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Nonperturbative Debye Mass in Finite Temperature QCD
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Employing a nonperturbative gauge invariant definition of the Debye screening massmD in the
effective field theory approach to finite temperature QCD, we use 3D lattice simulations to determ
the leadingO sg2d and to estimate the next-to-leadingO sg3d corrections tomD in the high temperature
region. TheO sg2d correction is large and modifies qualitatively the standard power-counting hierarc
picture of correlation lengths in high temperature QCD. [S0031-9007(97)04353-6]
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QCD matter, a spatially and temporally extended syste
of matter described by the laws of quantum chromodynam
ics, goes at high temperatures into a quark-gluon plas
phase, in which color is no more confined and chir
symmetry is restored. An essential quantity, describin
coherent static interactions in the plasma, is the inver
screening length of color electric fields, the Debye ma
mD. The Debye mass enters in many essential characte
tics of static properties of the plasma. Its numerical valu
is important for phenomenological discussions of forma
tion of the quark-gluon plasma, for the analysis ofJyC

andY suppression in heavy ion collisions, for the compu
tation of parton equilibration rates, etc. (see, e.g., [1]).

The definition and computation of the Debye mas
for Abelian QED plasma is well understood [2]. The
electromagnetic currentjm is a gauge-invariant quantity,
and the Debye mass can be extracted from the two-po
gauge invariant correlation function ofj0 in the plasma.
There are no massless charged particles in QED, wh
allows an infrared-safe perturbative computation of th
Debye mass in powers of the electromagnetic couplin
e. This has been done to ordere5 [3]. The situation in
QCD is much more complicated. First, the correspondin
current in QCD,ja

m, is not a gauge-invariant quantity.
Second, there are massless charged gluons which g
rise to infrared divergences and prevent the perturbat
determination of the Debye mass beyond leading order

A nonperturbative gauge-invariant definition of the
Debye mass in vectorlike theories with zero chemic
potential was suggested in [4]. According to it,mD can
be defined from the large distance exponential fallo
of correlators of gauge-invariant time-reflection od
operatorsO,

kOst, $xdOst, 0dl , Cj $xjb exps2mDj $xjd , (1)
whereC andb are some constants. The simplest choic
for the operatorO is Fa

03Fa
12, and other examples can

be found in [4]. In principle, four-dimensional lattice
simulations of hot QCD would thus allow a measureme
of the Debye mass at any temperature.
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The aim of this Letter is a nonperturbative determin
tion of thehigh temperature limitof the Debye mass, at
T . a few 3 Tc. We will see that the effective 3D ap-
proach to high temperature gauge theories, developed
[5–7] (for a review, see [8]) allows a simple and tran
parent gauge-invariant definition of the Debye mass [
while 3D lattice Monte Carlo simulations provide an eco
nomical way to determine its value. The corrections
the leading result we shall find are numerically large; th
many computations in the phenomenology of quark-glu
plasma in heavy ion collisions should be reanalyzed.

The theory we shall study is QCD withNf massless
quark flavors and with the gauge group SUsNd with N ­
2, 3. At high temperatures and zero chemical potent
the Debye mass can be expanded in a power series in
QCD coupling constantg ­ gsmd [the scalem will be
specified later; the result forNf ­ 0 is shown explicitly
in Eq. (5)]:

mD ­ mLO
D 1

Ng2T
4p

ln
mLO

D

g2T

1 cNg2T 1 dN ,Nf
g3T 1 O sg4T d . (2)

The leading order (LO) perturbative result,mLO
D ­

sNy3 1 Nfy6d1y2gT , has been known for a long time
[9]. The logarithmic part of theO sg2d correction can be
extracted perturbatively [10], butcN and the higher order
corrections are nonperturbative. We are going to evalu
numerically the coefficientscN anddN ,Nf

.
Static Green’s functions for bosonic fields of high tem

perature QCD at distancesjxj ¿ T21 we are interested
in can be determined by constructing an effective 3
gauge theory, containing static magnetic gluons and
zero component of the 4D gauge field,A0 [5–7]. More-
over, a superrenormalizable3D theory, defined by the
Lagrangian

LefffAa
i , Aa

0 g ­
1
4

Fa
ijFa

ij 1 Tr fDi , A0g fDi , A0g

1 m2
3Tr A2

0 1 lAsTr A2
0d2, (3)
© 1997 The American Physical Society
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gives the Green’s functions to a relative accuracyO sg4d
[6], which is sufficient for the accuracy of the expansio
in Eq. (2). The parameters of the effective theory ar
related to the parameters of 4D QCD (LMS, N, Nf ) and
the temperature as described in [11]. For brevity, we giv
here the explicit expressions only forNf ­ 0:

g2
3 ­ g2s4pe2gE2 1

22 TdT ­
24p2T

11N lns6.742TyLMSd
, (4)

m2
3 ­

N
3

g2s4pe2gE2 5

22 TdT2, (5)

lA ­
6 1 N
24p2

g4s4pe2gE2 7
44 TdT . (6)

Here gsmd is the QCD coupling in theMS scheme and
all the effective theory couplings have been compute
including both the leading and the next-to-leading orde
contributions. The couplings (4)–(6) are independent
the gauge chosen for the perturbative computation. T
expansion parameter is,asyp so that the result should
be accurate down toT ø a few 3 LMS.

The dynamics of the 3D effective theory is fully
characterized by the two dimensionless ratios

y ­
m2

3

g4
3

, x ­
lA

g2
3

, (7)

and by the dimensionful couplingg2
3. The value ofx is

essentially fixed byT ,

x ­
6 1 N
24p2 g2s4pe2gE23y11Td

­
6 1 N

11N
1

lns5.371TyLMSd
, (8)

while y andx, corresponding to physical 4D finiteT QCD
for Nf ­ 0, are related by

y ­ ydr sxd ­
2

9p2x
1

1
4p2

1 O sxd, N ­ 2 (9)

­
3

8p2x
1

9
16p2

1 O sxd, N ­ 3 . (10)

We are now ready to give a gauge-invariant definitio
of the Debye mass in the 3D language [4]. Physicall
we want a local operator which makesAa

0 gauge invariant
in the 3D theory and containsAa

0 singly. We can single
out this state by a symmetry consideration. Note that th
effective Lagrangian (3) has a discrete symmetryA0 $
2A0. Then the Debye mass can be defined as the ma
of the lightest 3D state which is odd under this symmetr
It is reasonable to expect that the lightest state couples
the lowest dimensional operator which contains only on
insertion ofA0:

hi ­ eijkTr A0Fjk . (11)

Here the fieldAa
0 has been made gauge invariant b

dressing it with a cloud of magnetic gluons. The us
n
e

e

d
r

of
he

n
y,

e

ss
y.
to
e

y
e

of different “blocking levels” [11] extends the basis of
the operators considered, but in principle one shou
also consider other operators such asTr A3

0 (for N $ 3).
We regard it as unlikely, though, that the inclusion of thi
operator could modify the picture. First, the heavy quar
expansion (see below) suggests that the parametrica
dominant mass term for this operator is,3mLO

D . Second,
it would be somewhat odd if theN ­ 2 case, where this
operator is absent, were qualitatively different from th
N ­ 3 case. Third, the final result (15) shows a natura
N dependence which can hardly be a coincidence.

At high T , one hasg ø 1 and, according to Eqs. (4)
and (5),m3 ¿ g2

3. This is the “heavy quark limit” of the
3D theory, in which the massmD of the singlet state is
dominated by the bare massm3 of the scalar “quark”Aa

0 .
For dimensional reasons, the exact massmD can in this
limit be expanded as

mD ­ m3 1 aN g2
3 1

bN g4
3

m3
1 O

√
lA,

g2
3lA

m3
,

g6
3

m2
3

, . . .

!
,

(12)

where aN and bN are constants, perhaps involving a
logarithm of m3yg2

3. The terms neglected are of highe
order using the power counting in Eqs. (4)–(6). Compa
ing Eqs. (2) and (12), one sees that

aN ­
N

4p
ln

p
Ny3 1 Nfy6

g
1 cN ,

dN ,Nf
­

bNp
Ny3 1 Nfy6

.

(13)

Here we used the fact that the scale dependence of
nonperturbative terms in Eq. (2) is at least of orderO sg4d.
Since the expansion (12) refers only to the 3D theory, th
constantsaN andbN depend onN but clearly not onNf .
Thus cN is Nf independent, whiledN ,Nf depends onNf

only throughmLO
D .

In terms of our dimensionless variables (7), Eq. (12
becomes

mD

g2
3

­
p

y 1
N

4p
ln

p
y 1 cN 1

bN
p

y
1 . . . . (14)

The massmD can now be measured by putting the ef
fective 3D theory on the lattice [11] and by measurin
the exponential falloff of the correlatorkh3sx3dh3s0dl ,
exps2mDjx3jd, whereh3sx3d is summed over the trans-
verse (x1, x2) plane [12]. To make simulations for fixed
continuum parametersx, y, one has to employ the lattice-
continuum relations derived in [13]. The correlation func
tion is measured both with zero and finite transvers
momentum, and in order to enhance the overlap wi
the asymptotic state the measurements are performed w
several levels of recursive blocking of the operators. W
select the blocking level and momentum sector which h
the best signal for the asymptotic mass separately for ea
3131
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Monte Carlo run. Since the longest correlation length
each case is less than1y5 of the linear size of the lat-
tice, we expect the finite volume effects to be negligib
in comparison with the statistical errors. This was als
explicitly checked by performing simulations with differ-
ent volumes in isolated cases.

The massmD is defined in the wholey, x parame-
ter space. To have results which are relevant for 4
physics, we perform the measurements along the two-lo
dimensional reduction linesydrsxd, Eqs. (9) and (10). To
measure the coefficients in Eq. (14) one should use t
part of this curve corresponding to

p
y ¿ 1. The re-

sults for N ­ 3 are shown in Fig. 1, in units of 4DgT
(­ g2

3

p
3yyN in 3D units). The Monte Carlo runs are

performed with several lattice spacingsa, parametrized
by bG ; 2Nysg2

3ad. For SU(3)bG varies by more than
an order of magnitude (although not at the same val
of x), as shown in Fig. 1; for SU(2), the measuremen
are done withbG ­ 20 and 32. The top scale of Fig. 1
shows the physical temperatureTyLMS along theydr sxd
line. Note that the highest temperatures are larger th
10100 3 LMS , 10100 3 Tc.

At small x (large y), the fit to the function (12) is
very good, as indicated by the continuous line in Fig.
In order to see in detail the sensitivity of the fit to the
parameters, in Fig. 2 we replot the SU(3) data (restrict
to x , 0.05) in terms of the quantitydmyg2

3 ­ mDyg2
3 2

p
y 2

N
4p ln

p
y as a function of1yp

y. The intersection
of the curve with the vertical axis gives the value ofcN

FIG. 1. The gauge invariant Debye mass for SU(3), as
function ofx, or TyLMS through Eq. (8). The scale ofg on the
y axis is fixed according to Eq. (5). The dashed line marks th
leading ordermLO

D , and the continuous line the two-paramete
fit to Eq. (12) with the parameters as in Eq. (15).
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and the slope givesbN ­ dN ,Nf

p
Ny3 1 Nfy6. One can

see that the linear fit is rather good even down to sm
values of

p
y. The large nonzero value of the intercept

very robustly determined. The slopebN is small and has
a relatively large error. Only the statistical error is given
but the value ofbN also depends on the range ofy21y2

included.
The results of the fits are

SUs2d: cN ­ 1.58 6 0.20, bN ­ 20.03 6 0.25 ,

SUs3d: cN ­ 2.46 6 0.15, bN ­ 20.49 6 0.15 .
(15)

The large numbercN is related to nonperturbative 3D
effects, while the smallerdN ,Nf

can be viewed as being
related to the choice of scale inmLO

D . For N ­ 2 we can
in practice verify only thatd2,Nf is close to zero. Note that
writing cN ­ Nc̃N , one has̃cN ­ 0.79 6 0.10 (N ­ 2),
0.82 6 0.05 (N ­ 3).

One can observe the following:
(i) The leading term is dominant only at extremel

large T . For SU(3), the leading term is larger tha
the O sg2d correction forg , 1y2.46 or for TyLMS *

exps8p22.462y11d * 1019. This implies that the leading
term dominates only when QCD merges into a unifie
theory anyway.

(ii) The four terms in Eq. (14) fit the data over all the
rangeT * 100Tc rather well, and there is no need fo
further corrections.

(iii) In the range LMS ø Tc & T & 100Tc, mD is
rather constant andø3.0 mLO

D for SU(2) andø3.3 mLO
D

for SU(3). It should be noted, though, that in this regim
mLO

D . T so that the hierarchym2
Dys2pTd2 ø 1 required

FIG. 2. The corrections of orderO sg2
3d and O sg2

3yp
y d to

the SU(3) screening massmD in 3D units, corresponding to
Eq. (14).
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for an accurate description of 4D physics through a 3
effective theory is getting weaker.

(iv) The mass measured from thekA0A0l correlator
in the Landau gauge in 4D simulations forNf ­ 0 has
also been observed to be clearly larger than the leadi
term [14].

(v) If the mass,gT of the Aa
0 field is “large,” larger

than the nonperturbativeO sg2dT correction, theAa
0 field

can be further perturbatively integrated out and a simpl
effective theory, containing onlyAa

i (and possible scalar
fields) can be derived [5–7]. Our results imply that this
can be accurately carried out for QCD only at extremel
high temperatures,T ¿ Tc. In the electroweak case the
accuracy of the integration is sufficient even forT ,
Tc both since the leading term has a bigger coefficien
(mLO

D ­
p

11y6gT ) than the Nf ­ 0 QCD considered
here and since in the relevantT regime the coupling
constantg ­ gsmW d ø 2y3 is smaller.

(vi) The usual parametric “power counting” picture of
correlation lengths in high temperature QCD says that th
longest scale, related to the magnetic sector of the theo
is m21

M , sconst3 g2T d21. A shorter scale,,sgT d21,
is associated with Debye screening. Our results sho
that this picture can be quantitatively correct only a
extremely large temperatures. Indeed, purely magne
effects, as measured by the 3D glueball (operatorFa

ijFa
ij)

mass (mG ø 2g2
3 for pure SU(2) [11,15]) tend to be

numerically large, so thatmM , mD * s2 2 3dT in a
very wide range of temperatures, at least up toT , 103Tc

(This gauge invariant result is in contrast to the sma
magnetic gluon masses measured in Landau gauge [14
In this range the longest length scale corresponds to
scalar011 3D “bound state” of twoA0 quanta, associated
with the operatorAa

0Aa
0 (the power counting suggestion

that this state is roughly twice as heavy asmD holds again
only at extremely highT).

Summarizing, we have carried out with lattice Monte
Carlo techniques a gauge independent measurement of
Debye mass in finiteT QCD. The measurement is based
on first deriving with two-loop perturbative computations
a 3D effective theory. The expansion parameter
,asyp, so that the result is accurate down toT close
to Tc. The mass is obtained by measuring correlators
the gauge-invariant local operatorAa

0Fa
jk in the 3D theory.

The leading and next-to-leading corrections tomD were
determined and found to be large. In fact, for tempera
tures fromTc up to T , 1000LMS the nonperturbative
D
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Debye screening mass is about a factor of3 larger than
the lowest order estimate.

It remains to be seen whether this modification of t
standard picture of high-temperature gauge theories
applications in the cosmological discussion of the qua
hadron phase transition or in the phenomenology of he
ion collisions.

The simulations were carried out with a Cray C94 a
Cray T3E at the Finnish Center for Scientific Computin
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