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Universal Anharmonic Vibrator Description of Quasiband Structures in Collective Even-Even
and Odd-A Nuclei

D. Bucurescu and N. Mˇarginean
National Institute of Physics and Nuclear Engineering, P.O. Box MG-6, Bucharest 76900, Romania

(Received 14 February 1997)

It is found that energy correlations within the bands of the good rotor odd-A nuclei are well described
by an anharmonic vibrator formula, which indicates an unexpected constancy of the moment of inertia.
Based on a large collection of quasibands in all collective even-even and odd-A nuclei, an empirical
recurrence relation is proposed which allows one to calculate the excitation energies of any band
starting from its lowest two. This simple two-parameter formula can be reduced approximately to that
of a second order anharmonic vibrator. [S0031-9007(97)03520-5]

PACS numbers: 21.10.Re, 21.60.Ev
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During the past few years, several unexpected, sy
tematic features have been discovered by studying c
relations between the excitation energies of low-lyin
collective bands. Most of these results concern the qua
ground band of the even-even nuclei. The most r
markable is the finding that the yrast energies of th
collective,nonrotor nuclei with 28 , Z , 82 [i.e., those
having 2.05 , R4y2 , 3.15, with R4y2 ; Es41

1 dyEs21
1 d]

are well described by a universal anharmonic vibrat
(AHV) formula with constantanharmonicitý 4,

Esnd ­ nEs1d 1
nsn 2 1d

2
´4 , (1)

where n ­ Iy2 can be interpreted as the number o
phonons of the state of spinI (heren ­ 1 corresponds
to the 21

1 state, n ­ 2 to 41
1 , etc.) [1,2]. In a recent

extension of this work it has been shown that a ne
order generalization of Eq. (1), including a second ord
anharmonicity term, nsn21dsn22d

6 ´6, gives an excellent
description of the yrast bands of all types of even-eve
nuclei (the good rotor ones included) [3].

Progress along similar lines has also been made
the odd-mass nuclei. In Ref. [4] it was shown that th
unique (or unnatural) parity structures in all nonrotation
nuclei are well described by Eq. (1), with practically
the same value of́ 4 as that of the even-even nucle
s.150 keVd. This study was extended in Ref. [5] to al
the natural parity orbital (one-quasiparticle) quasibands
nonrotor nuclei, which were also shown to follow an AHV
behavior [Eq. (1)].

In this Letter we present two other results which sho
that the AHV-type behavior of the quasiband structure
in both the even-even and odd-A nuclei is truly universal.
First, we show that the low-lying (Nilsson) bands in th
good rotor odd-A nuclei are also excellently described
by Eq. (1). This is very surprising, in view of the
common present perception that the moment of iner
of all these nuclei (and bands) is not constant. Secon
by studying a large collection of experimental quasiban
structures in all types of collective nuclei (both even
0031-9007y97y79(1)y31(4)$10.00
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even and odd-A), we observe a very simple and compa
correlation between three consecutive excitation energ
in the band, which is well satisfied up to the highest sta
(below the up (back) bending). This gives a recurren
relation which leads to a simple, universal two-parame
formula that can be used to describe the higher states
any band by starting from its lowest three states. W
some reasonable approximation, this formula leads to
functional dependence onn identical to that of the second
order AHV empirically proposed in [3].

We first study the band structures in the good rotor od
A nuclei (i.e., those having cores withR4y2 $ 3.15). In
the rotor model their excitation energies are described

EsId ­
h̄2

2I
fIsI 1 1d 2 KsK 1 1dg . (2)

We consider a sequence of states of spinsj, j 1 2,
j 1 4, . . . , from such a band; usuallyj ­ K but for
what follows this is not necessary. By analogy with th
yrast band of the even-even nuclei, we define the in-ba
excitation energies,

E0s1d ­ Es j 1 2d 2 Es jd,

E0s2d ­ Es j 1 4d 2 Es jd, . . . ,
(3)

and study the correlations between them.
We now consider the whole collection of bands bas

on intrinsic (Nilsson) states. For this study we have e
tracted from the nuclear data sheets [6] a collection
225 bands for which at least two transitions are know
Together with the bands, based on the unique parity
bitals [4], we have a total of 303 bands. These are t
different Nilsson bands in the deformed (“good rotor
nuclei, between155Sm and 187Os. The correlations be-
tweenE0s2d, E0s3d, andE0s1d, respectively, are shown in
Fig. 1. The result is very striking: The experimental da
define very compact straight lines. In particular, the co
relation of E0s2d with E0s1d is of the AHV type (1), i.e.,
of slope exactly 2 and with very little scatter of the poin
around the fitted straight line (one standard deviation
© 1997 The American Physical Society 31
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FIG. 1. Correlations of in-band excitation energies for 30
Nilsson bands in the deformed odd-A nuclei (between155Sm
and 187Os). Energies are relative to the lowest state of sp
j [see Eq. (3)]. The crosses are the experimental points a
the curves are fitted straight lines whose slope and intercept
keV) are indicated.

only 17 keV). The intercept́4 of Eq. (1) is95 6 3 keV ,
notably smaller than that of,150 keV for the nonro-
tor even-even nuclei [1] and unique parity structures
odd-A nuclei [4], or of 115 keV deduced for a collection
of different natural parity bands in nonrotor odd-A nuclei
[5]. The excellent AHV description of all these rotationa
bands, although surprising, has a simple meaning. It
clear that such phononlike correlations need not imply a
harmonic vibrations. Formula (1) describes exactly a s
of rotational bands (2)if all of them have the same mo-
ment of inertia [I in Eq. (2) is aconstant]. In this case,
´4 in Eq. (1) is related to the constant moment of inert
(MI) I,

´4 ­ 4
h̄2

I
. (4)

Thus, in terms of the rotor model, the empirical resu
of Fig. 1 implies an unexpected fact: For all of th
rotor nuclei betweenA , 150 and190, all Nilsson bands
have almost the same, constant value for the MI at t
lowest rotation frequencies. This value, correspondi
to ´4 ­ 95 6 3 keV , is I ­ s42.1 6 1.3dh̄2 MeV21.
This constancy, or rather the narrow distribution aroun
a certain value, un-noticed until now (note that, on th
basis of theA5y3 dependence of the MI, one expect
a variation of about 36% between the masses 155 a
187), is characteristic only to the odd-A nuclei. In the
corresponding even-even core nuclei (from154Sm to
32
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186W ) the behavior is completely different:́ 4 deduced
from Eq. (1) varies strongly from nucleus to nucleu
and, as a result, theEs41

1 d versus Es21
1 d plot bends

down systematically from the AHV line (1) towards a
line of slope 3.33 [1]. Alternatively, the MI for the21

1
state [which is essentially the reverse ofEs21

1 d] varies
continuously from about20 to 40h̄2 MeV21 [7]. It is
interesting to note that the “constant” MI value observe
for the odd-A nuclei is practically equal to the maximum
value reached by the even-even nuclei.

The constancy of the MI’s has also been checked b
determining them directly from the transition energie
in the usual way. Since, in determiningI from the
correlation of Fig. 1 via Eq. (4), one uses three states
the band (or two transition energies), it is likely that wha
is determined is the dynamic MI,Is2d. We have therefore
determinedIs2d ­ 4yfE0s2d 2 2E0s1dg as well and found
that its distribution is very close to anormal one, with a
mean ofs43.2 6 5.3dh̄2 MeV21, which is the same as the
value deduced from Fig. 1, except for the larger standa
deviation.

For the correlationE0s3d versusE0s1d (Fig. 1) and for
the higher states, the slopes of the straight line fits devia
more and more from the AHV prescriptions. Thes
deviations reflect the known fact that the MI does no
remain constant along the band, but generally increas
as one goes upwards in the band.

With this result added to the previous ones [1,2,4,5
there is now rich evidence that both the yrast band
of all nonrotor even-even nuclei with28 , Z , 82 and
the one-quasiparticle bands inall odd-A nuclei from
the same region are rather well described by the AH
relation (1), with an almostconstant ´4 (which may
depend somewhat on the mass region or the charac
of the nuclei considered—deformed or nondeformed
Generally, the experimental data show an excellent AH
correlation for the first two energies in the band, whic
persists reasonably well for the third excitation energ
but the scattering of the points around the average AH
behavior increases continuously for the higher states
the band, until this correlation is practically washed ou
A closer inspection of the experimental plots reveal
however, that the deviations of the points correspondin
to different states from the mean AHV behavior are rath
well correlated. To unravel these correlations we hav
studied different relationships between the experimen
excitation energies of more than three successive sta
from the band. This was made for our entire collection o
bands, now numbering 64 bands in the deformed eve
even nuclei, 158 in the nondeformed ones, 303 in th
deformed odd-A nuclei, and 582 in the nondeformed
odd-A ones, for nuclei between As and Hg. Let u
denote byEgsnd the “transition energy” from the staten
to the state below it,sn 2 1d: Egsnd ­ Esnd 2 Esn 2

1d [or E0snd 2 E0sn 2 1d in the odd-A nuclei]—see
Eqs. (1) and (3)—are actually theE2 g-ray transition
energies in the band. We have observed that for a
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three consecutive transitions (from the states labeled
n 2 2, n 2 1, n) the energy of the “middle” one is well
approximated by the arithmetic mean of the two adjace
ones, below and above it. This is actually the predictio
of both the AHV, Eq. (1), and the rotational formula (2):

Egsnd ­ 2Egsn 2 1d 2 Egsn 2 2d . (5)

Figure 2 shows the correlation between the experimen
quantitiesEgsnd and f2Egsn 2 1d 2 Egsn 2 2dg for our
entire collection of bands in both the even-even and oddA
collective nuclei. Each band, for which at least three tra
sitions (or three “excited” states) are known, contribute
with points in Fig. 2 up to the highest transition (n value)
below the (up) back bending. We have a total of 754 su
bands, and we considered up to 9 transitions in each. W
note that the correlation in Fig. 2 is an extremely tight en
velope very close to the straight line (5) (of slope 1 an
intercept 0). Remarkable in this plot is that, although w
go as high as possible inn for each band, the scattering o
the points remains very small in comparison with that o
the correlation plots between the excitation energies, su
as those in Fig. 1. Actually, since the overwhelming ma
jority of the experimental points lie within a very narrow
envelope, such a plot is useful to evidence “irregular
ties” in the bands, which are immediately highlighted b
points with a large deviation from the average behavio
Thus, an examination of such points in our case (Fig.
revealed either possible up bendings not eliminated by o
procedure or other phenomena such as band perturba
due to strong Coriolis mixing. Note that in Fig. 2 we tak
both the “AHV” class of nuclei (vibrational, transitional,
and deformed odd-A), which generally shows “random”
deviations from formula (1) (see, however, the consider

FIG. 2. Correlation between experimental energies of thr
consecutive in-band transitions [see discussion of Eq. (6)].
number of 754 bands in the even-even and odd-A nuclei
(both deformed and nondeformed) with at least three know
transitions contribute to this plot (a band withn transitions
givesn 2 2 points in the plot), and up to 9 transitionssn ­ 9d
were considered for each band.
by
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tions of Ref. [8]), and the rotational even-even nuclei f
which ´4 varies strongly and in a systematic manner [1,8
Since we see practically the same type of correlation
each case, this gave us the incentive to treat all bands
all nuclei, on the same footing, as we discuss next.

The experimental data in Fig. 2 show a correlatio
which can be well described by a straight line but wi
slope and intercept slightly different from 1 and 0, respe
tively. So, a more correct formula which reproduces t
average behavior of our rich experimental collection is

Egsnd ­ c1f2Egsn 2 1d 2 Egsn 2 2dg 1 c2 , (6)

where c1 and c2 are parameters to be determined fro
the data. We can now use this formula to calcula
excitation energiesEsnd recurrently, starting from the
lowest transitions in the band,

Esnd ­ Esn 2 1d 1 c1f2Esn 2 1d 2 3Esn 2 2d

1 Esn 2 3dg 1 c2 . (7)

We have performed least squares fits to the experime
band energies, not for individual nuclei but for differen
sets of nuclei (such as even-even and odd-A, deformed
or nondeformed, respectively), as well as for the ent
set of bands, and determined the values ofc1 and c2.
The “theoretical” energies were calculated with Eq. (7
starting fromn ­ 3; the first two energies in the band
Es1d and Es2d, were taken equal to the experimenta
values. We have found that generallyc1 takes values
between 0.92 and 0.98, andc2 between 7 and 22 keV.
It is interesting to see how precisely this formula work
Figure 3 gives statistical results of three such global fi
to band energies with Eq. (7) by showing the distributio
of the mean relative deviation of the excitation energi
calculated for each band asdEx

Ex
­

1
n22 S

jEexp sid2Ethsidj
Eexp sid , the

sum running from 3 up to the highest staten in the band.
The formula works best in the case of the well-deform
(good rotor) nuclei: 74.7% of the 253 bands havedEx

Ex

less than2%, and58% of them have less than1%. In the
case of the nondeformed nuclei (which have the larg
scattering in the plot of Fig. 2), the results are weake
61.7% of the 501 bands havedEx

Ex
, 2%, and the tail

at higher deviations is larger. Forall the bands taken
together,65.7% of the 754 bands havedEx

Ex
, 2%.

We do not insist on the description that this approach c
give in particular cases, since it is intended to reprodu
only the mean behavior of the experimental data (
shown in Fig. 2). But we shall deduce what type ofn
dependence (ultimately, a dependence on the level sp
is provided by the recurrence relation (7) for the lev
energiesEsnd. An explicit n dependence can be obtaine
in the approximationc1 ­ 1.0; in this case, Eq. (7) leads
to

Esnd ­ nEs1d 1
nsn 2 1d

2
e4 1

nsn 2 1d sn 2 2d
6

e6 ,

(8)
33
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FIG. 3. Statistical distributions of the mean relative deviatio
of the band excitation energies (see text for the definitio
calculated with Eq. (7) for the three indicated classes of nucl
In each case, the values obtained for the parametersc1 and c2
from least squares fit to the data are given.

wheree4 ­ Es2d 2 2Es1d and e6 ­ 2c2, with Es1d and
Es2d being the experimental energies of the first tw
(excited) states. This is exactly the second order AH
formula proposed in Ref. [3] for the description of an
type of band. In some particular cases, the best resu
will be obtained by leavinge4, e6, and evenEs1d as free
parameters. Thus we recognize the recurrence form
(7) as representing ageneralizedanharmonic vibrator
(GAHV).

The discussion above has been restricted to correlati
between quasiband states that differ in spin by steps
2 units. In the odd-A nuclei, one can consider correlation
for consecutive states that differ in spin by 1 unit. In th
good rotor nuclei, we have observed nice correlations
the type (1), with ań 4 value of about 23 keV [as expected
from Eq. (2) with theI deduced from theDI ­ 2 step
correlations], and Eq. (7) also works well. However, th
K ­

1
2 bands and those with strong Coriolis distortion d

not enter into this systematic, although they work well
the step 2 case. On the other hand, the step 1 correlati
do not work well for many nonrotational cases. Th
problem of the systematic features of the shift between t
“favored” and “unfavored” states (briefly considered in [9
in a restricted case) needs further consideration.

In summary, in this Letter we presented the followin
two results concerning the quasiband structures in atom
nuclei.

First, we have shown that all one-quasiparticle (or Nil
son) bands in the well-deformed odd-A nuclei (between
34
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Sm and Os) show, for the lowest states, global energ
correlations which are very well described in terms of th
universal anharmonic vibrator equation (1). Within the
rotor model, this signifies that the moments of inertia o
all these bands at their lowest rotation frequencies have
rather narrow distribution around a constant value. Th
finding is rather unexpected. One anticipates that the M
of the odd-A nuclei should be larger than that of the adja
cent even-even nuclei due to the reduction of the pairin
through blocking, but not that it is almost independent o
mass and the orbital occupied by the odd particle. Fu
thermore, this mean, constant value of the MI correspon
to the highest value of the MI of the even-even cores i
the 21

1 state. On the whole, this surprising experimenta
finding represents a challenge for microscopic models.

Second, by examining a very large collection of data
we have found that the experimental excitation energie
within the quasiband structures of all the collective even
even and odd-A nuclei very accurately obey a simple
relationship, Eq. (7), which can be used to calculat
recurrently all energies in the band starting from th
lowest two. This recurrence formula corresponds to
generalized anharmonic vibrator, and, within a natural
approximation, it leads to the second order AHV formul
proposed in Ref. [3] for the description of both vibrationa
and rotational bands in the even-even nuclei.

We conclude that the yrast structures of all the co
lective even-even nuclei, as well as the one-quasipartic
band structures in the odd-A nuclei from the medium-
heavy mass range (betweenZ ­ 30 and80), are well de-
scribed by a GAHV formalism [Eq. (7)]. This reveals an
unexpected simplicity and unity of the low-energy collec
tive phenomena, which represents a serious challenge
nuclear structure theories.

We are grateful to Professor A. W. Thomas for a critica
reading of the manuscript.
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