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Energy Velocity of Diffusing Waves in Strongly Scattering Media

H. P. Schriemet,M. L. Cowan! J. H. Pagé, Ping Shend, Zhengyou Li? and D. A. WeitZ
'Department of Physics, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
’Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
3Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396
(Received 9 June 1937

Measurements of the diffusive transport of multiply scattered ultrasonic waves show that the energy
velocity is very similar in magnitude and frequency dependence to the group velocity. Our data
are accurately described using a theoretical model that accounts for the renormalization of scattering
by the coupling between neighboring scatterers, quantitatively predicting the scattering delay that
causes the strong frequency dependence of these velocities seen in our experiments. This gives a
unified physical picture of the velocities of energy transport by both diffusive and ballistic waves.
[S0031-9007(97)04300-7]

PACS numbers: 43.35.+d, 43.20.+9, 62.30.+d

In recent years, there has been a tremendous revival tibns about the behavior af,, there have been conflicting
interest in the propagation of classical waves through inideas about the possible connection between the energy
homogeneous media containing random scatterers [1,2}elocity of diffusive waves and the group velocity, which
When the scattering is strong, the propagation is typicallynormally describes the coherent transport of energy by bal-
very well described using the diffusion approximation, andlistic wave pulses. For example, the Amsterdam group [4]
this has successfully facilitated the interpretation of a widepredicted thatv, is entirely different from the “strongly
range of fascinating wave phenomena. Even though thanomalous” group velocity, while a more recent calcula-
transport is diffusive, it is, nevertheless, still essential taion for diffusive scalar waves has suggested thaindv,
define several propagation velocities. These include theay in fact be the same [2]. Because of the essential role
group(v,) and phasév,) velocities which characterize the of the energy velocity in describing the diffusive propa-
ballistic, or unscattered, component of the incident waveggation of classical waves, it is crucial to develop a better
For diffusive waves, the relevant velocity is the energyunderstanding ob, by investigating its behavior over a
velocity v, which is defined as the ratio of the energy wide range of frequencies, developing improved theoreti-
flux to the energy density [3], and which corresponds tocal methods for accurately calculating its values, and reex-
the average local velocity of energy transport in the dif-amining its relationship to the group velocity.
fusion process, since, is related to the wave diffusion In this Letter, we present a study of ultrasonic wave
coefficientD by D = v.l*/3. Herel" is the transport propagation through a strongly scattering medium in which
mean free path, or the distance the waves must propagate measure the energy velocity over an extended range of
until their direction is randomized. Within this scenario, frequencies. This is accomplished by combining pulsed
the energy velocity represents a distinctly different typemeasurements of multiply scattered waves to deteribine
of velocity, as wave coherence is no longer relevant. Thand continuous-wave (cw) measurements of the thickness
first calculations for diffusive waves by the Amsterdamdependence of the absolute transmitted intensity to deter-
group [4], carried out for low volume fractions of scatterersmine [*. Insight into the behavior of the energy velocity
¢, correctly accounted for the extremely low valuewgf is obtained by comparing our data with measurements of
found in light scattering experiments; they also predicted @he group velocity, determined from ballistic pulse propa-
strong frequency dependence igrin the vicinity of Mie  gation in thin samples of the same strongly scattering ma-
resonances as a result of the temporary storage of waverial [13]. We find that the frequency dependence of the
energy inside the scatterer [4—7]. However, these calcienergy and group velocities is very similar; moreover, the
lations fail as¢ is increased. Following an idea proposedtwo velocities are remarkably close in magnitude. Further-
by Sheng [2], recent Coherent Potential Approximationmore, the large dispersion that is observed in the energy
(CPA) calculations [8,9] have attempted to rectify this de-velocity differs significantly from expectations based on
ficiency for higher volume fractions, and have suggestedheoretical calculations [8,9] at comparable volume frac-
that the large variations af, with frequency are washed tions of scatterers. We explain our experimental results
out with increasinge; these results are purported to be using an effective medium model [14], based on a spec-
in excellent agreement [8,9] with the limited experimen-tral function approach, that allows us to calculatequan-
tal data that currently exist fos, [10,11]. However, in titatively in the intermediate frequency regime, giving a
the intermediate frequency regime where resonant scattesimple and physically intuitive picture of the energy ve-
ing occurs, such CPA theories become suspect [12], raisinigcity in which we account explicitly for the scattering
questions about their reliability. In addition to these quesdelay of a wave pulse [5,15]. In the forward direction,
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this scattering delay is accurately captured by this effec- 4
tive medium model of the group velocity, which gives an
excellent description of the extremely slow valuesvgf
measured in our experiments. We determine the energy
velocity by accounting for the fact that the scattered waves
experience an additional angle-dependent scattering delay, s 5k
which is obtained directly within our model from the phase X
shifts given by the complex scattering amplitude for a
single scatterer. The results of these calculations are in ;|
excellent agreement with our data; in addition, they pro-
vide the basis for calculating the frequency dependence of
the diffusion coefficient, which is also in very good agree- 0 L
ment with our measurements. Our model shows how the
close relationship indicated by our data between the energy k,a

and group Vemc_ities can .b.e eXP'ai”ed in simple physicagg . Frequency dependence of the transport and scattering
terms, and provides a unified picture of the transport vemean free paths (solid and open symbols, respectively), com-
locities of classical waves in strongly scattering media. pared with the predictions of the effective medium model de-

The frequency-dependent diffusive transport of multiplyscribed in the text (solid and dashed curves).
scattered ultrasonic waves was measured in a strongly

scattering medium consisting of monodisperse glass bea%preciably smaller thaff, the difference reflecting the

in water, randomly closely packed at a volume fraction Ofgrowing anisotropy of the scattering. Furthermore, al-

about 63%. The ultrasonic wavelength was varied to SPathough there are pronounced minimdjratk, a ~ 2 and
the normalized intermediate frequency rarige: k,.a 7, indicative of very strong resonant scattering, the trans-
9, wherek,, is the ultrasonic wave vector in water and o1t mean free path exhibits less structure over this fre-

is the bead radi.us. The measurements were performe_d Ylency range, and appears to be roughly independent of
a water tank using a plane-wave source, generated Usingdquency in the strong scattering regime: = 2.
small-diameter immersion transducer, positioned far from the diffusion coefficient was determined in pulsed

the sample. A hydrophone, whose diameter was less thaékperiments by measuring the time dependence of the
awavelength, was used to detect the transmitted ultrasonjgysemple-averaged transmitted intensity of the scattered
field in a single coherence area, or speckle spot, at thgayes, and fitting the solution of the diffusion equation
output face of the sample, enabling accurate measurements hese data, using appropriate boundary conditions to
of the full transmitted ultrasonic wave form to be made,ccount for the reflectivity of the sample walls [11]. The
[11]. Since we detect the full wave form, we can exploit j,easured frequency dependenceldfis shown by the

the phase information in the acoustic field to separate thgy)ig symbols in Fig. 2; since we expect that scales
diffusively scattered component from the coherent ballisticys /+ and thusa, we plot D/a as a function ofk,a,
component [13], allowing both types of propagation to begnapling us to include data for different average bead
measured independently. An accurate ensemble averaggyii , = 0.25 mm (solid triangles) and 0.47 mm (solid

of the diffusive component was determined by scanning th%quares). Some of these data were obtained using a point
hydrophone across the central portion of the sample face

and averaging the square of the scattered field envelope

over approximately 120 speckles. 7 ' ' ' ' ; '
The transport mean free path was determined fromacw 14 $ DATAa-0¢7mm |

measurement of the absolute transmission, which was ob- 1.2 | ——THEORY |

tained from the ratio of the transmitted to incident intensity

in the middle of a very long pulse. Reliable values/tf 2

were obtained by fitting the predictions of diffusion theory, &

in which absorption and boundary reflections are correctly £ 08

included, to our data for the thickness dependence of the 8 0.6 |

transmission [11]. Our results are shown by the solid sym- Q " |

bols in Fig. 1; for comparison, we have also included data 0.4

for the scattering mean free path (open symbols) ob-

tained from the exponential attenuation éx./[,) of the 0.2

ballistic intensity, measured using a short incident pulse

[13]. At low frequencies2 < k,,a < 4), the values of

the two mean free paths are indistinguishable within exf|G. 2. Diffusion coefficient as a function of normalized

perimental error, while at higher frequenciéspecomes frequency.

1.0
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source rather than a plane-wave source transducer; boétlows wave propagation to be treated unambiguously in
sets of data are in excellent agreement with each othethe presence of strong resonant scattering [13,14]. In this
confirming the robustness of the experiments and theiapproach, the acoustic modes of the strongly scattering
analysis. The data exhibit pronounced structure as enedium are identified by calculating the spectral function,
function of frequency, varying by nearly a factor of 3. given by the negative imaginary part of Green’s function,
We use our data fob and/* to determine the energy —Im G(w, k). To evaluate the spectral function, we model
velocity v, = 3D/I* and plot the results as a function of a typical scatterer within the medium as an elastic sphere
kya using solid symbols in Fig. 3. For comparison, we coated by a layer of water whose thickness is determined
also plot data for the group velocity of the same glassby the volume fraction, thus accounting for the strong geo-
bead-in-water system, shown by the open symbols. Thmetric correlation that exists between the spheres and the
energy velocity is close in magnitude to the group velocitysurrounding fluid [13,14]. This coated sphere is embedded
at all frequencies. In addition, both velocities exhibit con-in a homogeneous medium whose wave speed is given by
siderable frequency dispersion, varying by about a factor, = w/k and, by solving the boundary value problem for
of 3; this presumably results from the effects of scatterthe elastic wave equation, the spectral function is evalu-
ing resonances, as the dips in the velocities occur at thated at allw and k. Since the peaks in the density of
same frequencies as the dips in the scattering mean frestates correspond to minima in the scattering, they delin-
path. Near the first minimum in the group velocity, whereeate the propagating modes [16], determining the disper-
the scattering mean free path becomes less than half tison relation of the mediunw (k), from which both the
wavelength, the energy velocity is even a little slower tharphase and group velocities can be calculated directly [13].
the already very slow group velocity; at the higher frequen-The dashed line in Fig. 3 represents these theoretical pre-
cies, the two velocities are indistinguishable within experi-dictions forv,, and is seen to be in excellent agreement
mental error. Thus most of the dramatic slowing down ofwith the data, accurately capturing all the structure in the
wave transport due to scattering resonances is captured equency dependence observed experimentally. Note that
the group velocity that describes coherent pulse propagdhese calculations involve no adjustable parameters. We
tion, and the scattered waves experience a similar slowingxtend this approach to calculate the energy velocity by ac-
down as they are scattered out of the forward directioncounting for the additional scattering delay encountered by
The origin of these very slow velocities can be described ira wave pulse as it scatters from a coated sphere. At each
terms of the propagation delay resulting from partial trap-scattering angle and frequency, we calculate the complex
ping of the wave energy by the resonant scatterers [4]; thuscattering amplitudé (w, k, k') thus determining both the
the small differences that are seen between the energy antagnitude and the phase shift of each frequency compo-
group velocities fo? < k,,a < 4 reflect the additional de- nent in the scattered pulse; the variation of these phase
lay experienced by a wave pulse as it is scattered througshifts with frequency results in a corresponding delay (or
finite (nonzero) scattering angles. advance) of the scattered pulse envelope relative to the
To account quantitatively for this behavior, we use aforward direction, which we determine directly by incor-
model based on a spectral function approach, which oveporating these phase and amplitude shifts into the Fourier
comes a fundamental limitation of the traditional CPA andcomponents of an incident Gaussian pulse. In the simple
physical picture of diffusive transport where the energy
velocity is the average velocity of waves that have un-
dergone many successive scatterings, with each scattering
event altering the direction of propagation, is deter-
mined by taking the intensity-weighted angular average
of these additional scattering delayAt,.., giving to
an excellent approximation, = [I*/(I* /v, + Ataye), i€,
v, = vy /(1 + Aty v, /1"). Note that this expression for
v, can be written a, = v, /(1 + §,), a form simi-
lar to that first proposed by the Amsterdam group [4],
although, in our casey, and ,, are calculated in a
renormalized effective medium which accounts for all the
. effects of the multiple scattering; here we explicitly iden-
0 1 2 3 4 5 6 7 8 9 tify 6,, = Atavevg/l*, Which is a small quantity in our
k, a approach. As shown by the solid line in Fig. 3, this cal-
culation is in remarkably good agreement with the experi-
FIG. 3. Frequency dependence of the energy and groupyentg| data, correctly estimating the observed reduction

velocities (solid and open symbols, respectively), compared . .
with the predictions of our model (solid and dashed curves)Of Ve Delow v for 2 < k,a < 4 while predicting that
The theory curves in all of the figures are averaged over th&. approachess, for 5 < k,a < 6, which is also con-

small 5% variation in our bead size. sistent with our data. Thus, by starting with an accurate
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calculation of the group velocity and then accounting forvelocity remains well defined, and allows it to be accu-
the additional scattering delay of a wave pulse, this therately predicted by our model, which correctly describes
oretical model successfully describes the behavior of théhe renormalized homogeneous medium that is sensed by
energy velocity over an extended range of frequencies, réhe group velocity. The same mechanism also makes it
vealing both the similarities and subtle differences betweepossible to calculate the energy velocity quantitatively by
the energy and group velocities seen in our experiment. extending the model to account for the angular dependence
The same theoretical model can also be used to calcwf the scattering delay. Furthermore, this renormalization
late the scattering and the transport mean free paths. Tl the scattering medium should increase with both the
scattering mean free path is obtained from the total scattestrength of the scattering and the volume fraction of scat-
ing cross section of the coated sphere. Here, however, ferers, leading to the strong dispersion at higglebserved
underestimates the magnitude of the scattering because timeour experiments. This physical picture has the appeal-
neighborhood of a given particle is far from uniform anding but generally unrecognized feature that the group and
the single-sphere approximation does not adequately aenergy velocities are essentially the same [2], having a
count for the additional random scattering from neighbor-common origin in the velocity of propagation of a wave
ing spheres [14]. We account for this effect empirically bypulse, both for coherent, unscattered propagation, as well
a phenomenological, frequency independent, scaling pas for the propagation between scattering events in diffu-
rameterp, determined through a fit to the data, yielding sive transport.
po = 1.5, which is consistent with exact multiple sphere  We thank NSERC, NATO, RGC (Grant
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