasuremeny an external 5 5
system. D;j=—, ifi# jandD; = -1+ =.

() Initialize the system to the superposition: N N
(1//N,1//N,1/J/N,...1/J/N); i.e., there is the Observe thatD can be represented in the ford =
same amplitude to be in each of tNestates. This super- —I + 2P, where I is the identity matrix andP is
position can be obtained i@(logN) steps, as discussed a projection matrix withP;; = 1/N for all i,j. The
in Sec. 1. following two properties ofP are easily verified: first,
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In the loop of step (ii) of Sec. 3, first the amplitude in

_ _I _ _| _____ _ Average (o) a selected state is inverted (this is a phase rotation and
- 1 . hence a valid quantum mechanical operation as discussed
A B D in the last paragraph of Sec. 1. Then thweversion
(before) about averageoperation is carried out. This increases
the amplitude in the selected state in each iteration by
2C/\/N. Therefore, as long as the magnitude of the
amplitude in the single state, i.ev/1 — C2, is less
_______ -——- Average (0) than 1/+/2, the increase in its magnitude is greater than
- C o> 1/+/2N. Itimmediately follows that there exists a number
IB M less than/N, such that inM repetitions of the loop in
(after) step (ii), the magnitude of the amplitude in the desired
FIG. 1. Inversion about averageperation. state Wi!l exceedl/ V2. Theref_o re, if. the State. of the
system is now measured, it will be in the desired state
with a probability greater than 0.5.
that P> = P, and second, thak acting on any vectob 5. Implementation—As mentioned in Sec. 1, quantum
gives a vector each of whose components is equal to th@echanical operations which can be implemented in
average of all components. terms of elementary unitary operations are local transition

In order to see thab is theinversion about average, matrices, i.e., matrices in which only a constant number
consider what happens whénacts on an arbitrary vector of elements in each column are nonzero. The diffusion

v. Expressing) as—/ + 2P, it follows that: transformD is defined in step (ii)-(b) of the algorithm as
Dv = (-1 +2P)v = —v + 2Pv. 2 2
. . D,']‘:_, IfiaéjandDi,-:—l—k—.
By the discussion above, each component of the veatior ' N N

is A whereA is the average of all components of the vector D, as presented above, is not a local transition matrix

v. Therefore, théth component of the vectdv is given  since there are transitions from each state to Mll

by (—v; + 24) which can be written a4 + (A — v;)],  states. Using the Walsh-Hadamard transformation matrix

which is precisely thénversion about average. (Sec. 1),D can be implemented as a product of three
Next consider the situation in Fig. 2, when this opera-local unitary transformations a8 = WRW, whereR is

tion is applied to a vector with each of the componentsthe phase rotation matrix an& the Walsh-Hadamard

except one, having an amplitude equattoy/N whereC  transform matrix are defined as follows:
lies between% and 1; the one component that is differ-

ent has an amplitude of+/1 — C2. The averagei of Rij =0 it i#j; Rij =1 it i =0;
all components is approximately equal @~/N. Since R;,=—1 ifi#0.

each of the(N — 1) components is approximately equal w2 oo . )
to the average, they do not change significantly as a resulfij = 2~ "/“(—=1)"/, i is the binary representation df

of the inversion about average. The one component tha@nd: - j denotes the bitwise dot product of the twdit

was negative now becomes positive and its magnitude irstringsi and ;. . - _
creases bpC/+/N. Each of W and R is a local transition matrix.R as

defined above is a phase rotation matrix and is clearly
local. W, when implemented as in Sec. 1, is a local

- e e R - Average transition matrix on each bit.
|_ T —l |_ —l |_ T —| We evaluateWRW and show that it is indeed equal
- > to D. R can be written aR = R; + R,, whereR;, =
—1I, I is the identity matrix, andR,po = 2, Ry;j =0
(before) if i #0,j # 0. By observing thatMM = I where M
is the matrix defined in Sec. 1, it is easily proved that
WW = I and hencéd; = WR{W = —I. We next evalu-
Average ate D, = WR,W. By standard matrix multiplication:

<— |— -|- —| - |— T —| - |— '|' —l - _ Daui = Dpe WarR2pcWey. Using the definition ofR,

and the factv = 2", it follows thatD; .¢ = 2W,0Woa =
(after) 2(—1)@0+0d = 2 Thus all elements of the matri,
2 . _
FIG. 2. Inversion about averageperation is applied to a equaly, the sum of the two m_atrlceBl a’?dD2 glvest_.
superposition where all but one of the components are initially | h€ quantum search algorithm of this Letter is likely

identical and of magnitudeO(1/+/N); one component is tO be simpler to implement as compared to many other
initially negative. known quantum mechanical algorithms. This is because
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