VOLUME 79, NUMBER 2 PHYSICAL REVIEW LETTERS 14 JLy 1997

Measurement of the Probability Distribution of Total Transmission in Random Waveguides
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Measurements have been made of the probability distribution of total transmission of microwave
radiation in waveguides filled with randomly positioned scatterers which would have values of the
dimensionless conductange near unity. The distributions are markedly non-Gaussian and have
exponential tails. The measured distributions are accurately described by diagrammatic and random
matrix calculations carried out for nonabsorbing samples in the lgm#s 1 when g is expressed in
terms of the variance of the distribution, which equals the degree of long-range intensity correlation
across the output face of the sample. [S0031-9007(97)03522-9]

PACS numbers: 84.40.Az, 41.20.Jb, 42.25.Bs

Nonlocal correlation in the flux transmitted through fluctuations in these quantities do not self-average, as they
mesoscopic samples leads to enhanced fluctuations of locabuld if spatial correlation were absent. To leading order
and spatially averaged transmission for both classical anih 1/g, the enhancement of the variances gf, s,, ands
quantum waves [1,2]. Such fluctuations increase dramatarising from nonlocal correlation is L,/¢ [6], and(L/€)?
cally as the ensemble average of the dimensionless cofi#,8], respectively, which results in values of the variances
ductanceg, approaches unity. Low values gfcan be of 1,1/g, and(1/g)? [9,10].
achieved in quasi-one-dimensional samples such as con-To examine the scaling and the universality of trans-
ducting wires or multimode waveguides with lengths muchport, it is important to measure the full distribution of key
greater than the transverse dimensions. In this Letter, wigansmission quantities as the sample size, and hgnce
report measurements of the probability distribution of thechanges. In previous work, nonlocal correlation has been
total transmission of microwave radiation in long wave-shown to lead to higher probabilities at large values of the
guides filled with randomly positioned scatterers whichintensity, leading to a deviation from negative exponential
in the absence of absorption would have valuesgof statistics for polarized microwave radiation whgn- 10
near unity. The distributions observed are markedl\{11,12], as well as to discernible deviations from a Gauss-
non-Gaussian. They are compared to recent diagranian distribution and enhanced variance for the total optical
matic and random-matrix calculations for nonabsorbingransmission wheg > 103 [13].
samples in the limitg > 1 [3,4]. This is done by Recently, an expression faP(s,) in terms of g for
reexpressing the distribution, which is a function ofnonabsorbing samples was obtained by Nieuwenhuizen
the single parameteg, as a function of the variance of and van Rossum using diagrammatic techniques combined
the normalized transmission using the relation betweemith random matrix theory [3] and subsequently by Kogan
these parameters. This result is in excellent agreemeind Kaveh within the framework of random matrix theory
with the measured transmission distributions and indi{4]. The diagrammatic calculations neglect some terms
cates that the variance of the normalized transmissiorgf order higher thari /g, whereas computations based on
which equals the degree of long-range intensity correrandom matrix theory neglect sample-to-sample fluctua-
lation across the output face of the sample, is the egions in the probability distributions of eigenvalues of the
sential parameter describing fluctuations in random medidransmission matrix and are expected to be accurate only

Key transmission quantities in order of increasing spato order1/g. More recently, van Langen, Brouwer, and
tial averaging are the intensity,;, which is the transmis- Beenakker carried out a nonperturbative calculation of the
sion coefficient forincoming modeinto modeb, the total  total transmission distribution in the absence of absorp-
transmission for incoming mode T, = >, T., ~ ¢/L, tion [14]. An analytic solution is obtained for the case
and the total transmittande = > ,, T., ~ N€/L, where in which time reversal invariance is brok¢p = 2) but
¢ is the transport mean free path,is the sample length, not for the case of time reversal symmet§ = 1) con-
andN is the number of modes. The total transmittance isidered here. However, good agreement is found between
equivalent to the dimensionless conductance in electronithe 8-independent result faP(s,) obtained in Refs. [3,4]
systemsT = G/(e?/h), whereG is the conductance [5] and the result fog = 2 in Ref. [14] forg = 10.
andg = (T') = N{¢/L. Though the variances of the trans-  The distribution of total transmission has been measured
mission quantities normalized to their ensemble averagpreviously by de Boeet al.in optical measurements in
values,sqp = Tup/{Tup), sa = To/{T,), ands = T/{(T),  slabs of titania particles [13]. Samples with> 103 were
are reduced as the extent of spatial averaging increasestudied, and the distribution was found to be Gaussian to
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within 1%. A measure of the deviations of the distribution 2.0
from a Gaussian is the value of the third cumulésb.

which gives the skewness of the distribution and vanishes

for a Gaussian distribution. For the samples stud’lgjdc 15t
was of order ofl0~®. It was found thats3). = y,(s2)2 '
with y, = 2.9 * 0.4 which is consistent with the value
calculated for a Gaussian beam excitation of 3.20 [3].

In the present work, low values @f are achieved by
placing the sample in a cylindrical copper tube in order to
restrict transverse diffusion and thus the number of modes
N. The samples consist of randomly positioned polysty- 0.57
rene spheres with diameters of 1.27 cm at a volume fill-
ing fraction f = 0.55. Transmission spectra were taken

@ o experiment
__theory
(b)

1.0f (©)

P(s,)

at tube diameters of 7.5 and 5.0 cm and various sample (). () il :
lengths in the frequency range 16.8-17.8 GHz. The 0.0 0.5 1.0 L5 20 25
microwave radiation is coupled to the sample by a 0.4 cm Sa

wire antenna placed 0.5 cm from the front surface of thg- g 1. pistribution function of the normalized transmission
sample. The frequency is incremented in 4 MHz stepsp(s,) for three samples with dimensiofs) d = 7.5 cm, L =
The sample tube is rotated between successive measur-7 cm, (b) d = 5.0 cm, L = 50.0 cm, and(c) d = 5.0 cm,
ments to produce new scatterer configurations. The totdl = 200 cm.
transmission is measured by use of a single Schottky
diode detector positioned inside an integrating sphere rddistribution in the tail of the distribution for this sample
tating about the sample axis at 2 Hz. The integratingcan be seen in the semilog plot 81s,) in Fig. 2. For
sphere has a diameter of 40 cm and is comprised of twwalues ofs, = 2 the distribution is nearly exponential.
concentric plastic spherical shells separated by 2 cm. The In Fig. 3, we present a plot df3). versus(s2)>. The
outer shell is covered with aluminum foil to form an ir- solid line is a least square linear fit to the data which
regular reflecting surface. The region between the shellgives y = 2.38 = 0.05. Within experimental error this
is filled with thin-walled aluminum cylinders with diame- equals the valug = 2.40 calculated for an incident plane
ters of 0.75 cm and typical lengths of 1 cm. The cylinderswave in the lowest order of a diagrammatic perturbation
tumble as the integrating sphere rotates, resulting in flucexpansion in the small parametefg [3]. The results are
tuations of the intensity at the detector with a correlationcompared to calculations for a plane wave sidce< L
time of ~2 ms for the sample with a length of 100 cm. and there is a nearly complete mixing of modes in the
The signal is averaged for 1 s at each frequency, givingample, giving a uniform average intensity along a cross
an uncertainty o2.5% in the measurement of transmis- section of the sample. The agreement between theory
sion. The signal is normalized by its ensemble average tand experiment is surprising, however, sinigg; = 0.1
gives,. The transmission distributiori¥(s,) are obtained for all samples, reaching a value of approximately 0.3
by using the data from at least 1000 sample configura-
tions. Distributions obtained using different intervals of
the frequency range coincide within experimental error.
In the frequency range of the measuremeiits; 5 cm of
andN = k2d*/8 =~ 200 and90 for samples in tubes with
diametersd = 7.5 and 5.0 cm, respectively. The wave
numberk = 27 /A = 27vn/c is calculated using an ef- )
fective medium index of refraction = 1.4.

The transmission distributions for three samples with di-
mensionga) d = 7.5 cm,L = 66.7 cm,(b) d = 5.0 cm,
L =500cm, and (¢) d =5.0cm, L =200cm are
shown in Fig. 1. In the absence of absorption, the 5
dimensionless conductance for these samples without -6 E
localization correctionsg = N€/L, would be approxi-
mately 15.0, 9.0, and 2.25 for samples b, and c, |
respectively. The distribution broadens, and the deviation -8
from a Gaussian becomes more pronounced as either
the sample length increases or the cross-sectional area

decreases. A value afl)e as large ad).112 + 0.003  FiG. 2. Semilogarithmic plot of the transmission distributions
is observed for sample. Deviations from a Gaussian for the same samples as in Fig. 1.
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0.12 ' " - ' of (854,0545) to the full transmission distribution can be
seen by considering the expression of Refs. [3,4Ffor,)
010t ] in the absence of absorption in the lirgit> 1,
e dx
ool _ Ped = [ el = 0] @
/\o where
o 0.06
\‘7 d(x) = gln2<\/1 + x/g + ﬂx/g)
0.04] is the generating function. From Eq. (1), one obtains the
/ expression fos2). in terms ofg,
0.027 2
(s2e = 5 2)
8
0.0 y p ' ;
8oo 001 002 003 004 005 From these expressions, a general relation Aét,) in
<sa2>c2 terms of(s2)., or equivalentlyss.,8s.), can be found

by using Eq. (2) to define a new paramegér= 2/3(s2).
FIG. 3. Plot of(s;). versus(s;);. The solid line represents a which is substituted forg into Eq. (1). Plots ofP(s,)
least square linear fit to the data. obtained by following this procedure wity/ determined
from the measured values 6£2). are shown as the solid
for samplec, and is by no means small. Furthermore,lines in Figs. 1 and 2. We find tha(s,) is accurately
the influence of absorption was not included in thegiven even for the lowest value of of 3.06 (sample
calculations, whereas the samples used in the experimen). The distribution of Eq. (1) withg’ substituted forg
are strongly absorbing with > L, = 40 cm, whereL,  gives the exponential tail(s,) ~ exp(—g’s,) in the limit
is the exponential absorption length [15]. sq > 1. Fors, = 2.0, the linear fit to the logarithm of
We now consider the full transmission distribution. Thethe measured transmission distribution for samptgves
theoretical expressions for the full distribution function in a slope of2.71 = 0.06 in accordance with the exponential
Refs. [3,4,14] are given as functions gffor nonabsorb- fit of the theoretical curve of 2.70 in this range and is close
ing samples. In the present case of strong absorption, the its predicted asymptotic value of 3.06 for > 1.
photon number is not conserved, and¢annot be defined The extent of the agreement of Eq. (1) whehis
in terms of the steady state transmission, while serving asubstituted forg can also be gauged from the comparison
a useful measure of the proximity to the localization tran-of the calculated (circles) and the measured (squares)
sition. This can be seen by noting that the reduction omoments of the transmission distribution shown in Fig. 4
the average transmission due to absorption would lead tfor samples withg’ = 10.2 = 0.1 andg’ = 3.06 = 0.04.
a reduced value of even though the presence of absorp-The moments calculated from the theory are close to those
tion tends to lessen the degree of correlation in the samplebtained from the measured distributions. At= 10,
and to push the system farther from the localization threshthese defer by approximatel{0% which is within the
old. On the other hand, a parameter which characterizesxperimental error. Thus it appears thgs,) can be
the transmission distribution as well as the closeness to thexpressed as a function of the paramétgy..
localization threshold, even in the presence of absorption, The agreement between theory and experiment indicates
is the degree of correlation of intensity in different coher-that the ratio of moments is accurately reflected in Eq. (1).
ence areas of the transmitted speckle patigin,,6s.,).  The dependence of the second cumulant itself upon sample
Were this correlation to vanish, fluctuations in differentdimensions is shown in Fig. 5. In the limi > 1, in
coherence areas would be independent and the transmite absence of absorptio2). = 2L/3N¢. The straight
sion distribution would be Gaussian by the central limitline in the figure is drawn through the first data point and
theorem with vas,) = (s2). = 1/N. Asaresult of non- represent¢s2). ~ L/N. As g — 1, and the localization
local correlation, however, the variance of the transmisthreshold is approached, the scaling theory of localization
sion is enhanced. Itis given ky2). = ((s2,)c — 1)/2 =  [19] suggests that falls more rapidly and hencés2),
(6sapbsap) [4,9,10,16]. The last equality is consistent should increase superlinearly with sample length. Instead,
with the results of Ref. [16] when the cumulant intensitywe find that(s2). depends sublinearly upoh. This is
correlation function is properly normalized to the renor-presumably due to the presence of absorption which di-
malized average transmission [17]. In that case, the crossainishes the degree of nonlocal correlation. This raises
ing parameter found by Shnerb and Kaveh [18] whichthe question of whether the transmission distribution con-
determines the intensity distribution is found experimen4inues to broaden ak increases or, instead, it reaches a
tally to be equal tdds4,6s.5) [12,16]. The connection limiting distribution for particular sample parameters.
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mined from the measurements. The validity of the ex-
pression for values of’ as small as 3, well beyond the
limits assumed in the calculations, may well be associated
with the identification ofs2). with (8s485a), the de-
gree of spatial correlation in the sample, which is the key
microscopic parameter in mesoscopic physics.
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