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It is found that energy correlations within the bands of the good rotorAddelei are well described
by an anharmonic vibrator formula, which indicates an unexpected constancy of the moment of inertia.
Based on a large collection of quasibands in all collective even-even and oddiei, an empirical
recurrence relation is proposed which allows one to calculate the excitation energies of any band
starting from its lowest two. This simple two-parameter formula can be reduced approximately to that
of a second order anharmonic vibrator. [S0031-9007(97)03520-5]

PACS numbers: 21.10.Re, 21.60.Ev

During the past few years, several unexpected, sysven and oddt), we observe a very simple and compact
tematic features have been discovered by studying cocorrelation between three consecutive excitation energies
relations between the excitation energies of low-lyingin the band, which is well satisfied up to the highest states
collective bands. Most of these results concern the quas(below the up (back) bending). This gives a recurrence
ground band of the even-even nuclei. The most rerelation which leads to a simple, universal two-parameter
markable is the finding that the yrast energies of thdormula that can be used to describe the higher states of
collective,nonrotor nuclei with28 < Z < 82 [i.e., those any band by starting from its lowest three states. With
having 2.05 < Ru/; < 3.15, with Ry = E(4T)/E(21+)] some reasonable approximation, this formula leads to a
are well described by a universal anharmonic vibratofunctional dependence onidentical to that of the second
(AHV) formula with constantanharmonicitye,, order AHV empirically proposed in [3].

n(n — 1) We first study the band structures in the good rotor odd-
5 & (1) A nuclei (i.e., those having cores wiy/, = 3.15). In

) the rotor model their excitation energies are described by
where n = I/2 can be interpreted as the number of

phonons of the state of spih (heren = 1 corresponds E(l) = h_2[1(1 + 1) — KK + 1)]. )
to the 2{ state,n =2 to 4, etc.) [1,2]. In a recent 23

extension of this work it has been shown that a nexRN
order generalization of Eq. (1), including a second order,

E(n) = nE(1) +

e consider a sequence of states of spjnsj + 2,
. n(n—1)(n~2) ) j +4,..., from such a band; usually = K but for
anharmonicity term,~—¢—— gq, gives an excellent \na¢ follows this is not necessary. By analogy with the

description of the yrast bands of all types of even-even . ot hand of the even-even nuclei, we define the in-band
nuclei (the good rotor ones included) [3]. excitation energies

Progress along similar lines has also been made for
the odd-mass nuclei. In Ref. [4] it was shown that the E'(1)=E(j + 2) — E()),
unique (or unnatural) parity structures in all nonrotational . .
nuglei :Slre well des)crr)ibeg by Eq. (1), with practically E'Q=E(+4) - E()),...,
the same value ok, as that of the even-even nuclei and study the correlations between them.

(=150 keV). This study was extended in Ref. [5]to all We now consider the whole collection of bands based
the natural parity orbital (one-quasiparticle) quasibands iron intrinsic (Nilsson) states. For this study we have ex-
nonrotor nuclei, which were also shown to follow an AHV tracted from the nuclear data sheets [6] a collection of
behavior [Eq. (1)]. 225 bands for which at least two transitions are known.

In this Letter we present two other results which showTogether with the bands, based on the unique parity or-
that the AHV-type behavior of the quasiband structuresitals [4], we have a total of 303 bands. These are the
in both the even-even and oddnuclei is truly universal. different Nilsson bands in the deformed (“good rotor”)
First, we show that the low-lying (Nilsson) bands in the nuclei, betweer>Sm and '¥’0s. The correlations be-
good rotor oddd nuclei are also excellently described tweenE’(2), E'(3), andE’(1), respectively, are shown in
by Eq. (1). This is very surprising, in view of the Fig. 1. The resultis very striking: The experimental data
common present perception that the moment of inertialefine very compact straight lines. In particular, the cor-
of all these nuclei (and bands) is not constant. Secondglation of E/(2) with E'(1) is of the AHV type (1), i.e.,
by studying a large collection of experimental quasibandf slope exactly 2 and with very little scatter of the points
structures in all types of collective nuclei (both even-around the fitted straight line (one standard deviation of

®3)
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186W) the behavior is completely differente4 deduced

15 - ]
from Eg. (1) varies strongly from nucleus to nucleus
and, as a result, the&(4]) versus E(2;") plot bends

Lok | down systematically from the AHV line (1) towards a

line of slope 3.33 [1]. Alternatively, the MI for tha;
state [which is essentially the reverse Bf2,)] varies

X 5 21 ;
05 slope =2.90(3) | pontlnugusly from abou®0 :[‘o 40k M"eV [7]. Itis
K . _ interesting to note that the “constant” Ml value observed
g intercept = 296(7) . . ;

%‘ 3 for the oddA nuclei is practically equal to the maximum
Z 00 . [ . . value reached by the even-even nuclei.
sl ' ' ' " ] The constancy of the MI's has also been checked by
=1

determining them directly from the transition energies
in the usual way. Since, in determining from the

correlation of Fig. 1 via Eq. (4), one uses three states of
the band (or two transition energies), it is likely that what

0.5 . is determined is the dynamic M. We have therefore
_ determined3@ = 4/[E'(2) — 2E'(1)] as well and found
_s‘lope =2.00(1) that its distribution is very close to mormal one, with a
intercept = 85(3) mean of(43.2 = 5.3)i% MeV !, which is the same as the
0.0 ! ! ! | value deduced from Fig. 1, except for the larger standard
0.0 0.1 0.2 0.3 0.4 0.5 deviation.

E'(1) [MeV] For the correlationt’(3) versusE’(1) (Fig. 1) and for
the higher states, the slopes of the straight line fits deviate

_ ‘ 4 more and more from the AHV prescriptions. These
Nilsson bands in the deformed oddnuclei (between'>>Sm -~
and '%70s). Energies are relative to the lowest state of spindevIatlons reflect the known fact that the MI does not

j [see Eq. (3)]. The crosses are the experimental points angeMmain constant along the band, but generally increases
the curves are fitted straight lines whose slope and intercept (iaS one goes upwards in the band.
keV) are indicated. With this result added to the previous ones [1,2,4,5]
there is now rich evidence that both the yrast bands
only 17 keV). The intercept, of Eq. (1) is95 = 3 keV,  of all nonrotor even-even nuclei with8 < Z < 82 and
notably smaller than that of-150 keV for the nonro- the one-quasiparticle bands il oddA nuclei from
tor even-even nuclei [1] and unique parity structures inthe same region are rather well described by the AHV
odd-A nuclei [4], or of 115 keV deduced for a collection relation (1), with an almostonstantes (which may
of different natural parity bands in nonrotor oddauclei  depend somewhat on the mass region or the character
[5]. The excellent AHV description of all these rotational of the nuclei considered—deformed or nondeformed).
bands, although surprising, has a simple meaning. It iSenerally, the experimental data show an excellent AHV
clear that such phononlike correlations need not imply aneorrelation for the first two energies in the band, which
harmonic vibrations. Formula (1) describes exactly a sepersists reasonably well for the third excitation energy,
of rotational bands (2if all of them have the same mo- but the scattering of the points around the average AHV
ment of inertia [§ in Eq. (2) is aconstant In this case, behavior increases continuously for the higher states in
g4 in Eq. (1) is related to the constant moment of inertiathe band, until this correlation is practically washed out.

FIG. 1. Correlations of in-band excitation energies for 303

M) 3, A closer inspection of the experimental plots reveals,
72 however, that the deviations of the points corresponding
g4 =4—. (4) to different states from the mean AHV behavior are rather

N well correlated. To unravel these correlations we have

Thus, in terms of the rotor model, the empirical resultstudied different relationships between the experimental
of Fig. 1 implies an unexpected fact: For all of the excitation energies of more than three successive states
rotor nuclei betweed ~ 150 and 190, all Nilsson bands from the band. This was made for our entire collection of
have almost the same, constant value for the Ml at théands, now numbering 64 bands in the deformed even-
lowest rotation frequencies. This value, correspondingven nuclei, 158 in the nondeformed ones, 303 in the
to e4 =95 £ 3 keV, is I = (42.1 = 1.3)h2 MeV~'. deformed oddd nuclei, and 582 in the nondeformed
This constancy, or rather the narrow distribution aroundbddA ones, for nuclei between As and Hg. Let us
a certain value, un-noticed until now (note that, on thedenote byE, (n) the “transition energy” from the staie
basis of theA%> dependence of the MI, one expectsto the state below it(n — 1): E,(n) = E(n) — E(n —

a variation of about 36% between the masses 155 ant) [or E'(n) — E'(n — 1) in the oddA nuclei]—see
187), is characteristic only to the oddnuclei. In the Egs. (1) and (3)—are actually thB2 y-ray transition
corresponding even-even core nuclei (frofffSm to  energies in the band. We have observed that for any
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three consecutive transitions (from the states labeled bijons of Ref. [8]), and the rotational even-even nuclei for
n — 2,n — 1,n) the energy of the “middle” one is well which g4 varies strongly and in a systematic manner [1,8].
approximated by the arithmetic mean of the two adjacen§ince we see practically the same type of correlation in
ones, below and above it. This is actually the predictioreach case, this gave us the incentive to treat all bands, in
of both the AHV, Eq. (1), and the rotational formula (2): all nuclei, on the same footing, as we discuss next.
The experimental data in Fig. 2 show a correlation
Ey(n) =2E,(n = 1) = Ey(n = 2). (3)  which can be well described by a straight line but with
Figure 2 shows the correlation between the experiment&llOPe and intercept slightly different from 1 and 0, respec-
quantitiesk, (n) and[2E,(n — 1) — E,(n — 2)] for our tively. So, a more correqt formula_ which reprodl_Jces the
entire collection of bands in both the even-even and 4dd- average behavior of our rich experimental collection is
collective nuclei. Each band, for which at least three tran- E,(n) = ci2E,(n — 1) — Ey(n — 2)] + c2, (6)
sitions (or three “excited” states) are known, contributes .
with points in Fig. 2 up to the highest transition yalue) WNeréci and c; are parameters to be determined from
below the (up) back bending. We have a total of 754 sucﬁhe.da.ta' We can now use this formu_la to calculate
bands, and we considered up to 9 transitions in each. citation engrglgsE(n) recurrently, starting from the
note that the correlation in Fig. 2 is an extremely tight en_lowest transitions in the band,
velope very close to the straight line (5) (of slope 1 and
intercept 0). Remarkable in this plot is that, although we E(n) = E(n = 1) + ail2E(n — 1) = 3E(n = 2)
go as high as possible imfor each band, the scattering of + E(n —3)] + . (7
the points remains very small in comparison with that of
the correlation plots between the excitation energies, suce have performed least squares fits to the experimental
as those in Fig. 1. Actually, since the overwhelming ma-Pand energies, not for individual nuclei but for different
jority of the experimental points lie within a very narrow sets of nuclei (such as even-even and dddieformed
envelope, such a plot is useful to evidence “irregulari-or nondeformed, respectively), as well as for the entire
ties” in the bands, which are immediately highlighted byset of bands, and determined the valuescpfand c.
points with a large deviation from the average behaviorThe “theoretical” energies were calculated with Eq. (7),
Thus, an examination of such points in our case (Fig. 2ptarting fromn = 3; the first two energies in the band,
revealed either possible up bendings not eliminated by out(1) and E(2), were taken equal to the experimental
procedure or other phenomena such as band perturbatiyalues. We have found that generally takes values
due to strong Coriolis mixing. Note that in Fig. 2 we take between 0.92 and 0.98, and between 7 and 22 keV.
both the “AHV” class of nuclei (vibrational, transitional, It is interesting to see how precisely this formula works.
and deformed odd), which generally shows “random” Figure 3 gives statistical results of three such global fits
deviations from formula (1) (see, however, the considerato band energies with Eq. (7) by showing the distribution
of the mean relative deviation of the excitation energies
calculated for each band %— = niz 2 “Ef’g)—_f)‘“(’)l the
e sum running from 3 up to the highest staten the band.
o The formula works best in the case of the well-deformed
.7 (good rotor) nuclei: 74.7% of the 253 bands hangE—"
e Rl less thar2%, and58% of them have less tharfs. In the
case of the nondeformed nuclei (which have the largest
scattering in the plot of Fig. 2), the results are weaker:
. 61.7% of the 501 bands havé= < 2%, and the tail
at higher deviations is larger. Fall the bands taken
together65.7% of the 754 bands hav‘%—* < 2%.
- We do not insist on the description that this approach can
give in particular cases, since it is intended to reproduce
only the mean behavior of the experimental data (as
! shown in Fig. 2). But we shall deduce what type rof
oo 0s 10 15 20 dependence (ultimately, a dependence on the level spin)
2E (n-1) - E (n-2) [MeV] is provided by the recurrence relation (7) for the level

FIG. 2. Correlation between experimental energies of thregnergleSE(")' An explicitn dependence can be obtained

consecutive in-band transitions [see discussion of Eq. (6)]. AN theapproximatione; = 1.0; in this case, Eq. (7) leads
number of 754 bands in the even-even and adduclei tO

20 T T T

E (n) [MeV]

Y

(both deformed and nondeformed) with at least three known n(n — 1) nn — 1 (n — 2)
transitions contribute to this plot (a band with transitions  E(n) = nE(1) + €4 €6,
givesn — 2 points in the plot), and up to 9 transitiofs = 9) 2 6

were considered for each band. (8)
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o T Sm and Os) show, for the lowest states, global energy

Deformed nuclei correlations which are very well described in terms of the
60 - ¢,=0.960 . universal anharmonic vibrator equation (1). Within the
40 C,=7 keV i rotor model, this signifies that the moments of inertia of

all these bands at their lowest rotation frequencies have a
20 y rather narrow distribution around a constant value. This
finding is rather unexpected. One anticipates that the Ml

|

1 T T T 1 T T T

§1oo~ Non-deformed nudlei of the oddA nuclei shquld be larger than _that of the adja-
S 0 c,=0.924 i cent even-even nuclei due to _th_e reducthn of the pairing
B . ¢, =19 keV ] through blocking, but not that it is almost independent of
@ mass and the orbital occupied by the odd particle. Fur-
£ 40 } thermore, this mean, constant value of the MI corresponds
2 201 7 to the highest value of the MI of the even-even cores in

the 2] state. On the whole, this surprising experimental
150 All nuclei 1 finding represents a challenge for microscopic models.

©
1

¢,=0.927 Second, by examining a very large collection of data,

100+ =19 keV i we have found that the experimental excitation energies

50 ] within the quasiband structures of all the collective even-
even and oddt nuclei very accurately obey a simple

o relationship, Eg. (7), which can be used to calculate
0 2 4 6 8 10 12 14 16 18 20 recurrently all energies in the band starting from the

3E, /E, [%] lowest two. This recurrence formula corresponds to a

generalized anharmonic vibratprand, within a natural

FIG. 3. Statistical distributions of the mean relative de\.'iat.ionapproximation, it leads to the second order AHV formula
of the band excitation energies (see text for the definition)

calculated with Eq. (7) for the three indicated classes of nucleiprOposed_ in Ref. [3] f(?r the description of bOt_h vibrational
In each case, the values obtained for the parameteand c, and rotational bands in the even-even nuclei.
from least squares fit to the data are given. We conclude that the yrast structures of all the col-

lective even-even nuclei, as well as the one-quasiparticle

wherees = E(2) — 2E(1) and eg = 2¢,, with E(1) and  band structures in the od#l-nuclei from the medium-
E(2) being the experimental energies of the first twoheavy mass range (betwe#n= 30 and80), are well de-
(excited) states. This is exactly the second order AHVscribed by a GAHV formalism [Eq. (7)]. This reveals an
formula proposed in Ref. [3] for the description of any unexpected simplicity and unity of the low-energy collec-
type of band. In some particular cases, the best resultde phenomena, which represents a serious challenge for
will be obtained by leaving,, €, and evenE(1) as free  nuclear structure theories.
parameters. Thus we recognize the recurrence formula We are grateful to Professor A. W. Thomas for a critical
(7) as representing @eneralizedanharmonic vibrator reading of the manuscript.
(GAHV).
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