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Renormalization Group Analysis of the Spin-Gap Phase in the One-Dimensionalt-J Model
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We study the spin-gap phase in the one-dimensionalt-J model, assuming that it is caused by the
backward scattering process. Based on the renormalization group analysis and symmetry, we can
determine the transition point between the Tomonaga-Luttinger liquid and the spin-gap phases, by the
level crossing of the singlet and the triplet excitations. In contrast to the previous works, the obtained
spin-gap region is unexpectedly large. We also determine that the universality class of the transition
belongs to thek ­ 1 SU(2) Wess-Zumino-Witten model. [S0031-9007(97)04331-7]
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The existence of a gap in the spin excitation has bee
considered to be a key to understanding high-Tc supercon-
ductivity. This stimulated the study of one-dimensiona
(1D) electron systems some years ago. Recently, po
sibilities of superconductivity in quasi-1D systems hav
been suggested [1], and understanding of spin-gap pha
in (quasi-)1D systems increases the importance. Now, w
reconsider this problem from the 1Dt-J model which is
the simplest, but not fully understood.

The Hamiltonian of the 1Dt-J model is written as

H ­ 2t
X
is

scy
isci11s 1 c

y
i11scisd

1 J
X

i

sŜi ? Ŝi11 2 n̂i n̂i11y4d , (1)

in the subspace without double occupancy. Generall
1D electron systems belong to the universality class
Tomonaga-Luttinger (TL) liquid [2,3] which is character-
ized by gapless charge and spin excitations and powe
law decay of correlation functions. The phase diagram o
the 1Dt-J model is obtained by Ogataet al., using exact
diagonalization [4]. They found the enhancement of th
superconducting correlation (Kc . 1) and the phase sepa-
ration (Kc ! `) for largeJyt region. They also found a
phase of singlet bound electron pairs in the very low den
sity region, but could get no evidence for a spin-gap pha
by using a finite size scaling method at1y3 filling. Hell-
berg and Mele studied this phase by using a Jastrow-ty
variational wave function [5]. In their approach, the varia
tional parametern is related withKc asKc ­ 1ys2n 1 1d.
They found that there exists a finite region where the opt
mized parameter takes constant valuen ­ 21y2 between
the TL phase and phase-separated state, and they in
preted the region as the spin-gap phase. Another var
tional wave function is proposed by Chen and Lee [6].

However, these authors did not discuss the detaile
mechanism of the spin-gap generation. One candidate
the spin-gap generation mechanism is due to the attract
backward scattering [scattering between electrons with t
opposite momentum (kF , 2kF) and spin] [3,7]. In this
case, the universality class of the transition is thek ­ 1
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SU(2) Wess-Zumino-Witten (WZW) model [8]. On the
basis of this assumption, we determine the transition po
with the singlet-triplet level crossing method [8–10] an
we obtain the phase diagram (Fig. 1). Then we will verif
the consistency of our method, considering the ratio of t
logarithmic correction term.

In general, the low-energy behavior of a 1D electro
system is described by the U(1) Gaussian model (cha
part) and the SU(2) sine-Gordon model (spin part) [3,11

H ­ Hc 1 Hs 1
2g1

s2pad2

Z
dx cos

≥p
8fs

¥
. (2)

Here a is a short-distance cutoff,g1 is the backward
scattering amplitude, and forn ­ c, s

Hn ­
1

2p

Z
dx

∑
ynKnspPnd2 1

yn

Kn

µ
≠fn

≠x

∂2∏
, (3)

where Pn is the momentum density conjugate tofn,
ffnsxd, Pnsx0dg ­ idsx 2 x0d, Kn is the Gaussian

FIG. 1. Phase diagram of the 1Dt-J model (TL: TL phase;
SG: spin-gap phase; PS: phase-separated state). In the spin
phase where the backward scattering is attractive, the sing
excitation becomes lower than the triplet (see Figs. 2, 4). T
contour lines of theKc are calculated by the data ofL ­ 16
system [31].
© 1997 The American Physical Society
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FIG. 2. Singlet and triplet excitation energies forL ­ 16
system atn ­ 1y2.

coupling, andyc and ys are charge and spin veloci-
ties, respectively. The primary field of this model i
expfi

p
2smnfn 1 nnundg, where the dual field is defined

as≠xun ­ pPn . In TL phase (g1 . 0), the parameters
Ks and g1 will be renormalized asKp

s ­ 1 and gp
1 ­ 0,

reflecting the SU(2) symmetry.
First, let us consider the case without renormalizatio

g1 ­ 0. The finite size correction of the energy an
the momentum of (3) are described by the conform
field theory (CFT) [12,13] withc ­ 1, where the central
chargec characterizes the universality class of the mod
For thet-J model,c ­ 1 as shown rigorously atJyt ­ 2
[17] and numerically [4]. The combined use of the CF
and the Bethe ansatz result gives a description of the
electron systems [14–17]. The ground state energy of
system under periodic boundary conditions is given by

E0sLd ­ Le0 2
psyc 1 ysd

6L
c , (4)

where L is the system size. The excitation energy an
momentum are related with exponents as

E 2 E0 ­
2pyc

L
xc 1

2pys

L
xs , (5)

P 2 P0 ­
2p

L
ssc 1 ssd 1 4kFDc 1 2kFDs , (6)

where kF ­ pNy2L with electron numberN, and the
scaling dimensions and the conformal spins are defined
xn ­ D1

n 1 D2
n , sn ­ D1

n 2 D2
n , respectively, with the

conformal weights

D6
n ­

1
2

√s
Kn

2
mn 6

nn
p

2Kn

!2

1 N6
n . (7)

The variablesmn and nn are related with electron quan-
tum numbers asmc ­ 2Dc 1 Ds, nc ­ DNcy2, ms ­
Ds, ns ­ DNs 2 DNcy2. HereDNc is the change of the
total number of electrons, andDNs is the change of the
number of down spins.Dc (Ds) denotes the number of
particles moved from the left charge (spin) Fermi poin
s

n,
d
al

el.

T
1D
the

d

by

t

to the right one. N6
c (N6

s ) is characterized by simple
particle-hole excitations near right or left charge (spin
Fermi points.

These quantum numbers are restricted by the selecti
rule under periodic boundary conditions [14]

Dc ­
DNc 1 DNs

2
smod 1d , (8a)

Ds ­
DNc

2
smod 1d . (8b)

In the case of twisted boundary conditionsc
y
j1L,s ­

eiFc
y
js which is equivalent to the system where the flux

F penetrates the ring [18],Dc is modified asDc 1

Fy2p. For the ground stateE0, we choose periodic
boundary conditions (F ­ 0) for N ­ 4m 1 2 electrons
and antiperiodic boundary conditions (F ­ p) for N ­
4m electrons with an integerm. Changing the boundary
conditions, the ground state becomes always singlet w
zero momentum (P0 ­ 0) [4,19].

In order to eliminate the contribution of the charge
part, and extract the singlet and the triplet excita
tion in the spin part (xs ­ 1y2), we turn our atten-
tion to the following states: sDNc, DNs, Dc, Dsd ­
s0, 61, 0, 0d, s0, 0, 71y2, 61d under twisted boundary
conditions (F ­ p for N ­ 4m 1 2, F ­ 0 for
N ­ 4m). We can identify these excitation spectra by
using (5) and (6), but the momentumP and the wave
numberp are not always identical. There is a relation
P ­ p 2 FNyL between them [20].

Next, we consider the renormalization (g1 fi 0). By
the change of the cutoffa ! edla, the coupling constant
g1 andKs are renormalized as [21]

dy0sld
dl

­ 2y2
1 sld , (9a)

dy1sld
dl

­ 2y0sldy1sld , (9b)

where y1sld ­ g1ypys, Ks ­ 1 1 y0sldy2. For the
SU(2) symmetric casey0sld ­ y1sld, and y0sld . 0,
the scaling dimensions of the operators for singlet an
triplet excitations

p
2 cos

p
2fs (xss), and

p
2 sin

p
2fs,

exps7i
p

2usd (xst) split logarithmically by the marginally
irrelevant coupling as [22]

xss ­
1
2

1
3
4

y0

y0 ln L 1 1
, (10a)

xst ­
1
2

2
1
4

y0

y0 ln L 1 1
, (10b)

wherey0 is the bare coupling, and we have setl ­ ln L.
This result is equivalent to that of thek ­ 1 SU(2)
WZW model [8]. Note that the ratio of the logarithmic
corrections are given by Clebsch-Gordan coefficient
3215
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Wheny0 , 0, y0sld is renormalized toy0sld ! 2`, and
there appears a spin gap. At the critical points y0 ­ 0d,
there are no logarithmic corrections in the excitation gap
The physical meaning of this point is that the backwa
scattering coupling changes from repulsive to attractiv
And the SU(2) symmetry is enhanced at the critical poi
to the chiral SUs2d 3 SUs2d symmetry [8], since the
spin degrees of freedom of the right and the left Ferm
points become independent. Therefore, the critical po
is obtained from the intersection of the singlet and th
triplet excitation spectra [8–10]. Using this method, w
can determine the critical point with high precision [10
since the remaining correction is onlyxs ­ 4 irrelevant
fields [23,24].

Here we analyze the numerical results for thet-J model
(1) with the above explained method. We diagonalizeL ­
8 30 systems by the use of the Lanczos and Househol
method. An example of data (L ­ 16, n ; NyL ­ 1y2)
is shown in Fig. 2. Since the critical point is almos
independent of the system size as is shown in Fig. 3,
phase diagram can be constructed without extrapolati
Our result is similar to Hellberg and Mele’s in the low
density region, but the spin-gap phase spreads extensiv
toward the high density region. We are not able to answ
whether the spin gap survives in then ! 1 limit or not,
because the numerical results become unstable in
high density region where the phase boundary is clo
to the phase-separated state. In TL phase, singlet
triplet superconducting correlations (SS, TS) have the sa
critical exponent1yKc 1 1 [3], while with a spin gap, TS
decays exponentially and SS is enhanced as1yKc, so that
SS is dominant in the spin-gap region.

In order to check the consistency of our argumen
we calculate the ratios of the logarithmic correction
and scaling dimensions for the singlet and the tripl
excitations from (5) and (10). Here the spin wave veloci

FIG. 3. Size dependence ofJcyt determined by the intersec-
tions of the excitation spectra forL ­ 8, 12, 16, 20 systems at
n ­ 1y2. These points are fitted by the formA 1 ByL2 1
CyL4.
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is given by [25]

ys ­ lim
L!`

EsL, N, S ­ 1, P ­ 2pyLd 2 E0sL, Nd
2pyL

,

(11)

which is extrapolated by the functionyssLd ­ yss`d 1

AyL2 1 ByL4. These corrections are explained by the ir
relevant fields. The average of the renormalized scalin
dimensionsxss 1 3xstdy4, eliminating logarithmic correc-
tions, and its finite size effect are shown in Fig. 4 and
Fig. 5, respectively. The extrapolated data become1y2
with error less than 0.2%.

Finally, we discuss the reason why the previous stud
ies have estimated the spin-gap region to be very muc
narrower than the real one. From the two-loop renorma
ization group equation of thek ­ 1 SU(2) WZW model
[26–28]

dy0sld
dl

­ 2y2
0 sld 2

1
2

y3
0 sld , (12)

the spin gapDE grows singularly as

DE ~
p

J 2 Jc expf2constysJ 2 Jcdg , (13)

where y0 ~ Jc 2 J, therefore it is very difficult to find
the critical point using the conventional finite size scaling
method. Note that (13) is the same asymptotic behavi
as the spin gap of the negativeU Hubbard model at
half-filling, which can be obtained from the charge gap
at positive U [29], and the transformation between the
charge and the spin degrees of freedoms [30].

In conclusion, we studied the spin-gap phase in th
1D t-J model, considering the backward scattering effec
in the TL liquid by the renormalization group analysis.
Using the twisted boundary conditions, we can extract th
spin excitation spectra and determine the critical point a

FIG. 4. Extrapolated value ofsxss 1 3xstdy4 and the scaling
dimensions for the singlet (xss) and the triplet (xst) excitations
for L ­ 16 system atn ­ 1y2.
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FIG. 5. Size dependence of the averaged scaling dimens
sxss 1 3xstdy4 at n ­ 1y2.

in spin systems. The phase boundary is determined by
point where the backward scattering becomes repuls
to attractive. The spin-gap phase obtained in this way
unexpectedly large, and the consistency of the argumen
also checked. This method can be applied to other mod
in 1D electron systems, if the SU(2) symmetry is assure
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