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Subharmonic Entrainment of Unstable Period Orbits and Generalized Synchronization
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Chaos synchronization of nonidentical unidirectionally coupled systems is investigated and character-
ized in terms of the entrainment ratios of unstable periodic orbits. The implications of subharmonic
entrainment for generalized synchronization are discussed and illustrated for discrete and continuous
systems. [S0031-9007(97)04380-9]
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Synchronization phenomena are of fundamental imsynchronized motiom = {(x,y) : x = y} (in the case
portance for many physical, biological, and technicalof identical synchronization). Therefore, high-quality
systems. In particular, the synchronization of chaoticsynchronization is closely connected with subharmonic
dynamics [1] has attracted much attention during theesponse that may be characterized byeitrainment ra-
last years because of its role in understanding the baio Tp : T = 1 : p, whereTp and Tk denote the peri-
sic features of coupled nonlinear systems and in viewds of the drive UPO and the response PO, respectively,
of potential applications in communication systems andand p is an integer. Howevesubharmonic entrainment
time series analysis and modeling [2]. Different couplingwith p > 1 not only has important consequences for high-
schemes have been proposed in order to achieve synchrmguality synchronization but also for generalized synchro-
nization, in particular, for unidirectionally coupled sys- nization and predictability. This is the main topic of
tems [1] including spatially extended systems like coupledhis paper.
oscillators or partial differential equations [3]. If both In the following, we shall consider different types of
coupled systems are of the same tygentical synchro- generalized synchronizatioGS). Two unidirectionally
nizationmay occur where the statasandy of drive and coupled system&X and Y may be calledsynchronized
response, respectively, converge to the same values (i.&.,the behavior of the response systdmis completely
I[x(r) — y(2)|| = 0 for t — ). If the coupled systems determined by the drive system. More precisely, GS
are different (for example, due to parameter mismatchpf unidirectionally coupled dynamical systems= f(x)
more sophisticated types of synchronization lgeneral- (x € R™) and y = g(y,x) (y € R¥) occurs if there
ized synchronizatiofd—10], phase synchronizatiofil],  exists an opensynchronization basinB C R™ X R*
or lag synchronizatior{12] have been observed, and the such that lim_. ||ly(z; xo,y10) — ¥(t; X0, y20)|| = 0 for
variety and complexity of these synchronization phenomall (x¢, y10), (X0, ¥20) € B, i.e., if the response system
ena is currently investigated very intensely. Y is asymptotically stable with respect to the drie

The goal of this Letter is to draw attention to the [14]. This is not the only possible definition. In the first
synchronization features of thenstable periodic orbits work on general types of synchronous chaotic dynamics
(UPOs) that constitute the skeleton of any typical chaotiby Afraimovich et al. [4] a stronger notion of GS was
attractor. Only recently, these orbits have been identiintroduced assuming essentially the existence of a
fied to be a possible source of intermittent breakdown ohomeomorphism between states of drive and re-
synchronization in the presence of noise or other pertursponse. A similar definition was used in Refs. [5,7,9]
bations [13]. For robust high-quality synchronization anywhere GS was defined in terms of a (not necessar-
UPO of the drive has to generate a stable synchronouy homeomorphic) functionH : R™ — R such that
periodic orbit (PO) of the response system. If, forlim,_. ||[H(x(z)) — y(¢)ll = 0. Methods for investi-
example, due to a too weak coupling, this condition isgating this type of GS using time series have been
not fulfilled the synchronization breaks down when thesuggested in Ref. [5]. In Ref. [7] it was argued that
driving chaotic trajectory comes sufficiently close to anGS yielding a functional relation occurs for invertible
UPO that fails to entrain a stable PO of the responselrive systems if the response system is asymptotically
system, and (arbitrary) small amounts of noise may genstable. This conclusion holds for aperiodic orbits and
erate large scale deviations from the synchronized statéor (entrained) periodic oscillations withlp = Tk,
Often such unstable POs of the response system are thet not if Tp : T = 1: p where p > 1 [8,15]. A
result of a period doubling bifurcation where a formerly simple example is the case of periodic synchronization
stable periodic response orbit becomes unstable and a newith ratio Tp : Tx = 1 : 2 where any point on the attrac-
period-2 orbit is created which is not located in the set ofor of the drive is mapped ttwo points on the response
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orbit. H is in this case a relation butot a function for which two basins of synchronizationy (< y, and
[16]. In the following we discuss the relevance of thisy > y,, y, = 0.05141) occur that both lead td : 1

multivaluedness off for chaotic systems. entrainment of the response system wih+— y" =
As our first example we consider tigeneralized baker 2.696 09, x"*! — y**! = —0.535736 for initial values
map[9,17], y <y, and x" — y" = —0.389005, x""! > yrtl =
u - 2.53241 for initial valuesy > y,. In both cases the

PHARIES {)‘axl’ ; if *2 <a, two points of the driving period-2 UPO are mapped

Ao + Apxr, i x = a, @ uniquely to two different points of the response system.

atl _ | x3/a, if x5 <a, Furthermore, it turned out that the two basins are only

o= {(xﬁ’ —a)/b, ifx) =a, relevant for this particular period-2 orbit but not for the

chaotic dynamics [i.e., two orbits starting in different
basins finally converge to the same trajectory when driven

ntl _ _ n n+l by a chaotic sequence from (1)].

Y arctan—c ") + x{™" + d. @ Both period-3 UPOs of (1) generate period-6 orbits
The parameters of the driving system akg = 0.15, of the response system, and thés is again not a
A, =1— A4, a=0.1,b =1 — a, and for the response function for these UPOs. Similar relations occur for
system we use = 40 andd = 1. To illustrate the re- other higher periodic orbits and may be interpreted as the
lation between the states” = (x{,x5) and y" of the reasons for the rather complicated nonsmooth dependence
drive and the response, respectively, we have plottedf y” on xi (or x"). Since the Lyapunov exponent
in Fig. 1 y* vs x. As can be seen in this figure the of the response system® =~ —2.152 is smaller than
graph of(x, y) consists essentially of two branches [18]. the smallest exponent of the drivid ~ —0.336, this
In order to understand the features of this relation beexample also shows that a preservation of the Lyapunov
tween drive and response we have investigated the eimension is not sufficient to guarantee the existence of
trainment properties of some low-period UPOs of thea smooth functiond [10]. In Ref. [9] it was shown
drive. The generalized baker map (1) possesses two fixdgflat such a condition for so-called past-history Lyapunov
points atx = (0,0) and x = (1,1). If the first fixed exponents has to be fulfiled foall points x on the
point (0,0) is used to drive the response system (2) thelrive attractor in order to have a smooth map [or
response orbif y"} consists of an alternating sequencedifferentiable GS (DGS)]. Therefore, we have checked
{...,—0.5609,2.5262, —0.5609,2.5262, .. .} while the re- the past Lyapunov exponents of all UPOs (up to period
sponse to the second fixed poifit 1) is constant with 10), but in all these cases the smallest exponent of
y" = 0.4811. Thus one of the fixed points of the driving the drive was larger than the exponent of the response
system is mapped to a fixed point of the response, and thgystem. Thus stability criteria seem not to be sufficient
other fixed point of the drive is related to a period twofor smoothness in cases where subharmonic entrainment
orbit of the response system. A different situation occur®ccurs and{ is not a function for alk.

that drives the one dimensional system

for the period-2 orbit UPO of the drive (1) Similar subharmonic entrainment phenomena can be
5 observed with continuous dynamical systems as will be
x" ( Aa i a ) illustrated now for two coupled Réssler systems,
I — AAp 1 — ab

x1=2+x(x—4), ayr =2+ yi(y2 — 4),
~ (0.171920,0.0109890), _ _
e X2 = —X1 — X3, ay; = —y1 — y3, 3
n a a . .
XH:(I—/\Ab’l—ab) x3 = x3 + bxs, ayy = ys + bys + c(xz — y3).
~ (0.025788,0.109 890) The parametere = 2 is used to detune both systems
' T ’ andc is a variable coupling constant. Figure 2(a) shows
a projection of the driving Roéssler attractor (gray solid
3 4 curve) together with two UPOs (black solid and dashed
=~ T \ curves) that are embedded in the chaotic attractor. In
\
\\

Fig. 2(b) the corresponding chaotic and periodic orbits
of the response system are shown. Since the detuning
3 parameteir = 2 is different from 1 both systems cannot
N =] synchronize identically (i.e., witl{x(r) — y(z)|| — 0 for
> t — ), The coupling constant = 0.27 has been chosen
T T such that (i) the largest conditional Lyapunov exponent
0 02 04 06 038 1 of the response system is negative and (i) different
X entrainment ratios for different pairs of UPOs occur. The

FIG. 1. Variabley of the response system (2) vs variable ~UPO plotted as a solid curve in Fig. 2(a) locks with
of the drive system (1). a periodic response of the same period [see Fig. 2(c)],
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whereas the dashed UPO in Fig. 2(a) leads to a period-2
solution when used to drive the response system [see
Fig. 2(d)]. Because of this 1:2 entrainment any point on
the UPO of the drive system corresponds to two points on
the response orbit.

Nevertheless, drive and response are synchronized in
the sense of the first definition given above. This is
illustrated in Fig. 2(e) where the; variables of two
response systems (3) with different initial conditions are
plotted on the ordinate and abscissa, respectively [8]. To
estimate the robustness of their mutual synchronization
the parameters = 0.422 andb = 0.418 of the response
systems have been chosen slightly different from the
corresponding valué» = 0.42 of the drive in Eqg. (3).
Because of this parameter mismatch the motion of both
response systems is not located exactly on the diagonal in
Fig. 2(e) but always remains very close to it without large
excursions which would be a typical signature for any
transversal instabilities [13]. Similar results have been
obtained when noise was added to the coupling signal.

If the coupling constant is increased all UPOs we
have found entrain witil', = Tk, but there still exist
regions on the drive attractor where nearest neighbors of
some reference state are mapped to different branches on
the response attractor. This phenomenon is illustrated
in Fig. 3 which was generated in the following way:
(i) Select at timer a statex(¢) of the drive and itsin =
10 nearest neighbors, (ii) compute the distances of the

corresponding states of the response system from the state
y(2), and (iii) plot these distances vs the timeAs can be
seen in Fig. 3, the trajectory enters different regions on the
2'0 4'0 80 attractor, where a neighborhood of the current drive state
) t is mapped to a different number of locations (clusters)
2 A on the response attractor. In the case of DGS [9] only
a single cluster with (very) small distances should occur
0 Lo . . )
! which is not the case for this example. This observation
X3 _2 4 is in agreement with the fact that the largest Lyapunov
_ 4_' exponent of the response systerf = —0.44 is not
. . smaller than the smallest LE of the drivé) = —3.2
20 40 and thus a functiorH may exist which is not smooth.
t This method for visualizing the relation between drive
(e)l 5 and response can also be applied to experimental data
~ 14
Y 3
0.5 4
055 i 115 2
Y1 d
FIG. 2. Coupled Rossler systems (3) far= 0.27 and 1
b = 0.42. (a) Chaotic drive attractor (solid gray curve) and \
two UPOs (solid and dashed black curves). (b) Response N
aﬁtr;actor (grt'ay_) %n% Pt%)s L(Jslg(li)d aEd da_she(d) blzzlc)kpcu_rvgs) 0 e ————————
that are entraine e s shown in (a). (c) Periodic
oscillation of the fi);st UPO and its corresponding PO <0 40 60 80 100

(1:1). (d)Ssame as (c) for the second UPO-PO pair

(1:2). (e)y, variables of two slightly different response
systems.

3160

FIG. 3. Distances/ of response states that correspond to 10
nearest neighbors of the drive systemm=f 2, b = 0.42).
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