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Energy Velocity of Diffusing Waves in Strongly Scattering Media
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Measurements of the diffusive transport of multiply scattered ultrasonic waves show that the energy
velocity is very similar in magnitude and frequency dependence to the group velocity. Our data
are accurately described using a theoretical model that accounts for the renormalization of scattering
by the coupling between neighboring scatterers, quantitatively predicting the scattering delay that
causes the strong frequency dependence of these velocities seen in our experiments. This gives a
unified physical picture of the velocities of energy transport by both diffusive and ballistic waves.
[S0031-9007(97)04300-7]
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In recent years, there has been a tremendous reviva
interest in the propagation of classical waves through
homogeneous media containing random scatterers [1
When the scattering is strong, the propagation is typica
very well described using the diffusion approximation, an
this has successfully facilitated the interpretation of a wid
range of fascinating wave phenomena. Even though
transport is diffusive, it is, nevertheless, still essential
define several propagation velocities. These include
groupsygd and phasesypd velocities which characterize the
ballistic, or unscattered, component of the incident wave
For diffusive waves, the relevant velocity is the energ
velocity ye which is defined as the ratio of the energ
flux to the energy density [3], and which corresponds
the average local velocity of energy transport in the d
fusion process, sinceye is related to the wave diffusion
coefficient D by D ­ yelpy3. Here lp is the transport
mean free path, or the distance the waves must propag
until their direction is randomized. Within this scenario
the energy velocity represents a distinctly different typ
of velocity, as wave coherence is no longer relevant. T
first calculations for diffusive waves by the Amsterdam
group [4], carried out for low volume fractions of scattere
f, correctly accounted for the extremely low value ofye

found in light scattering experiments; they also predicted
strong frequency dependence forye in the vicinity of Mie
resonances as a result of the temporary storage of w
energy inside the scatterer [4–7]. However, these calc
lations fail asf is increased. Following an idea propose
by Sheng [2], recent Coherent Potential Approximatio
(CPA) calculations [8,9] have attempted to rectify this de
ficiency for higher volume fractions, and have suggest
that the large variations ofye with frequency are washed
out with increasingf; these results are purported to b
in excellent agreement [8,9] with the limited experimen
tal data that currently exist forye [10,11]. However, in
the intermediate frequency regime where resonant scat
ing occurs, such CPA theories become suspect [12], rais
questions about their reliability. In addition to these que
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tions about the behavior ofye, there have been conflicting
ideas about the possible connection between the ene
velocity of diffusive waves and the group velocity, whic
normally describes the coherent transport of energy by b
listic wave pulses. For example, the Amsterdam group [
predicted thatye is entirely different from the “strongly
anomalous” group velocity, while a more recent calcul
tion for diffusive scalar waves has suggested thatye andyg

may in fact be the same [2]. Because of the essential r
of the energy velocity in describing the diffusive propa
gation of classical waves, it is crucial to develop a bett
understanding ofye by investigating its behavior over a
wide range of frequencies, developing improved theore
cal methods for accurately calculating its values, and ree
amining its relationship to the group velocity.

In this Letter, we present a study of ultrasonic wav
propagation through a strongly scattering medium in whi
we measure the energy velocity over an extended range
frequencies. This is accomplished by combining puls
measurements of multiply scattered waves to determineD,
and continuous-wave (cw) measurements of the thickn
dependence of the absolute transmitted intensity to de
mine lp. Insight into the behavior of the energy velocit
is obtained by comparing our data with measurements
the group velocity, determined from ballistic pulse prop
gation in thin samples of the same strongly scattering m
terial [13]. We find that the frequency dependence of t
energy and group velocities is very similar; moreover, th
two velocities are remarkably close in magnitude. Furthe
more, the large dispersion that is observed in the ene
velocity differs significantly from expectations based o
theoretical calculations [8,9] at comparable volume fra
tions of scatterers. We explain our experimental resu
using an effective medium model [14], based on a spe
tral function approach, that allows us to calculateye quan-
titatively in the intermediate frequency regime, giving
simple and physically intuitive picture of the energy ve
locity in which we account explicitly for the scattering
delay of a wave pulse [5,15]. In the forward direction
© 1997 The American Physical Society
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this scattering delay is accurately captured by this effe
tive medium model of the group velocity, which gives a
excellent description of the extremely slow values ofyg

measured in our experiments. We determine the ene
velocity by accounting for the fact that the scattered wav
experience an additional angle-dependent scattering de
which is obtained directly within our model from the phas
shifts given by the complex scattering amplitude for
single scatterer. The results of these calculations are
excellent agreement with our data; in addition, they pr
vide the basis for calculating the frequency dependence
the diffusion coefficient, which is also in very good agree
ment with our measurements. Our model shows how t
close relationship indicated by our data between the ene
and group velocities can be explained in simple physic
terms, and provides a unified picture of the transport v
locities of classical waves in strongly scattering media.

The frequency-dependent diffusive transport of multip
scattered ultrasonic waves was measured in a stron
scattering medium consisting of monodisperse glass be
in water, randomly closely packed at a volume fraction
about 63%. The ultrasonic wavelength was varied to sp
the normalized intermediate frequency range1 , kwa ,

9, wherekw is the ultrasonic wave vector in water anda
is the bead radius. The measurements were performe
a water tank using a plane-wave source, generated usin
small-diameter immersion transducer, positioned far fro
the sample. A hydrophone, whose diameter was less th
a wavelength, was used to detect the transmitted ultraso
field in a single coherence area, or speckle spot, at
output face of the sample, enabling accurate measurem
of the full transmitted ultrasonic wave form to be mad
[11]. Since we detect the full wave form, we can explo
the phase information in the acoustic field to separate
diffusively scattered component from the coherent ballis
component [13], allowing both types of propagation to b
measured independently. An accurate ensemble aver
of the diffusive component was determined by scanning t
hydrophone across the central portion of the sample fa
and averaging the square of the scattered field envelo
over approximately 120 speckles.

The transport mean free path was determined from a
measurement of the absolute transmission, which was
tained from the ratio of the transmitted to incident intensi
in the middle of a very long pulse. Reliable values oflp

were obtained by fitting the predictions of diffusion theory
in which absorption and boundary reflections are correc
included, to our data for the thickness dependence of
transmission [11]. Our results are shown by the solid sym
bols in Fig. 1; for comparison, we have also included da
for the scattering mean free pathls (open symbols) ob-
tained from the exponential attenuation exps2Lylsd of the
ballistic intensity, measured using a short incident pul
[13]. At low frequenciess2 , kwa , 4d, the values of
the two mean free paths are indistinguishable within e
perimental error, while at higher frequencies,ls becomes
c-
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FIG. 1. Frequency dependence of the transport and scatte
mean free paths (solid and open symbols, respectively), co
pared with the predictions of the effective medium model d
scribed in the text (solid and dashed curves).

appreciably smaller thanlp, the difference reflecting the
growing anisotropy of the scattering. Furthermore, a
though there are pronounced minima inls at kwa ø 2 and
7, indicative of very strong resonant scattering, the tran
port mean free path exhibits less structure over this fr
quency range, and appears to be roughly independen
frequency in the strong scattering regimekwa $ 2.

The diffusion coefficient was determined in pulse
experiments by measuring the time dependence of
ensemble-averaged transmitted intensity of the scatte
waves, and fitting the solution of the diffusion equatio
to these data, using appropriate boundary conditions
account for the reflectivity of the sample walls [11]. Th
measured frequency dependence ofD is shown by the
solid symbols in Fig. 2; since we expect thatD scales
as lp, and thusa, we plot Dya as a function ofkwa,
enabling us to include data for different average be
radii, a ­ 0.25 mm (solid triangles) and 0.47 mm (solid
squares). Some of these data were obtained using a p

FIG. 2. Diffusion coefficient as a function of normalized
frequency.
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source rather than a plane-wave source transducer; b
sets of data are in excellent agreement with each oth
confirming the robustness of the experiments and th
analysis. The data exhibit pronounced structure as
function of frequency, varying by nearly a factor of 3.

We use our data forD and lp to determine the energy
velocity ye ­ 3Dylp and plot the results as a function o
kwa using solid symbols in Fig. 3. For comparison, w
also plot data for the group velocity of the same glas
bead-in-water system, shown by the open symbols. T
energy velocity is close in magnitude to the group veloc
at all frequencies. In addition, both velocities exhibit co
siderable frequency dispersion, varying by about a fac
of 3; this presumably results from the effects of scatte
ing resonances, as the dips in the velocities occur at
same frequencies as the dips in the scattering mean
path. Near the first minimum in the group velocity, whe
the scattering mean free path becomes less than half
wavelength, the energy velocity is even a little slower th
the already very slow group velocity; at the higher freque
cies, the two velocities are indistinguishable within expe
mental error. Thus most of the dramatic slowing down
wave transport due to scattering resonances is capture
the group velocity that describes coherent pulse propa
tion, and the scattered waves experience a similar slow
down as they are scattered out of the forward directio
The origin of these very slow velocities can be described
terms of the propagation delay resulting from partial tra
ping of the wave energy by the resonant scatterers [4]; th
the small differences that are seen between the energy
group velocities for2 , kwa , 4 reflect the additional de-
lay experienced by a wave pulse as it is scattered throu
finite (nonzero) scattering angles.

To account quantitatively for this behavior, we use
model based on a spectral function approach, which ov
comes a fundamental limitation of the traditional CPA an

FIG. 3. Frequency dependence of the energy and gro
velocities (solid and open symbols, respectively), compar
with the predictions of our model (solid and dashed curve
The theory curves in all of the figures are averaged over
small 5% variation in our bead size.
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allows wave propagation to be treated unambiguously
the presence of strong resonant scattering [13,14]. In t
approach, the acoustic modes of the strongly scatter
medium are identified by calculating the spectral functio
given by the negative imaginary part of Green’s functio
2Im Gsv, kd. To evaluate the spectral function, we mod
a typical scatterer within the medium as an elastic sph
coated by a layer of water whose thickness is determin
by the volume fraction, thus accounting for the strong ge
metric correlation that exists between the spheres and
surrounding fluid [13,14]. This coated sphere is embedd
in a homogeneous medium whose wave speed is given
y0 ­ vyk and, by solving the boundary value problem fo
the elastic wave equation, the spectral function is eva
ated at allv and k. Since the peaks in the density o
states correspond to minima in the scattering, they de
eate the propagating modes [16], determining the disp
sion relation of the mediumvskd, from which both the
phase and group velocities can be calculated directly [1
The dashed line in Fig. 3 represents these theoretical p
dictions for yg, and is seen to be in excellent agreeme
with the data, accurately capturing all the structure in t
frequency dependence observed experimentally. Note
these calculations involve no adjustable parameters.
extend this approach to calculate the energy velocity by
counting for the additional scattering delay encountered
a wave pulse as it scatters from a coated sphere. At e
scattering angle and frequency, we calculate the comp
scattering amplitudefsv, k, k0d thus determining both the
magnitude and the phase shift of each frequency com
nent in the scattered pulse; the variation of these ph
shifts with frequency results in a corresponding delay (
advance) of the scattered pulse envelope relative to
forward direction, which we determine directly by incor
porating these phase and amplitude shifts into the Fou
components of an incident Gaussian pulse. In the sim
physical picture of diffusive transport where the energ
velocity is the average velocity of waves that have u
dergone many successive scatterings, with each scatte
event altering the direction of propagation,ye is deter-
mined by taking the intensity-weighted angular avera
of these additional scattering delays,Dtave, giving to
an excellent approximationye ­ lpyslpyyg 1 Dtaved, i.e.,
ye ­ ygys1 1 Dtaveygylpd. Note that this expression for
ye can be written asye ­ ygys1 1 dmd, a form simi-
lar to that first proposed by the Amsterdam group [4
although, in our case,yg and dm are calculated in a
renormalized effective medium which accounts for all th
effects of the multiple scattering; here we explicitly iden
tify dm ­ Dtaveygylp, which is a small quantity in our
approach. As shown by the solid line in Fig. 3, this ca
culation is in remarkably good agreement with the expe
mental data, correctly estimating the observed reduct
of ye below yg for 2 , kwa , 4 while predicting that
ye approachesyg for 5 , kwa , 6, which is also con-
sistent with our data. Thus, by starting with an accura
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calculation of the group velocity and then accounting fo
the additional scattering delay of a wave pulse, this th
oretical model successfully describes the behavior of t
energy velocity over an extended range of frequencies,
vealing both the similarities and subtle differences betwe
the energy and group velocities seen in our experiment

The same theoretical model can also be used to cal
late the scattering and the transport mean free paths. T
scattering mean free path is obtained from the total scatt
ing cross section of the coated sphere. Here, however
underestimates the magnitude of the scattering because
neighborhood of a given particle is far from uniform an
the single-sphere approximation does not adequately
count for the additional random scattering from neighbo
ing spheres [14]. We account for this effect empirically b
a phenomenological, frequency independent, scaling p
rameterps determined through a fit to the data, yielding
ps ­ 1.5, which is consistent with exact multiple spher
scattering calculations [14]. As shown by the dashed cur
in Fig. 2, we obtain excellent agreement with our exper
mental data, correctly accounting for the marked frequen
dependence ofls. The transport mean free path is de
termined using the same theoretical approach by integr
ing the square of the angle-dependent scattering amplitu
weighted bys1 2 cosud whereu is the scattering angle,
over all scattering angles. Since the scattering enviro
ment is the same, we use the same value forps. We also
obtain good agreement with the measuredlp, as shown by
the solid curve in Fig. 2.

Since we have predicted the behavior of bothye and
lp, we can also determine the frequency dependence of
diffusion coefficient usingD ­ yelpy3. The results are
plotted as the solid line in Fig. 2; again the agreement b
tween theory and experiment is very good, with the theo
capturing all of the structure observed experimentally.

Our experimental results show convincingly that, at lea
for acoustic waves, there is considerable structure in t
frequency dependence of the energy velocity at high vo
ume fractions of scatterers. This structure is considerab
greater than expected from previous calculations based
a CPA model [9], possibly indicating the shortcomings
noted above, of using the CPA approach in the interme
ate frequency regime [12]; an additional deficiency of th
CPA model is its unphysical prediction of an energy veloc
ity that is substantially larger than both our measured a
calculated values of the group velocity throughout mo
of the strong scattering regime investigated. By contra
we find that the effect of the strong dispersion on the e
ergy velocity is very similar to its effect on the group ve
locity, making it imperative to use our new approach t
model their behavior theoretically. Underlying this behav
ior, however, is a simple physical picture. The couplin
between the resonant scatterers leads to a renormaliza
of the scattering, so that the scattering from each sph
is weakened relative to the effective medium in which th
spheres are embedded. This effect ensures that the gr
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velocity remains well defined, and allows it to be accu
rately predicted by our model, which correctly describe
the renormalized homogeneous medium that is sensed
the group velocity. The same mechanism also makes
possible to calculate the energy velocity quantitatively b
extending the model to account for the angular dependen
of the scattering delay. Furthermore, this renormalizatio
of the scattering medium should increase with both th
strength of the scattering and the volume fraction of sca
terers, leading to the strong dispersion at highf observed
in our experiments. This physical picture has the appea
ing but generally unrecognized feature that the group an
energy velocities are essentially the same [2], having
common origin in the velocity of propagation of a wave
pulse, both for coherent, unscattered propagation, as w
as for the propagation between scattering events in diffu
sive transport.

We thank NSERC, NATO, RGC (Grant
No. HKUST685/96P), and NSF (Grant No. DMR96-
31279) for their support.

[1] Scattering and Localization of Classical Waves in Random
Media, edited by P. Sheng (World Scientific, Singapore
1990).

[2] P. Sheng,Introduction to Wave Scattering, Localization,
and Mesoscopic Phenomena(Academic Press, San Diego,
1995).

[3] L. Brillouin, Wave Propagation and Group Velocity
(Academic Press, New York, 1960).

[4] M. P. van Albadaet al., Phys. Rev. Lett.66, 3132 (1991);
Phys. Rev. B45, 12 233 (1992); B. A. van Tiggelen and
A. Lagendijk, Europhys. Lett.23, 311 (1993).

[5] G. Cwilich and Y. Fu, Phys. Rev. B46, 12 015 (1992).
[6] E. Kogan and M. Kaveh, Phys. Rev. B46, 10 636 (1992).
[7] D. Livdan and A. A. Lisyansky, Phys. Rev. B53, 14 843

(1996).
[8] K. Busch and C. M. Soukoulis, Phys. Rev. Lett.75, 3442

(1995); Phys. Rev. B54, 893 (1996).
[9] M. Kafesaki and E. N. Economou, Europhys. Lett.37, 7

(1997).
[10] A. Z. Genacket al., in Photonic Band Gaps and Localiza-

tion, edited by C. M. Soukoulis (Plenum Press, New York
1993), p. 23.

[11] J. H. Pageet al., Phys. Rev. E52, 3106 (1995).
[12] At intermediate frequencies where the wavelength i

comparable with the size of the scatterers, it is well known
that the self-energy acquires a wave vector dependenc
As a result, the basis of the CPA approach, that th
self-energy can be renormalized into a purely frequenc
dependent velocity, becomes invalid in any treatmen
involving resonant scattering.

[13] J. H. Pageet al., Science271, 634 (1996).
[14] X. D. Jing, P. Sheng, and M. Y. Zhou, Phys. Rev. Lett

66, 1240 (1991); Phys. Rev. A46, 6513 (1992); Physica
(Amsterdam)207A, 37 (1994).

[15] E. P. Wigner, Phys. Rev.98, 145 (1955).
[16] These modes are really quasimodes, since they have fin

decay lengths due to the strong scattering.
3169


