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We identify an eigenvalue associated with a dilute two-species Bose-Einstein condensate as
determiner of condensate stability. It plays the same role as the sign of scattering length in a o
species condensate. We predict that there is a range of interspecies interaction strength in whic
sodium-rubidium mixture can be stable in a harmonic trap. [S0031-9007(97)04343-3]
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The recent realization of condensates of trapped rub
ium atoms in two different spin states [1] has opene
the field of two-species Bose-Einstein condensation. T
problems of controlling condensate mixtures of two dif
ferent atomic species, such as sodium and rubidium, a
expected to be a future challenge for both theoretical a
experimental studies. A unique feature of a two-speci
condensate is the presence of interspecies interactions,
several authors have indicated that condensate wave fu
tions may exhibit novel features that do not exist for
pure system [2–4]. Recently it has been shown that t
spatial regions occupied by different components can
“tuned” by changing the number of atoms in each speci
[4]. Although previous studies have provided detaile
descriptions of ground state density distributions withi
the mean-field theory, general properties of a two-spec
condensate are still open topics. In particular, problem
involving quantum fluctuations would require theories tha
go beyond the mean-field description.

A main question of two-species condensates is how
identify the stability properties of the mixtures [5]. In the
case of one-species condensates of dilute gas, the s
of atom-atom interactions (i.e., repulsive or attractive
determines the intrinsic stability of the system again
runaway collapse. For example, a single condensate w
repulsive interactions is never unstable, but a condens
with attractive interactions may be [6–8]. Hence fo
a one-species system, the sign of the particle-partic
interaction can be treated as astability signature. Now the
problem is whether a two-species condensate has a sim
stability signature which distinguishes the stability natur
of the system. The answer is not obvious because of
presence of interspecies interactions. In fact Goldste
and Meystre have shown that instability may occur eve
if all the interactions (intraspecies and interspecies) a
repulsive [9]. Therefore the sign of the interactions alon
does not determine the stability of the system.

In this paper we describe a method to find thestabil-
ity signatureof a dilute two-species condensate mixture
The main idea of our method is to represent the quantu
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fluctuations around the mean-field ground state in a su
able basis, and then show that the sign of an eigenva
provides the same key as the sign of the scattering len
in the one-species case. With this method, we can p
vide a uniform treatment for the characterization of th
stability properties of both one-component and multicom
ponent condensates. There are several advantages o
approach. First, a stability test of the system can be p
formed efficiently because only the sign of one eigenval
needs to be computed. Second, a connection between
bility and particle number fluctuations can be establishe
Such a connection has not been found in previous tim
dependent mean-field approaches [9–11]. In this pap
we shall also examine the case of a sodium-rubidium m
ture in a harmonic trap, and we show that there is a fin
range of interspecies interaction strengths within whic
the mixture can be stable.

To begin, we consider a second-quantized grand c
onical Hamiltonian of two interacting trapped species

K ­
2X

j­1

∑Z
d3x C

y
j hjCj 1

gj

2

Z
d3x C

y
j C

y
j CjCj

∏
1 g12

Z
d3x C

y
1 C

y
2 C1C2 , (1)

where Cj sj ­ 1, 2d is the atomic field annihilation
operator for the j th species, and the single particl
operatorhj is defined by

hj ­ 2
h̄2

2Mj
=2 1 Uj 2 mj j ­ 1, 2 . (2)

Here Uj is the trapping potential,Mj is the atomic
mass of the speciesj, and mj is the chemical potential
which preserves average particle numbers. For wea
interacting dilute gases, the interactions between ato
are modelled byd potentials [12,13]. We have usedgj to
describe the interaction strength within the same spec
and g12 for the interaction strength between species
and 2. In this paper, we neglect the effects due to sp
exchange collisions.
© 1997 The American Physical Society 3105
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At the temperatureT ­ 0 K, we linearize the Hamil-
tonian (1) by assuming [14]

Cj ­
p

Nj fj0 1 cj . (3)

Here Nj is the average atom number of speciesj, and
the condensate (c number) wave functionsfj0 are the
ground states of the self-consistent Hartree-Fock nonlin
equations [3,4], defined by,

sh1 1 g1N1f2
10 1 g12N2f2

20df10 ­ 0 , (4)

sh2 1 g2N2f2
20 1 g12N1f2

10df20 ­ 0 . (5)

Notice thatfj0 are taken to be real because any (consta
phases that may appear infj0 can be removed by redefin-
ing Cj. The fluctuations part ofCj is described bycj

which obeys the usual equal-time commutation relatio
fcjs $xd, cks $x0dg ­ 0, fcjs $xd, c

y
k s $x0dg ­ djkds$x 2 $x0d.

The linearized Hamiltonian is obtained by discardin
fluctuations beyond the second order. We can also d
the c-number terms, and we obtain a compact express
for the quadratic Hamiltonian,

K 0 ­
1
2

4X
i,j­1

Z
d3x V

y
i MijVj . (6)

Here sV1, V2, V3, V4d ; sc1, c2, c
y
1 , c

y
2 d and the matrix

M is Hermitian and its diagonal elements areM11 ­
M33 ­ h1 1 g12N2f

2
20 1 2g1N1f

2
10, M22 ­ M44 ­ h2 1

g12N1f
2
10 1 2g2N2f

2
20 and the off-diagonal elements

are M12 ­ M23 ­ M34 ­ M41 ­ g12
p

N1N2 f10f20,
M13 ­ g1N1f

2
10, andM24 ­ g2N2f

2
20.

We define the two-species system to be stable if
eigenvalues ofM are non-negative (i.e.,M is semi-
positive). We define the system to be unstable if th
lowest eigenvalue ofM is negative. These criteria are
justified by the fact that arbitrary nonzero small fluctua
tions cj do not decrease the energyof the system if
the system meets our definition of stability. Here th
energy refers to the expectation value ofK 0 associated
with the fluctuations. We emphasize that our criteria a
general enough to account for all possible fluctuatio
cj , including the fluctuations of particle numbers. A
we shall see later, the consideration of stability again
changes of particle numbers would provide a way
“probe” the effective interactions between particles, an
hence the stability signature of the system.

It is important that the lowest eigenvalue ofM also
determines the stability of the mean fields. Since the ev
lution of the mean fields is governed by the coupled tim
dependent nonlinear Schrödinger equations [9–11], sm
perturbations of the mean fields will remain bounded if a
the normal mode frequencies (or the collective excitatio
frequencies [15]) of the linearized system are real. I
deed, a semipositiveM guarantees real normal mode fre
quencies, and hence ensures stability of the mean fie
A necessary but not sufficient condition for mean fields
be unstable, i.e., to have complex normal mode freque
cies, is for the lowest eigenvalue ofM to be negative [16].
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To simplify the eigenvalue problem ofM, we make a
unitary transformation so that

UyMU ­

µ
L1 0
0 L2

∂
, (7)

whereL1 andL2 are given by

L1 ­

√
M11 2 g1N1f

2
10 0

0 M22 2 g2N2f
2
20

!
, (8)

L2 ­

√
M11 1 g1N1f

2
10 2M12

2M21 M22 1 g2N2f
2
20

!
. (9)

Notice thatM11 2 g1N1f
2
10 andM22 2 g2N2f

2
20 are the

same as the self-consistent Hartree-Fock Hamiltonians t
appear in the brackets on the left sides of Eqs. (4) a
(5). Therefore the eigenvalues ofL1 must be non-negative
becausefj0 were already defined as ground states. T
branch of eigenvalues associated withL2 can be negative.
Therefore the system is stable ifL2 has a non-negative
lowest eigenvalue, and the system is unstable ifL2 has a
negative lowest eigenvalue. Thus the lowest eigenva
of L2 can be treated as astability signatureof the system.
This generalizes the case of one-species systems in wh
the corresponding lowest eigenvalue is negative (positiv
if the atom-atom interaction is attractive (repulsive).

An obvious application of our method is to the recen
realization of rubidium condensates in two different sp
states [1], and our analysis predicts stability in such
case even in the absence of gravity. However, a mu
more interesting case is presented by a true two-spec
situation, for example, the mixture of sodium and rubidiu
condensates. In Fig. 1 we plotl, the lowest eigenvalue
of L2, as a function of interspecies scattering lengtha12
(which is proportional tog12) for this case. Here we have
considered a mixture of sodium and rubidium atoms
equal numbers in a spherical harmonic trap. We see t
the system is stable only for a finite range ofa12. The
onset of instability occurs whenl is zero, andl drops
rapidly for a sufficiently large negativea12 which indicates
a highly unstable system. This should be expected beca
large attractive interactions can collapse the system as
the single-species case. However, we see that there
still a finite range of negativea12 where the system can
be stable. It is interesting to note that a large positi
a12 can also introduce instability. We remark that th
stability of the system depends on the number of atom
in the condensates. We have made several calculati
for N1 ø N2 in a range of103 104, but we find that the
stable region in Fig. 1 changes only slightly (within 10%
Our numerical calculations also verify that the collectiv
excitation frequencies are real in the stable regime, a
some of the excitation frequencies become complex in t
unstable regime defined by thel curve.

The nature of the instability near the critical poin
l ­ 0 is related to fluctuations of particle numbers i
the condensates. To explain this, let us calculate h
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FIG. 1. Plots ofl, the lowest eigenvalue of the matrixL2
(circles), the coefficientga (triangles), and the coefficientgb

(crosses) as functions ofa12, the scattering length between
species 1 and 2. Hereg12 ­ 2p h̄2a12ym, with m being the
reduced mass of the two species. In our calculations, we ta
Rb jF ­ 2, mF ­ 2 l as species 1 and NajF ­ 1, mF ­ 21 l
as species 2, with scattering lengths taken as 6 and 3 n
respectively. The respective trapping frequencies are:v1 ­
2p 3 160 Hz and v2 ­ 2p 3 310 Hz, assuming the mag-
netic moments are the same for the two species.l, ga, andgb

are presented in units of̄hv1. In this calculation, the con-
densate wave functions are assumed to be spherically sy
metric [17].

much energydK is required in order to push the system
to a new condensate state where the particle numb
are shifted bydnj, while keeping the chemical potentials
fixed. ThedK is defined by

dK ­ kKlf0 2 kKlf . (10)
Here kKlf is the value ofK obtained by substituting
Cj ­

p
Nj fj0 in Eq. (1), and kKlf0 is obtained by

substitutingCj ­
p

Nj 1 dnj f
0
j0 in Eq. (1), wheref

0
j0

are new condensate wave functions with respect to t
new particle numbersNj 1 dnj. After some tedious
calculations [18], we find that forNj ¿ dnj

dK ø
ga

2
sdñ1 cosu 2 dñ2 sinud2

1
gb

2
sdñ1 sinu 1 dñ2 cosud2, (11)

wheredñj ; dnjyN
1y2
j , and the constantsga andgb are

determined from the coupled equations,

L2

∑
Aa

Ba

∏
­ ga

∑
f10 cosu

2f20 sinu

∏
,

L2

∑
Ab

Bb

∏
­ gb

∑
f10 sinu

f20 cosu

∏ (12)

with the normalization,Z
d3x Aaf10 ­

Z
d3x Bbf20 ­

1
2

cosu , (13)Z
d3x Abf10 ­ 2

Z
d3x Baf20 ­

1
2

sinu . (14)
ke

m,

m-

ers

he

It can be shown that Eqs. (12)–(14) uniquely determin
the functionsAa, Ab , Ba, Bb, the angleu, and theg’s.

The connection between our stability criterion anddK
becomes clear as the sameL2 appears in Eq. (12). It is
easy to show thatga andgb must be non-negative when
l $ 0, andga (or gb) is negative only whenl , 0. In
fact we can show that one of theg’s always has the same
sign asl in the vicinity of critical pointsl ­ 0. This
is an important result because the onset of instability
always accompanied by a sign change of one of theg’s.
In Fig. 1, we plot the values ofga andgb corresponding
to the values ofl. We see thatga indeed behaves likel,
which turns negative in the unstable regimes.

Since an increase of particle numbersdnj adds an
energydK to the system with respect to fixed chemica
potentials, the instability arising from negativega signals
a tendency of increasingdñ1 cosu 2 dñ2 sinu. This
means that an unstable system cannot maintain the giv
particle numbersN1 andN2. In Fig. 1, we find thatu ø
py4 for positive g12 and u ø 2py4 for negativeg12,
near the critical pointssl ­ 0d. Therefore an unstable
system with a repulsive interspecies interaction tends
increase thedifferenceof particle numbers in order to
attain a lower energy. Similarly, an attractive interactio
tends to increase thesumof particle numbers.

It is helpful to compare Eq. (11) with the correspond
ing equation for the one-species case:dK ø gsdñd2y2,
whereg has the same sign as the scattering length. The
fore Eq. (11) suggests that the two-species system c
be considered as two decoupledquasispeciesassociated
with ga and gb, and the parameteru can be inter-
preted as the quasispeciesmixing angle. The effective
change of particle numbers for the two quasispecies a
sdñ1 cosu 2 dñ2 sinud and sdñ1 sinu 1 dñ2 cosud, re-
spectively. In this way a quasispecies with a negativega

is like a one-species condensate with an attractive se
interaction. The new feature here is that the particle num
bers for the quasispecies are mixed in a linear combinati
of particle numbers of the original species. We poin
out that the decoupled quasispecies picture appears m
naturally in the diagonalized Hamiltonian at low tempera
ture where collective excitations can be ignored. In th
case we find that the diagonalized Hamiltonian contain
only two independent degrees of freedom,

K 0 ­
gaP2

a

2
1

gbP2
b

2
1 s· · ·d , (15)

where s· · ·d are collective excitation modes, andPa ;
P1 cosu 2 P2 sinu andPb ; P1 sinu 1 P2 cosu, with

Pj ­
Z

d3x fj0scj 1 c
y
j d j ­ 1, 2 . (16)

Since Pa and Pb commute with each other, we may
interpret these two decoupled degrees of freedom as t
quasispecies.
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As an interesting remark, expression (15) can be us
to study the fluctuations of quantum phases of the co
densate wave functions. Lewenstein and You [19] ha
derived an expression equivalent to (15) for a one-spec
system, and they indicated that the correspondingg deter-
mines the quantum phase-diffusion rate. Such a diffusi
behavior is due to the fluctuations of particle numbers a
the nonlinearity of particle-particle interactions [19,20]
Their result can be generalized to our two-species syst
as given in (15). We have found thatga andgb indeed
determine the diffusion rates of quantum phases asso
ated with the condensate wave functions. At the critic
point ga ­ 0 the diffusion rate is zero, which implies a
perfect phase locking effect. This interesting effect wi
be discussed elsewhere [21].

In conclusion, we have departed from the mean-fie
equations to develop an efficient method to test the s
bility of a trapped two-species dilute condensate near ze
temperature. The method provides a uniform way to ide
tify the “stability signature” relevant for multicomponent
dilute condensates, including the one-species case.
found that the stability signature is not determined b
the sign of interactions, but by the lowest eigenvalue
L2. As the sign of the eigenvalue changes to negativ
the system behaves as if it has attractive self-interactio
We have applied our model to study a sodium-rubidiu
mixture in a harmonic trap. Our calculations predict tha
there is a finite range of interspecies interaction streng
in which the mixture is stable. There are many open que
tions regarding the behavior of unstable condensates,
example, the nature of the dynamics in unstable regim
and whether or not a true ground state exists there. Th
questions may require a more sophisticated analysis
yond linear approximations, and details of interaction p
tentials between particles may become important. Furth
investigations would be necessary.
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