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Renormalization Group Analysis of the Spin-Gap Phase in the One-Dimensionat.J Model
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We study the spin-gap phase in the one-dimensienalmodel, assuming that it is caused by the
backward scattering process. Based on the renormalization group analysis and symmetry, we can
determine the transition point between the Tomonaga-Luttinger liquid and the spin-gap phases, by the
level crossing of the singlet and the triplet excitations. In contrast to the previous works, the obtained
spin-gap region is unexpectedly large. We also determine that the universality class of the transition
belongs to thet = 1 SU(2) Wess-Zumino-Witten model. [S0031-9007(97)04331-7]

PACS numbers: 71.10.Hf, 74.20.Mn

The existence of a gap in the spin excitation has beeSU(2) Wess-Zumino-Witten (WZW) model [8]. On the
considered to be a key to understanding higtsupercon- basis of this assumption, we determine the transition point
ductivity. This stimulated the study of one-dimensionalwith the singlet-triplet level crossing method [8—10] and
(1D) electron systems some years ago. Recently, posve obtain the phase diagram (Fig. 1). Then we will verify
sibilities of superconductivity in quasi-1D systems havethe consistency of our method, considering the ratio of the
been suggested [1], and understanding of spin-gap phassgarithmic correction term.
in (quasi-)1D systems increases the importance. Now, we In general, the low-energy behavior of a 1D electron
reconsider this problem from the 1B/ model which is  system is described by the U(1) Gaussian model (charge

the simplest, but not fully understood. part) and the SU(2) sine-Gordon model (spin part) [3,11],
The Hamiltonian of the 1D@-J model is written as 2¢, 5
H=H, + H, + [dco 8ds). (2
5-[ = _IZ(CtTa'Ci+la' + CIT-FIO'CI'U') (27701)2 . < ¢ ) ( )
7 Here a is a short-distance cutoffg, is the backward
+ JZ(S,- < Siv1 — ARl /4), (1)  scattering amplitude, and for = ¢, s

2
in the subspace without double occupancy. Generally, {, = L ]dx[vVK,,(wHV)z + 2<8LSV> } 3
1D electron systems belong to the universality class of 2m Ky \ dx
Tomonaga-Luttinger (TL) liquid [2,3] which is character- where I1, is the momentum density conjugate ,,
ized by gapless charge and spin excitations and powefs,(x),I1,(x")] = i6(x — x/), K, is the Gaussian
law decay of correlation functions. The phase diagram of
the 1Dz-J model is obtained by Ogatt al, using exact
diagonalization [4]. They found the enhancement of the 1 , . . . ; . .
superconducting correlatiok( > 1) and the phase sepa-
ration (K. — o) for largeJ/r region. They also found a
phase of singlet bound electron pairs in the very low den-
sity region, but could get no evidence for a spin-gap phase 10
by using a finite size scaling method Iat3 filling. Hell- 06 1
berg and Mele studied this phase by using a Jastrow-typen
variational wave function [5]. In their approach, the varia- 04}
tional parameter is related withK. ask, = 1/Q2v + 1).
They found that there exists a finite region where the opti-
mized parameter takes constant value= —1/2 between
the TL phase and phase-separated state, and they intel
preted the region as the spin-gap phase. Another varia-
tional wave function is proposed by Chen and Lee [6]. ' JJt

However, these authors did not discuss the detailed
mechanism of the spin-gap generation. One candidate &flG. 1. Phase diagram of the 153/ model (TL: TL phase;
the spin-gap generation mechanism is due to the attractive®: SPin-gap phase; PS: phase-separated state). In the spin-gap

backward tteri ttering bet lect ith th ase where the backward scattering is attractive, the singlet
ackward scattering [scattering between electrons wi xcitation becomes lower than the triplet (see Figs. 2, 4). The

opposite momentumkg, —kr) and spin] [3,7]. In this  contour lines of thek, are calculated by the data &f = 16
case, the universality class of the transition is the: 1 system [31].

o % x + D> O <
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0.5 to the right one. N (N;°) is characterized by simple
gooog o particle-hole excitations near right or left charge (spin)
04+ a0 O Fermi points.
. <><>° "o These quantum numbers are restricted by the selection
03 o 0o rule under periodic boundary conditions [14]
g ] 00 T
AE o ° AN, + AN
sl IR c= =5 (mod1), (8a)
‘ " ooo triplet ©
o Tip AN,
01] L0 oo singlet o D, ==5¢ (modl). (8)
o ° < ¢
ge’ . N
0.0 ¢ : : : : In the case of twisted boundary condltloméﬂﬂ =
0 0.5 1 1.5 2 2.5 3 o o .
JJt e'®cj, which is equivalent to the system where the flux

FIG. 2. Singlet and triplet excitation energies fér= 16

system at1 = 1/2.

asod.o,

reflecting the SU(2) symmetry.

the momentum of (3) are described by the conformakonditions
field theory (CFT) [12,13] withc = 1, where the central

= 7Il,. In TL phase g, > 0), the parameters
K, and g; will be renormalized ak* = 1 andg; = 0,

® penetrates the ring [18]D. is modified asD, +

d /2.

For the ground stat&,, we choose periodic

boundary conditions® = 0) for N = 4m + 2 electrons
and antiperiodic boundary condition® (= 7) for N =
coupling, andv. and v, are charge and spin veloci- 4, electrons with an integer. Changing the boundary
ties, respectively. The primary field of this model is conditions, the ground state becomes always singlet with
exdiv2(m, ¢, + n,0,)], where the dual field is defined zerg momentumg&, = 0) [4,19].

In order to eliminate the contribution of the charge
part, and extract the singlet and the triplet excita-

tion in the spin part X; = 1/2), we turn our atten-
First, let us consider the case without renormalizationtion to the following states:(AN,, ANy, D.,D;) =

g1 = 0. The finite size correction of the energy and (o, +1,0,0), (0,0, ¥1/2, 1) under twisted boundary

(== for
N = 4m). We can identify these excitation spectra by

N=4m +2, & =0 for

chargec characterizes the universality class of the modelysing (5) and (6), but the momentum and the wave

For thez-J model,c = 1 as shown rigorously ak/r = 2

number p are not always identical. There is a relation

[17] and numerically [4]. The combined use of the CFTp = , — ®N/L between them [20].

and the Bethe ansatz result gives a description of the 1D Next, we consider the renormalizatiorg,(# 0). By
electron systems [14—-17]. The ground state energy of thghe change of the cutoff — ¢ «, the coupling constant
system under periodic boundary conditions is given by ¢, andK, are renormalized as [21]

7T(Uc + vs)
- C

Eo(L) = Ley — , 4 l
0( ) €0 6L ( ) dydLl() _ _yIZ(Z)’ (ga)
where L is the system size. The excitation energy and ()
momentum are related with exponents as i\l
== = =yo(Oyi (), (9b)
27V, 27 vg dl
E - E() = Xe Xs s (5)
L L where y((I) = g\/mvs, Ky =1 + yo(l)/2.  For the

2
P— Py = T”(sc + s,) + 4kpD, + 2kpD,, (6)

where kr = wN /2L with electron numberv, and the
scaling dimensions and the conformal spins are defined b§X
respectively, with the

X, =AF + A7 s, =AF — A7,
conformal weights

L 1 K, n,
AT = — - +
v 2( 2 "

2
-+ )

The variablesn, andn, are related with electron quan-

4+ XSS
+ N, . @)

Xst

tum numbers asm, = 2D, + D,,n, = AN./2,m; =
Dg,ng = AN, — AN./2. HereAN. is the change of the wherey is the bare coupling, and we have et In L.
total number of electrons, antiN; is the change of the This result is equivalent to that of the =1 SU(2)
number of down spins.D. (D) denotes the number of WZW model [8]. Note that the ratio of the logarithmic
particles moved from the left charge (spin) Fermi pointcorrections are given by Clebsch-Gordan coefficients.

SU(2) symmetric casey(l) = yi(I), and yo(/) > 0,

the scaling dimensions of the operators for singlet and
triplet excitationsv/2 cosv2¢; (xy), and v/2sinv2¢;,
p(Fi/26) (x,) split logarithmically by the marginally
irrelevant coupling as [22]

1 3 Yo

SR S R - 10
2 T 4 oL + 1 (102)
1 1 Y0

S N | [ — 10b
2 4 yInL +1 (10D)
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Whenyy < 0, yo(!) is renormalized toy(/) — —«, and is given by [25]
there appears a spin gap. At the critical pding = 0), _ _ _

there are no logarithmic corrections in the excitation gaps. , = lim E(L,N.S = LP =2m/L) EO(L’N),
The physical meaning of this point is that the backward L= 2 /L

scattering coupling changes from repulsive to attractive. (11)
And the SU(2) symmetry is enhanced at the critical point , . . . — (o
to the chiral SW2) X SU(2) symmetry [8], since the w?|Lc:2hjlsBe/>2t‘r‘ap_lc_)Lated by th?. functlons(L)l N Ué(b) tE .
spin degrees of freedom of the right and the left FermiA - | N€se corrections are explainéd by the ir-

points become independent. Therefore, the critical poinrie'ev"’mt fields. The average of the renormalized scaling

is obtained from the intersection of the singlet and thedlmensmn(x” + 3x,,)/4, eliminating logarithmic correc-

: - . : tions, and its finite size effect are shown in Fig. 4 and
triplet excitation spectra [8—10]. Using this method, we _. ™! .
can determine the critical point with high precision [10], Fig. 5, respectively. The extrapolated data becanie

i 0,
since the remaining correction is onky = 4 irrelevant W'th. error less than 0.2%. .
fields [23,24]. Finally, we discuss the reason why the previous stud-

Here we analyze the numerical results for themodel les have estimated the spin-gap region to be very much

: : : . narrower than the real one. From the two-loop renormal-
(1) with the above explained method. We diagonalize ... - o
8-30 systems by the use of the Lanczos and Household ation group equation of the = 1 5U(2) WZW model

method. An example of datd (= 16,n = N/L = 1/2) 6-28]
is shown in Fig. 2. Since the critical point is almost dyo(l) 5 I ;4
independent of the system size as is shown in Fig. 3, the a —v) = SYOU)’ (12)

phase diagram can be constructed without extrapolation. i )

Our result is similar to Hellberg and Mele’s in the low the spin gap\E grows singularly as

density region, but the spin-gap phase spreads extensively . T =7 _ _

toward the high density region. We are not able to answer AE J = Jeexd —eonsy(/ = Jo)], (13)

whether the spin gap survives in the— 1 limit or not, whereyy « J. — J, therefore it is very difficult to find

because the numerical results become unstable in thbe critical point using the conventional finite size scaling

high density region where the phase boundary is closenethod. Note that (13) is the same asymptotic behavior

to the phase-separated state. In TL phase, singlet arad the spin gap of the negativé Hubbard model at

triplet superconducting correlations (SS, TS) have the samalf-filling, which can be obtained from the charge gap

critical exponentl /K. + 1 [3], while with a spin gap, TS at positive U [29], and the transformation between the

decays exponentially and SS is enhanced/&&., so that charge and the spin degrees of freedoms [30].

SS is dominant in the spin-gap region. In conclusion, we studied the spin-gap phase in the
In order to check the consistency of our argumentlD ¢-J model, considering the backward scattering effect

we calculate the ratios of the logarithmic correctionsin the TL liquid by the renormalization group analysis.

and scaling dimensions for the singlet and the tripletUsing the twisted boundary conditions, we can extract the

excitations from (5) and (10). Here the spin wave velocityspin excitation spectra and determine the critical point as
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FIG. 3. Size dependence df/r determined by the intersec- /
tions of the excitation spectra fdr = 8,12,16,20 systems at FIG. 4. Extrapolated value dfx,, + 3x,;)/4 and the scaling
n = 1/2. These points are fitted by the forsm + B/L*> + dimensions for the singletx(;) and the triplet £;,) excitations
C/L*. for L = 16 system a2 = 1/2.
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