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Vibrational dynamics of folded proteins is studied using a Gaussian model in which the protein
viewed as a network, residues representing the junctions, and the connectivity being established
a single parameter harmonic potential. Application to seven proteins showed that the local pack
density plays a major role in determining the vibrational spectrum at time scales of picosecon
At later times, the secondary structure and tertiary context of each residue comes into play. T
vibrational frequencies obey a universal distribution, confirming previous normal mode analyse
[S0031-9007(97)04215-4]
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Two recent papers [1,2] on the vibrational motions o
globular proteins have led to significant simplification i
our understanding of the dynamics of folded protein
ben-Avraham [1] found that the density distribution o
slow vibrational modes of globular proteins follows
characteristic, universal curve when expressed as a fu
tion of frequency. Slow vibrational modes are those r
sulting from the cooperative fluctuations of thea carbons
on the backbone chain. The existence of such a univ
sal curve is attributed to the main structural similaritie
between proteins [1]. Amplitudes of these atomic flu
tuations are determined experimentally, and reported
the Protein Data Bank (PDB) [3]. The observation of
universal dispersion curve by ben-Avraham is significa
because it directs attention to the generic nature of inter
tions in proteins in the native state. Tirion [2] showed, b
normal mode analysis, that a single parameter harmo
potential reproduces in good detail the large amplitu
motions of proteins in the native state. This is consi
tent with our recent analysis of 302 nonhomologous stru
tures from PDB, in which the stability of native proteins i
shown to be imparted predominantly by uniform nonsp
cific potentials of mean force, representative of avera
interresidue interactions in folded proteins [4].

In line with these plausible conjectures, we proposed [
a model for the folded protein in which interactions be
tween residues in close proximity are replaced by line
springs, in analogy with the elasticity theory of random
polymer networks [6–8]. The model assumes that the p
tein in the folded state is equivalent to a three dimension
elastic network. The junctions are identified with the Ca

atoms in the protein. These undergo Gaussian distribu
fluctuations. We refer to this model as the Gaussian n
work model (GNM). By adopting a single parameter fo
the harmonic potential, following Tirion [2], we were able
to predict the equilibrium fluctuations of the Ca atoms of
several proteins with almost perfect agreement with e
periments [5]. The specific aim of the present work is
explore the vibrational dynamics of proteins by the GNM
0031-9007y97y79(16)y3090(4)$10.00
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According to GNM, the equilibrium correlation be-
tween fluctuationsDRi andDRj of two a carbonsi and
j is given by

kDRi ? DRjl ­ skBTygd fG21gij , (1)

where G is a symmetric matrix known as Kirchhoff
or connectivity matrix [9], the subscriptij denotes the
ij th element, Ri is the position vector of theith a

carbon,kB is the Boltzmann constant,T is the absolute
temperature, andg is the single parameter (force constant
of the Hookean pairwise potential used by Tirion [2
for representing the interresidue interactions in the folde
structure. The elements ofG are given by

Gij ­

8>><>>:
21 if i fi j andRij # rc ,
0 if i fi j andRij . rc ,

2
P

i,ifij
Gij if i ­ j .

9††=††; . (2)

Here rc is the cutoff separation defining the range
of interaction of nonbondeda carbons, andRij is
the distance between theith and j th Ca atoms. A
reasonable cutoff distance including all residue pai
within a first interaction shell is 7.0 Å [5,10]. Theith
diagonal element ofG characterizes thelocal packing
densityor thecoordination numberof residuei, 1 # i #

n, for a protein ofn residues. The inverse ofG may be
written as

G21 ­ UsL21dUT . (3)

Here U is an orthogonal matrix whose columnsui , 1 #

i # n, are the eigenvectors ofG, and L is the diagonal
matrix of the eigenvaluesslid of G, usually organized in
ascending orderl1 ­ 0 , l2 , · · · , ln. Mean-square
fluctuations of the Ca atoms and the cross correlations
between the fluctuations of the Ca atoms are found using
the respective diagonal and off-diagonal elements ofG21

in Eq. (1).
© 1997 The American Physical Society
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It is possible to decomposeG21 as the sum of contribu-
tions from individual modes as

G21 ­
nX

k­2

l21
k ukuT

k ­
nX

k­2

Askd. (4)

HereAskd is then 3 n matrix describing the contribution
of the kth vibrational mode to atomic fluctuations. Th
first eigenvalue ofG, identically equal to zero, is not
included in the summation of Eq. (4).

The correlation of the fluctuations ofith and j th Ca

atoms can be expressed as the sum of the contribution
individual modes as

kDRis0d ? DRjstdl ­
X

k

A
skd
ij exph2lktyt0j , (5)

where A
skd
ij is the ij th element of Askd, and t0 is a

characteristic time, which may be expressed in terms
the effective friction coefficientz and force constantg as

t0 ­ z yg . (6)

Equations (5) and (6) follow directly from the applicatio
of the Langevin equation of motion to the vibrationa
dynamics of residues [11]. The timet0 will be shown
below to have a fixed value oft0 ­ 6 ps, which is
characteristic of the vibrational dynamics ofall proteins
in their folded state.

Previous calculations demonstrated that the GNM yie
a satisfactory description of the thermal fluctuations
a carbons of proteins in their native state [5]. We di
play in Fig. 1(a) the mean-square fluctuations of Ca atoms
of apomyoglobin,kDR2

i l as a function of residue index

FIG. 1. (a) Temperature factors for apomyoglobin as a fun
tion of residue index. Boldface curve is obtained from prese
theory, dashed curve from experimental data [12]. (b) Cor
lation timestii for the relaxation of Ca atoms.
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i, together with the Debye-Waller or temperature facto
Bi ­ 8p2kDRi ? DRily3, measured by x-ray crystallog-
raphy [12]. Bold and dashed curves depict the theore
cal and experimental results, respectively. The theoreti
curve is normalized by takinggsÅ22d ­ 2.06 kBT , so as
to match the area enclosed by the two curves. The agr
ment between the theoretical and experimental curves
remarkable.

The autocorrelation functions associated with the flu
tuations of Ca atoms evaluated from Eq. (5) showed
single exponential decay fort # 1 ps, followed by a
stretched exponential decay with exponentb ­ 0.5 at
longer times. In the case of cross correlations, on t
other hand, the same stretched exponential behavio
observed in the ranget $ 1 ps, while the initial slope
of the decay curves approaches zero. The correlat
time tij associated with time decay of cross correlatio
kDRi ? DRjl can be evaluated from

tij ­
Z `

0

kDRis0d ? DRjstdl
kDRi ? DRjl

dt

­
t0

kDRi ? DRjl

nX
k­2

A
skd
ij

lk
. (7)

Figure 1(b) displays the correlation timestij evalu-
ated for the time-delayed autocorrelationssi ­ jd of all
residues in apomyoglobin. Residues exhibiting smal
amplitude fluctuations [Fig. 1(a)] have generally short
correlation times, although there is not necessarily a o
to-one correspondence. In order to understand the re
tionship between the correlation times and amplitudes
equilibrium fluctuations, the time evolution of vibrationa
motions of individual residues is analyzed below in rel
tion to their local packing density and secondary structu

We consider the time required for each residue
reach 5% of its complete loss of correlation. Let u
denote this time astii (0.05), the argument denoting
the fractional extent of relaxation. Figure 2(a) shows t
tii (0.05) values obtained for apomyoglobin residues
a function of the mean-square amplitudekDRi ? DRil.
Here, residues having the same number of neighbors (
sameGii values) are designated by the same symbol,
indicated in the legend. At this early stage of relaxatio
residues lie on a single curve, approximately.

In Fig. 2(b), the timestii (0.50) required for the au-
tocorrelation functions to relax by 50% are shown. Th
points are not on the same curve anymore. Instead, a f
ily of curves is observed, fitted by dashed lines on t
figure. Each curve is distinguished by a given coordin
tion numberGii , i.e., residues which have the same num
ber of nonbonded contacts lie on distinct curves. TheGii

values increase as we go from right to left along th
family of curves. Among residues having a commo
temperature factor (i.e., same amplitude of equilibriu
fluctuations, fixed value on the abscissa) those experie
ing a higher packing density on a local scale undergo
3091
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FIG. 2. Time evolution of fluctuation amplitudes as a functio
of mean-square amplitudes of fluctuations. (a) and (b) refer
the timestii (0.05) andtii (0.5) required for 5% and 50%,
respectively, of the full decay of fluctuation autocorrelatio
function. (c) displays the correlation times for full decay. Eac
symbol refers to a residue in apomyoglobin. Dashed lines a
drawn to guide the eye. Numbers in the legend indicate loc
packing density of residues.

slower loss of correlation, as evidenced by their high
correlation times, compared to those with lower packin
density. Alternatively, two residues exhibiting the sam
rate of vibrational relaxation may differ in their equilib-
rium fluctuations depending on their local packing dens
ties. The one having a higher packing density exhib
smaller amplitude fluctuations.
3092
TABLE I. Proteins used in calculations.

PDB code Na Name Resolution (Å) Ref.

5pti 58 Bovine pancreatic trypsin inhibitor 1.0 [15]
1hoe 74 a–Amylase inhibitor 2.0 [16]
1tho 108 E. coli thioredoxin 1.68 [17]
1bni 108 Barnase (wild type,pH 6) 2.0 [18]
1ccr 112 Rice ferrytochromec 2.0 [19]
1bvc 153 Biliverdin apomyoglobin complex (D) 1.5 [12]
3lzm 164 T4 lysozyme 1.7 [20]

aNumber of residues.
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At later stages of relaxation the classification of
residues according to their packing densities become
less pronounced. Figure 2(c) depicts the correlatio
times tii (1.00) calculated from the full decay of the
autocorrelations as a function of equilibrium mean-squar
fluctuations. Residues having the same packing densitie
are not aligned anymore on well-defined distinct curves
Evidently, other factors, such as the particular secondar
structure and tertiary context come into play. Furthe
examination shows that residues belonging to distinc
helices indeed exhibit a preference to form cluster
in the figure. In the case of apomyoglobin, a protein
consisting of eight helicesA–H arranged in parallel,
residues belonging to helixG lie in the lower left portion
of the correlation time vs fluctuation amplitude diagram;
whereas in the other extreme region of high fluctuation
amplitudes and high correlation times, we observe
clustering of residues belonging to helixD, followed
by helix C. These two helices are observed by NMR
spectroscopy to be involved in either the early unfolding
stage [13] or the late folding stage [14] of apomyoglobin.

The eigenvalue decomposition of the inverse Kirchhof
matrix G21 has been carried out for a set of proteins
(Table I) to study the general properties of the relaxation
modes. The density distributiongsld of the eigenfre-
quencies is plotted for different proteins in Fig. 3. The
solid best fitting curve is obtained by considering all data
points. The data appear to collapse into a universal curv
similar to the one first proposed by ben-Avraham [1],
which is derived from a classical normal mode analy-
sis. A major difference is the portion of our distribu-
tion curve in the lowest frequency region of the spectrum
sl , 5d, where an increase is observed with decreasin
l. By matching the peak of our distribution curve with
that obtained by ben-Avraham [1], the characteristic time
t0 appearing in Eq. (5) is evaluated as 6.0 ps. This valu
may be viewed as a universal parameter characteristic
the vibrational dynamics of residues in folded proteins.

The cumulative densityGsld of the modes is plotted in
Fig. 4 as a function of eigenfrequencies. Points displa
results obtained for the same set of seven protein
(Table I). Over the complete frequency range the point
fall on a sigmoidal curve which is fitted by a cubic
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FIG. 3. Density of relaxation modes for different proteins
gsld. PDB codes of the proteins are indicated (see Table I).

relationship in the figure. The part of the curve forl , 4
corresponds to the initial portion of the curve shown i
Fig. 3. A log-log plot of this part of the curve yields a
straight line with slope equal to unity. The intermediat
portion of the curve for the range5 , l , 10, which
is the counterpart of the slow mode region discusse
by ben-Avraham [1], is shown in the inset in Fig. 4 on
a logarithmic scale. The slope of the best fitting lin
is found as 1.63, indicating a power law of the form
Gsld , l1.63. This exponent is lower than the value 2
obtained by ben-Avraham by normal mode analysis [1
We have also observed that the exponent is depend
on the size of the protein, approaching a value of 2
the case of larger proteins. Our calculations, as well
the previous normal mode analyses, reflect the anomalo
nature of the slow vibrational modes of proteins, which i
different from regular crystals whereGsld scales withl3.

In conclusion, the present Letter introduces a simp
method to analyze the dynamic correlations in nativ
proteins, based on a Gaussian model of nonbond
interactions. The study of protein dynamics is hampere
by the size of the systems and the complexity of th
potential functions in use. With this model, one can stud
the slow motions of even the largest known proteins. Th
proposed method directs attention to novel findings o
protein dynamics: At early times the relaxation of mode
is universal, at intermediate times it is dominated by th
local density of packing, and at longer times the effects
the particular secondary structure appear.

Partial support from Bogazici University Research
Funds Project No. 97P003 is gratefully acknowledged.
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FIG. 4. Cumulative distribution of vibrational modes,Gsld,
obtained from Fig. 3. The inset is the log-log plot of the
intermediate region.
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