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“Stability Signature” in Two-Species Dilute Bose-Einstein Condensates
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We identify an eigenvalue associated with a dilute two-species Bose-Einstein condensate as the
determiner of condensate stability. It plays the same role as the sign of scattering length in a one-
species condensate. We predict that there is a range of interspecies interaction strength in which a
sodium-rubidium mixture can be stable in a harmonic trap. [S0031-9007(97)04343-3]

PACS numbers: 03.75.Fi

The recent realization of condensates of trapped rubidductuations around the mean-field ground state in a suit-
ium atoms in two different spin states [1] has openedable basis, and then show that the sign of an eigenvalue
the field of two-species Bose-Einstein condensation. Therovides the same key as the sign of the scattering length
problems of controlling condensate mixtures of two dif-in the one-species case. With this method, we can pro-
ferent atomic species, such as sodium and rubidium, ardde a uniform treatment for the characterization of the
expected to be a future challenge for both theoretical andtability properties of both one-component and multicom-
experimental studies. A unique feature of a two-specieponent condensates. There are several advantages of our
condensate is the presence of interspecies interactions, aagdproach. First, a stability test of the system can be per-
several authors have indicated that condensate wave funfermed efficiently because only the sign of one eigenvalue
tions may exhibit novel features that do not exist for aneeds to be computed. Second, a connection between sta-
pure system [2—4]. Recently it has been shown that theility and particle number fluctuations can be established.
spatial regions occupied by different components can b&uch a connection has not been found in previous time-
“tuned” by changing the number of atoms in each speciedependent mean-field approaches [9—11]. In this paper,
[4]. Although previous studies have provided detailedwe shall also examine the case of a sodium-rubidium mix-
descriptions of ground state density distributions withinture in a harmonic trap, and we show that there is a finite
the mean-field theory, general properties of a two-specieange of interspecies interaction strengths within which
condensate are still open topics. In particular, problemshe mixture can be stable.
involving quantum fluctuations would require theories that To begin, we consider a second-quantized grand can-
go beyond the mean-field description. onical Hamiltonian of two interacting trapped species

A main question of two-species condensates is how to 2
identify the stability properties of the mixtures [5]. Inthe g =% [f B \If;rhj\}rj + ﬁf B xp;f\pj\pi\pi}
case of one-species condensates of dilute gas, the sign ;= 2 S
of atom-atom interactions (i.e., repulsive or attractive) 3 o tt
determines the intrinsic stability of the system against + 812[ d’x VW VW, (1)
runaway collapse. For example, a single condensate with ' ] o o
repulsive interactions is never unstable, but a condensa¥éhere ¥; (j =1,2) is the atomic field annihilation
with attractive interactions may be [6—8]. Hence forOPerator for thejth species, and the single particle
a one-species system, the sign of the particle-particl@Peratort; is defined by
interaction can be treated astability signature Now the 72
problem is whether a two-species condensate has a similar h; = oM Vi+ U — u i=12. (2
stability signature which distinguishes the stability nature /
of the system. The answer is not obvious because of thdere U; is the trapping potentialM; is the atomic
presence of interspecies interactions. In fact Goldsteimass of the specieg and w; is the chemical potential
and Meystre have shown that instability may occur everwhich preserves average particle numbers. For weakly
if all the interactions (intraspecies and interspecies) ar@teracting dilute gases, the interactions between atoms
repulsive [9]. Therefore the sign of the interactions aloneare modelled by potentials [12,13]. We have usggl to
does not determine the stability of the system. describe the interaction strength within the same species,

In this paper we describe a method to find #tabil- and g, for the interaction strength between species 1
ity signatureof a dilute two-species condensate mixture.and 2. In this paper, we neglect the effects due to spin-
The main idea of our method is to represent the quanturaxchange collisions.
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At the temperaturd” = 0 K, we linearize the Hamil- To simplify the eigenvalue problem dff, we make a
tonian (1) by assuming [14] unitary transformation so that
Wj = VNjdjp + ¢;. (3) Utmy — <L1 0 ) @)
Here N; is the average atom number of specjesand 0 L)’

the condensatec(number) wave functionsp;, are thg whereL, andL, are given by
ground states of the self-consistent Hartree-Fock nonlinear

2
equations [3,4], defined by, o= Mn— g1N1éio 0 (8)
2 2 : 0 My — N2y )
(h1 + giN1d1y + g12N2b39) 10 = 0, (4)
(hy + gaNap3y + g1aN1 i) a0 = 0. (5) L, = (M“ + g1N1¢o 2M12 s ) (9)
Notice that¢ ;o are taken to be real because any (constant) 2M> Mx + 82Nk

phases that may appgardno can be _removeq by redefin- notice thatM,; — g1N, 2% andMa — g2N> b2 are the
ing ;. The fluctuations part o’; is described byy;  same as the self-consistent Hartree-Fock Hamiltonians that
which obeys the usual equ?l-nme commutation relatlon§lepear in the brackets on the left sides of Egs. (4) and
[;(%), Y (X1)] = 0, [h; (X), ¢ (X)] = S S(x — X'). (5). Therefore the eigenvaluesbf must be non-negative
The linearized Hamiltonian is obtained by discardingbecaus&ﬁjo were already defined as ground states. The
fluctuations beyond the second order. We can also drOBranch of eigenva|ues associated Mﬁ]can be negative.
the c-number terms, and we obtain a compact expressioftherefore the system is stable it has a non-negative
for the quadratic Hamiitonian, lowest eigenvalue, and the system is unstableihas a
1 + negative lowest eigenvalue. Thus the lowest eigenvalue
K' = D) Z_ ] dx Vi MV ®)  of L, can be treated asstability signatureof the system.
e This generalizes the case of one-species systems in which
Here (V1, V2, V3, Va) = (1. ¢, 41, ¢3) and the matrix  the corresponding lowest eigenvalue is negative (positive)
M is Hermitian and its diagonal elements abf; =  if the atom-atom interaction is attractive (repulsive).
Mz = hy + g12N2¢220 + 2g1N1d)120, My = Mys = hy + An obvious application of our method is to the recent
g1N1diy + 2g2N> 3, and the off-diagonal elements realization of rubidium condensates in two different spin
are My = My = Mzq = My = g1oN1N2 d10d20, states [1], and our analysis predicts stability in such a
My = g1N1¢120, andM,, = g2N2¢220. case even in the absence of gravity. However, a much
We define the two-species system to be stable if almore interesting case is presented by a true two-species
eigenvalues ofM are non-negative (i.e.M is semi- situation, for example, the mixture of sodium and rubidium
positive). We define the system to be unstable if thecondensates. In Fig. 1 we plat the lowest eigenvalue
lowest eigenvalue oM is negative. These criteria are of L,, as a function of interspecies scattering length
justified by the fact that arbitrary nonzero small fluctua-(which is proportional tqz,) for this case. Here we have
tions ¢; do not decrease the energf the system if considered a mixture of sodium and rubidium atoms of
the system meets our definition of stability. Here theequal numbers in a spherical harmonic trap. We see that
energy refers to the expectation value kf associated the system is stable only for a finite rangemf. The
with the fluctuations. We emphasize that our criteria arenset of instability occurs when is zero, andA drops
general enough to account for all possible fluctuationsapidly for a sufficiently large negatiweg, which indicates
¥;, including the fluctuations of particle numbers. As a highly unstable system. This should be expected because
we shall see later, the consideration of stability againstarge attractive interactions can collapse the system as in
changes of particle numbers would provide a way tathe single-species case. However, we see that there is
“probe” the effective interactions between particles, andstill a finite range of negative,, where the system can
hence the stability signature of the system. be stable. It is interesting to note that a large positive
It is important that the lowest eigenvalue #f also aj; can also introduce instability. We remark that the
determines the stability of the mean fields. Since the evostability of the system depends on the number of atoms
lution of the mean fields is governed by the coupled timein the condensates. We have made several calculations
dependent nonlinear Schroédinger equations [9—11], smalbr N; = N, in a range ofl0*~10*, but we find that the
perturbations of the mean fields will remain bounded if allstable region in Fig. 1 changes only slightly (within 10%).
the normal mode frequencies (or the collective excitatiorOur numerical calculations also verify that the collective
frequencies [15]) of the linearized system are real. Inexcitation frequencies are real in the stable regime, and
deed, a semipositivkl guarantees real normal mode fre- some of the excitation frequencies become complex in the
guencies, and hence ensures stability of the mean fieldanstable regime defined by thecurve.
A necessary but not sufficient condition for mean fields to The nature of the instability near the critical point
be unstable, i.e., to have complex normal mode frequemA = 0 is related to fluctuations of particle numbers in
cies, is for the lowest eigenvalue Bfto be negative [16]. the condensates. To explain this, let us calculate how
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It can be shown that Eqgs. (12)—(14) uniquely determine
the functionsA,, Ag, B, Bg, the angled, and they’s.

The connection between our stability criterion ah&l
becomes clear as the sarhe appears in Eq. (12). Itis
easy to show thajy, andyz must be non-negative when
A =0, andy, (or yg) is negative only whem < 0. In
fact we can show that one of thés always has the same
sign asA in the vicinity of critical pointsA = 0. This
is an important result because the onset of instability is
always accompanied by a sign change of one ofytlse
In Fig. 1, we plot the values of, andyg corresponding
to the values ofA. We see thay, indeed behaves likg,
which turns negative in the unstable regimes.

Since an increase of particle numbesg; adds an
energydK to the system with respect to fixed chemical
potentials, the instability arising from negatiyg signals

FIG. 1. Plots ofA, the lowest eigenvalue of the matrik,

a tendency of increasingii cosd — i, sinf. This
(circles), the coefficienty,, (triangles), and the coefficientg

( ) s @ o o ot Pt means that an unstable system cannot maintain the given
Crosses) as tunctions 12y € scattering leng etween H H : ~
species 1 and 2. Herey, — 2 i%ay,/m, with m being the particle numbergv; andN,. In Fig. 1, we find that

reduced mass of the two species. In our calculations, we tak@ /4 for positive g, and 6 ~ —m /4 for negativeg,
Rb |F = 2,mr = 2) as species 1 and N& = 1,mr = —1) near the critical point§A = 0). Therefore an unstable
as species 2, with scattering lengths taken as 6 and 3 nngystem with a repulsive interspecies interaction tends to
respectively. The respective trapping frequencies are==  increase thedifferenceof particle numbers in order to
2 X 160 Hz and w, = 27 X 310 Hz, assuming the mag- uain 4 lower energy. Similarly, an attractive interaction
netic moments are the same for the two specigsy,, andyg . .
are presented in units oiw;. In this calculation, the con- tend_s to increase theumof particle numbers.
densate wave functions are assumed to be spherically sym- It is helpful to compare Eq. (11) with the correspond-
metric [17]. ing equation for the one-species cask =~ y(8i1)?/2,
wherey has the same sign as the scattering length. There-

much energydK is required in order to push the systemfore Eq. (11) suggests that the two-species system can
to a new condensate state where the particle numbehg considered as two decouplgdasispeciesissociated
are shifted bysn;, while keeping the chemical potentials with y, and yg, and the parameteé can be inter-
fixed. ThedK is defined by preted as the quasispecigsxing angle The effective

8K = (K)gy — (K)g. (10) change of particle numbers for the two quasispecies are

Here (K), is the value ofK obtained by substituting (871 ?.OS? _I‘S’Zﬁ.s'na) and (87 sin¢ + a’zﬁ cos), re-
V; = \/N;¢j in Eq. (1), and(K)s is obtained by spectively. In this way a quasispecies with a negajive
substituting¥; = \/N: + 7, ¢/ in Eq. (1), wheres! is like a one-species condensate_wnh an attractive self-
Jo NI JFJ0 P J0 interaction. The new feature here is that the particle num-
are new condensate wave functions with respect to thB . . . . . L
. . ers for the quasispecies are mixed in a linear combination
new particle numbersV; + én;. After some tedious

) o of particle numbers of the original species. We point
calculations [18], we find that faN; > &, out that the decoupled quasispecies picture appears more

naturally in the diagonalized Hamiltonian at low tempera-
ture where collective excitations can be ignored. In that
case we find that the diagonalized Hamiltonian contains
only two independent degrees of freedom,

5K = %(Bﬁl cosf — 8ii, sinfd)?

+ 7—23(5ﬁlsin0 + 871, cosh)?, (11)

whereédii; = b‘nj/N}/z, and the constantg, andy are yoP2  ypP%

determined from the coupled equations, K' = ot 5t (), (15)
I3 Ay | ¢ 10 COSH
2By |~ Y| —¢ppsing |’ where (---) are collective excitation modes, am, =

. - . _ i+ i

. AsT b10Sin (12) Pjcosf — P,sing andPg = P;sind + P,cosf, with
2 Blg Y8 ¢20C0$0

with the normalization,

1
fdsan¢10 = f dSXBB(ﬁz() = ECOSH, (13)

1 .
]dsxAﬁd)]() = — ] d3xBa¢20 = Esmﬁ. (14)

P = f Cxgp; + ) j=12.  (16)

Since P, and Pg commute with each other, we may
interpret these two decoupled degrees of freedom as two
quasispecies.
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As an interesting remark, expression (15) can be used particle-particle interactions were predicted to be unstable.
to study the fluctuations of quantum phases of the con- See L.D. Landau and E.M. LifshitZtatistical Physics
densate wave functions. Lewenstein and You [19] have  (Pergamon, London, 1958), 1st ed. .
derived an expression equivalent to (15) for a one-specied?] The issue of stability for inhomogenous one-species
system, and they indicated that the correspondimtgter- systems with attractive interactions was discussed, for
mines the quantum phase-diffusion rate. Such a diffusive ~ SX@mple, by P.A. Ruprechet al., Phys. Rev. A51,

A . . 4704 (1995); Y. Kagan, G.V. Shlyanikov, and J.T.M.
behavior is due to the fluctuations of particle numbers and Walraven, Phys. Rev. LetZ6, 2670 (1996): R.J. Dodd

the nonlinearity of particle-particle interactions [19,20]. et al., Phys. Rev. A54, 661 (1996); E. V. Shuryak, Phys.
Their result can be generalized to our two-species system  Rrey A 54, 3151 (1996); M. Houbiers and H.T.C. Stoof,

as given in (15). We have found that, andyg indeed Phys. Rev. A54, 5055 (1996).
determine the diffusion rates of quantum phases associf8] C.C. Bradleyet al., Phys. Rev. Lett.75 1687 (1995);
ated with the condensate wave functions. At the critical C.C. Bradley, C.A. Sackett, and R.G. Hulet, Phys. Rev.

point y, = 0 the diffusion rate is zero, which implies a Lett. 78, 985 (1997).
perfect phase locking effect. This interesting effect will [9] E.V. Goldstein and P. Meystre, Phys. Rev.5%, 2935
be discussed elsewhere [21]. (1997).

10] R. Graham and D. Walls, cond-mat/9611111.

In conclusion, we have departed from the mean-fiel : 5
11] Th. Busch, J.I. Cirac, V.M. Perez-Garcia, and P. Zoller,

equations to develop an efficient method to test the st cond-mat/9705008

bility of a trapped two-species Qilute condensate near zerﬂz] K. Huang, Statistical Mechanics(Wiley, New York,
temperature. The method provides a uniform way to iden- 1987).

tify the “stability signature” relevant for multicomponent [13] M. Lewenstein and L. You, Phys. Rev. 38, 909 (1996).
dilute condensates, including the one-species case. We4] This is the same strategy as in one-species systems. See
found that the stability signature is not determined by  A.L. Fetter, Ann. Phys. (N.Y.Y0, 67 (1972).

the sign of interactions, but by the lowest eigenvalue of15] The collective excitation frequencies are defined by

L,. As the sign of the eigenvalue changes to negative,
the system behaves as if it has attractive self-interactions.
We have applied our model to study a sodium-rubidium nM = o ,

mixture in a harmonic trap. Our calculations predict that Z:}i Z;IZ

there is a finite range of interspecies interaction strength

in which the mixture is stable. There are many open ques- 1o 0 0
tions regarding the behavior of unstable condensates, for n = o1 0 0
example, the nature of the dynamics in unstable regimes 00 -1 0|
and whether or not a true ground state exists there. These 00 0 -1

questions may require a more sophisticated analysis be- | ih (12, tiax, V11, v2x) being the mode functions.
yond linear approximations, and details of interaction po{16] For properties oM for general systems, see J.P. Blaizot
tentials between particles may become important. Further = and G. Ripka,Quantum Theory of Finite Systen@slIT
investigations would be necessary. Press, Cambridge, MA, 1986).
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