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Subharmonic Entrainment of Unstable Period Orbits and Generalized Synchronization
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Chaos synchronization of nonidentical unidirectionally coupled systems is investigated and character-
ized in terms of the entrainment ratios of unstable periodic orbits. The implications of subharmonic
entrainment for generalized synchronization are discussed and illustrated for discrete and continuous
systems. [S0031-9007(97)04380-9]
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Synchronization phenomena are of fundamental im
portance for many physical, biological, and technica
systems. In particular, the synchronization of chaot
dynamics [1] has attracted much attention during th
last years because of its role in understanding the b
sic features of coupled nonlinear systems and in vie
of potential applications in communication systems an
time series analysis and modeling [2]. Different couplin
schemes have been proposed in order to achieve synch
nization, in particular, for unidirectionally coupled sys
tems [1] including spatially extended systems like couple
oscillators or partial differential equations [3]. If both
coupled systems are of the same typeidentical synchro-
nizationmay occur where the statesx andy of drive and
response, respectively, converge to the same values (i
kxstd 2 ystdk ! 0 for t ! `). If the coupled systems
are different (for example, due to parameter mismatc
more sophisticated types of synchronization likegeneral-
ized synchronization[4–10], phase synchronization[11],
or lag synchronization[12] have been observed, and the
variety and complexity of these synchronization phenom
ena is currently investigated very intensely.

The goal of this Letter is to draw attention to the
synchronization features of theunstable periodic orbits
(UPOs) that constitute the skeleton of any typical chaot
attractor. Only recently, these orbits have been iden
fied to be a possible source of intermittent breakdown
synchronization in the presence of noise or other pertu
bations [13]. For robust high-quality synchronization an
UPO of the drive has to generate a stable synchrono
periodic orbit (PO) of the response system. If, fo
example, due to a too weak coupling, this condition
not fulfilled the synchronization breaks down when th
driving chaotic trajectory comes sufficiently close to a
UPO that fails to entrain a stable PO of the respon
system, and (arbitrary) small amounts of noise may ge
erate large scale deviations from the synchronized sta
Often such unstable POs of the response system are
result of a period doubling bifurcation where a formerly
stable periodic response orbit becomes unstable and a n
period-2 orbit is created which is not located in the set o
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synchronized motionM ­ hsx, yd : x ­ yj (in the case
of identical synchronization). Therefore, high-quality
synchronization is closely connected with subharmoni
response that may be characterized by itsentrainment ra-
tio TD : TR ­ 1 : p, whereTD and TR denote the peri-
ods of the drive UPO and the response PO, respective
andp is an integer. However,subharmonic entrainment
with p . 1 not only has important consequences for high
quality synchronization but also for generalized synchro
nization and predictability. This is the main topic of
this paper.

In the following, we shall consider different types of
generalized synchronization(GS). Two unidirectionally
coupled systemsX and Y may be calledsynchronized
if the behavior of the response systemY is completely
determined by the drive systemX. More precisely, GS
of unidirectionally coupled dynamical systemsÙx ­ fsxd
(x [ Rm) and Ùy ­ gsy , xd (y [ Rk) occurs if there
exists an opensynchronization basinB , Rm 3 Rk

such that limt!` kyst; x0, y10d 2 yst; x0, y20dk ­ 0 for
all sx0, y10d, sx0, y20d [ B, i.e., if the response system
Y is asymptotically stable with respect to the driveX
[14]. This is not the only possible definition. In the first
work on general types of synchronous chaotic dynamic
by Afraimovich et al. [4] a stronger notion of GS was
introduced assuming essentially the existence of
homeomorphism between states of drive and re
sponse. A similar definition was used in Refs. [5,7,9
where GS was defined in terms of a (not necessa
ily homeomorphic) functionH : Rm ! Rk such that
limt!` kHsssxstdddd 2 ystdk ­ 0. Methods for investi-
gating this type of GS using time series have bee
suggested in Ref. [5]. In Ref. [7] it was argued tha
GS yielding a functional relation occurs for invertible
drive systems if the response system is asymptotical
stable. This conclusion holds for aperiodic orbits an
for (entrained) periodic oscillations withTD ­ TR,
but not if TD : TR ­ 1 : p where p . 1 [8,15]. A
simple example is the case of periodic synchronizatio
with ratio TD : TR ­ 1 : 2 where any point on the attrac-
tor of the drive is mapped totwo points on the response
© 1997 The American Physical Society
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orbit. H is in this case a relation butnot a function
[16]. In the following we discuss the relevance of th
multivaluedness ofH for chaotic systems.

As our first example we consider thegeneralized baker
map[9,17],

xn11
1 ­

Ω
laxn

1 , if xn
2 , a ,

la 1 lbxn
1 , if xn

2 $ a ,

xn11
2 ­

Ω
xn

2 ya, if xn
2 , a ,

sxn
2 2 adyb, if xn

2 $ a ,

(1)

that drives the one dimensional system

yn11 ­ arctans2c p ynd 1 xn11
1 1 d . (2)

The parameters of the driving system arela ­ 0.15,
lb ­ 1 2 la, a ­ 0.1, b ­ 1 2 a, and for the response
system we usec ­ 40 and d ­ 1. To illustrate the re-
lation between the statesxn ­ sxn

1 , xn
2 d and yn of the

drive and the response, respectively, we have plot
in Fig. 1 yn vs xn

1 . As can be seen in this figure th
graph ofsx1, yd consists essentially of two branches [18
In order to understand the features of this relation b
tween drive and response we have investigated the
trainment properties of some low-period UPOs of t
drive. The generalized baker map (1) possesses two fi
points at x ­ s0, 0d and x ­ s1, 1d. If the first fixed
point s0, 0d is used to drive the response system (2) t
response orbith ynj consists of an alternating sequen
h. . . , 20.5609, 2.5262, 20.5609, 2.5262, . . .j while the re-
sponse to the second fixed points1, 1d is constant with
yn ø 0.4811. Thus one of the fixed points of the drivin
system is mapped to a fixed point of the response, and
other fixed point of the drive is related to a period tw
orbit of the response system. A different situation occ
for the period-2 orbit UPO of the drive (1)

xn ­

√
la

1 2 lalb
,

a2

1 2 ab

!
ø s0.171 920, 0.010 989 0d ,

xn11 ­

√
l2

a

1 2 lalb
,

a
1 2 ab

!
ø s0.025 788, 0.109 890d ,

FIG. 1. Variabley of the response system (2) vs variablex1
of the drive system (1).
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for which two basins of synchronization (y , yb and
y . yb , yb ø 0.051 41) occur that both lead to1 : 1
entrainment of the response system withxn ° yn ø
2.696 09, xn11 ° yn11 ø 20.535 736 for initial values
y , yb and xn ° yn ø 20.389 005, xn11 ° yn11 ø
2.532 41 for initial values y . yb . In both cases the
two points of the driving period-2 UPO are mappe
uniquely to two different points of the response system
Furthermore, it turned out that the two basins are on
relevant for this particular period-2 orbit but not for th
chaotic dynamics [i.e., two orbits starting in differen
basins finally converge to the same trajectory when driv
by a chaotic sequence from (1)].

Both period-3 UPOs of (1) generate period-6 orbi
of the response system, and thusH is again not a
function for these UPOs. Similar relations occur fo
other higher periodic orbits and may be interpreted as t
reasons for the rather complicated nonsmooth depende
of yn on xn

1 (or xn). Since the Lyapunov exponen
of the response systemlR ø 22.152 is smaller than
the smallest exponent of the drivelD

2 ø 20.336, this
example also shows that a preservation of the Lyapun
dimension is not sufficient to guarantee the existence
a smooth functionH [10]. In Ref. [9] it was shown
that such a condition for so-called past-history Lyapuno
exponents has to be fulfilled forall points x on the
drive attractor in order to have a smooth map [o
differentiable GS (DGS)]. Therefore, we have checke
the past Lyapunov exponents of all UPOs (up to perio
10), but in all these cases the smallest exponent
the drive was larger than the exponent of the respon
system. Thus stability criteria seem not to be sufficie
for smoothness in cases where subharmonic entrainm
occurs andH is not a function for allx.

Similar subharmonic entrainment phenomena can
observed with continuous dynamical systems as will
illustrated now for two coupled Rössler systems,

Ùx1 ­ 2 1 x1sx2 2 4d, a Ùy1 ­ 2 1 y1s y2 2 4d ,

Ùx2 ­ 2x1 2 x3, a Ùy2 ­ 2y1 2 y3 , (3)

Ùx3 ­ x2 1 bx3, a Ùy3 ­ y2 1 by3 1 csx3 2 y3d .

The parametera ­ 2 is used to detune both system
andc is a variable coupling constant. Figure 2(a) show
a projection of the driving Rössler attractor (gray soli
curve) together with two UPOs (black solid and dashe
curves) that are embedded in the chaotic attractor.
Fig. 2(b) the corresponding chaotic and periodic orb
of the response system are shown. Since the detun
parametera ­ 2 is different from 1 both systems canno
synchronize identically (i.e., withkxstd 2 ystdk ! 0 for
t ! `). The coupling constantc ­ 0.27 has been chosen
such that (i) the largest conditional Lyapunov expone
of the response system is negative and (ii) differe
entrainment ratios for different pairs of UPOs occur. Th
UPO plotted as a solid curve in Fig. 2(a) locks wit
a periodic response of the same period [see Fig. 2(c
3159
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FIG. 2. Coupled Rössler systems (3) forc ­ 0.27 and
b ­ 0.42. (a) Chaotic drive attractor (solid gray curve) an
two UPOs (solid and dashed black curves). (b) Respon
attractor (gray) and POs (solid and dashed black curv
that are entrained by the UPOs shown in (a). (c) Period
oscillation of the first UPO and its corresponding PO
(1 : 1). (d) Same as (c) for the second UPO-PO pa
(1 : 2). (e) y1 variables of two slightly different response
systems.
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whereas the dashed UPO in Fig. 2(a) leads to a perio
solution when used to drive the response system [
Fig. 2(d)]. Because of this 1:2 entrainment any point o
the UPO of the drive system corresponds to two points
the response orbit.

Nevertheless, drive and response are synchronized
the sense of the first definition given above. This
illustrated in Fig. 2(e) where they1 variables of two
response systems (3) with different initial conditions a
plotted on the ordinate and abscissa, respectively [8].
estimate the robustness of their mutual synchronizat
the parametersb ­ 0.422 andb ­ 0.418 of the response
systems have been chosen slightly different from t
corresponding valueb ­ 0.42 of the drive in Eq. (3).
Because of this parameter mismatch the motion of bo
response systems is not located exactly on the diagona
Fig. 2(e) but always remains very close to it without larg
excursions which would be a typical signature for an
transversal instabilities [13]. Similar results have be
obtained when noise was added to the coupling signal.

If the coupling constantc is increased all UPOs we
have found entrain withTD ­ TR, but there still exist
regions on the drive attractor where nearest neighbors
some reference state are mapped to different branche
the response attractor. This phenomenon is illustra
in Fig. 3 which was generated in the following way
(i) Select at timet a statexstd of the drive and itsnn ­
10 nearest neighbors, (ii) compute the distances of t
corresponding states of the response system from the s
ystd, and (iii) plot these distances vs the timet. As can be
seen in Fig. 3, the trajectory enters different regions on
attractor, where a neighborhood of the current drive st
is mapped to a different number of locations (cluster
on the response attractor. In the case of DGS [9] on
a single cluster with (very) small distances should occ
which is not the case for this example. This observati
is in agreement with the fact that the largest Lyapun
exponent of the response systemlR

1 ­ 20.44 is not
smaller than the smallest LE of the drivelD

3 ­ 23.2
and thus a functionH may exist which is not smooth.
This method for visualizing the relation between driv
and response can also be applied to experimental d

FIG. 3. Distancesd of response states that correspond to 1
nearest neighbors of the drive system (c ­ 2, b ­ 0.42).
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in a reconstructed state space provided that the time ser
is sufficiently long (or the relation between drive and
response is sufficiently smooth).

In this Letter we have shown that UPOs which ar
embedded in a chaotic drive attractor may genera
periodic orbits of the response system with differen
entrainment ratiosTD : TR ­ 1 : p. Subharmonic en-
trainment with p . 1 means that there exist points on
the drive attractor which are not mapped uniquely to th
response attractor. If generalized synchronization is d
fined as the existence of an asymptotic functiony ­ Hsxd
that is valid on the whole drive attractor (including all
UPOs, etc.), then the concept of GS does not apply
soon as an UPO occurs that entrains a PO of the r
sponse with a longer period as that of the drive. O
the other hand, we have demonstrated that even in su
cases a pair of slightly different response systems sy
chronizes robustly. Therefore, we suggest to distinguis
two types of generalized synchronization: (i) where dif
ferent response trajectoriesystd and ỹstd starting in some
common basin yield asymptotically the same dynamic
(limt!` kystd 2 ỹstdk ­ 0) or (ii) where a functionH
exists with limt!` kHsssxstdddd 2 ystdk ­ 0. The second
definition was used in Refs. [5,7,9] and in a stronger form
in [4]. It applies, for example, to those cases where
global Lyapunov function for the response system ex
ists (e.g., the first example in Ref. [7]) and subharmon
entrainment and the resulting complications forH can
be excluded. The first definition is closely related to
the auxiliary system method of Abarbanelet al. [8] and
more general, because it covers also subharmonic e
trainment. However, it is probably still not the most
general definition, because it does not include cases
partial synchronization like phase synchronization [11
The development of useful and rigorous definitions for th
full hierarchy of synchronized motion (including noise)
thus remains an important task for future investigations.
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