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Van der Waals–Like Instability in Suspensions of Mutually Repelling Charged Colloids
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We show theoretically that the purely repulsive screened-Coulomb (or Derjaguin-Landau-Verwey-
Overbeek) interaction between charged colloidal particles is compatible with gas-liquid, gas-solid,
and solid-solid coexistence in colloidal suspensions of low ionic strength of about1026 molyliter.
This finding may partially resolve the ongoing debate on attractions between like-charged particles.
[S0031-9007(97)04326-3]

PACS numbers: 82.70.Dd, 64.10.+h, 83.20.Di
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Colloidal particles with typical diameters in the range
of 10 103 nm carry, when suspended in a polar medium
like water, a net negative charge of the order of102 104

electron charges. These macroionic charges are co
pensated by positively charged microscopic counterio
carrying typically only one unit charge. In addition,
suspensions usually contain added salt ions, typically
concentrations of1026 1022 molyliter. In the high salt
concentration regime, the phase behavior of such colloid
suspensions is well described by the Derjaguin-Landa
Verwey-Overbeek (DLVO) theory [1]. An important re-
sult of this theory is the effective pair potentialysrd
between two identical macroions with total charge2Ze
and radiusR, at center-to-center distancer. It is given by
the screened-Coulomb form

ysrd ­
Z2e2

e

µ
expskRd
1 1 kR

∂2 exps2krd
r

, (1)

where 2e is the electron charge, ande the dielectric
constant of the suspending medium. The bracketed fac
accounts for the exclusion of microions from the interio
of the colloids, while the range ofysrd is controlled by
the screening parameterk, related to the average microion
densityn and temperatureT by

k2 ­
4pe2n
ekBT

, (2)

with kB the Boltzmann constant. Here, and hencefort
we assume for simplicity that all microions are monova
lent. The DLVO potential of (1) is a cornerstone of col
loid science, and accounts for many phenomena observ
in suspensions of charged colloidal particles. For instanc
the purely repulsive form of (1) explains the experimen
tally observed fluid-solid coexistence at sufficiently hig
colloid densities.

There are, however, other experimental results that
not seem to fit into the framework of the DLVO theory
These experiments are invariably performed at extreme
low salt concentrations of the order of1026 molyliter.
For instance, the measured lattice spacings in crystalli
phases of such quasideionized suspensions were found
be smaller than expected on the basis of a space-filli
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structure of the known colloid density [2]. A natural
explanation for this would be that the dense crystallin
phase is not pure, but coexists with a much more dilu
gas phase. More evidence of phase coexistence has b
provided by the observation of extremely dilute voids (
gas phase) in the bulk of an apparently homogeneo
deionized suspension (a liquid) [3]. In fact, even a full
equilibrated gas-liquid coexistence has been reporte
although this observation aroused some controversy [4]

According to standard liquid-state theory, the abov
mentioned coexistence of dilute and dense phases wo
require the existence of long-ranged attractions betwe
the colloidal particles. Such attractions could be provide
by the van der Waals forces between the colloids. How
ever, the Hamaker constants that would qualitatively e
plain the observations are at least 1 order of magnitu
too large. Hence attraction mechanisms of electrosta
origin have been proposed, at the cost, though, of sacrifi
ing the well-established purely repulsive DLVO potentia
In this Letter we argue that the observations at low sa
concentrations can still be explained qualitatively withi
the framework of the DLVO potential (1).

The essence of our argument is most easily seen by
glecting, for the moment, the influence of added salt in th
colloidal suspension. We thus consider a thermodynam
system of volumeV and dielectric constante, suspend-
ing (i) Nm ­ Vnm identical macroions of negative charge
2Ze and hard-sphere diameterD ­ 2R, and (ii) Nc ­
ZNm ­ Vnc positive pointlike counterions. The Hamil-
tonian H ­ Hm 1 Hc 1 Vmc of this system consists of
a sum of the HamiltoniansHm andHc of the macro- and
counterions, respectively, and of the macroion-counterio
interaction termVmc. For later reference we write the
macroion Hamiltonian explicitly as

Hm ­ Km 1
1
2

NmX
ifij­1

√
yhssRijd 1

Z2e2

e

1
Rij

!
, (3)

with Km the kinetic energy,yhssRijd the hard-sphere pair
potential between two spheres of radiusR at positions
Ri,j , and Rij ­ jRi 2 Rjj. At fixed inverse tempera-
ture b ­ 1ykBT , the total Helmholtz free energyF of
© 1997 The American Physical Society
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this system can formally be written as expf2bFg ­
Trm expf2bHeff

m g, with the effective macroion Hamilton-
ian Heff

m ­ Hm 1 F0. HereF0 is given by expf2bF0g ­
Trc expf2bsHc 1 Vmcdg, and the trace Trmscd is short for
the phase-space integral over the macro(counter)ion
grees of freedom [5,6]. Clearly,F0 can be interpreted as
the Helmholtz free energy of an inhomogeneous fluid
counterions in the external field of macroions at fixed p
sitions Rj . Here we calculateF0 using the framework
of density functional theory [7,8], which is based on th
existence of a functionalF frs1dg of possible counterion
density profilesrs1dsrd. The thermodynamic equilibrium
profile rsrd is that profile that minimizesF while sat-
isfying the normalization condition

R
dr rsrd ­ Nc, and

F0 ­ F frg.
Unfortunately, the exact functional form ofF is un-

known, and hence approximations are unavoidable. H
we focus on a simple quadratic mean-field functional,
which (i) the logarithmic ideal-gas term is expanded
quadratic order about the homogeneous distribution, a
(ii) the counterion-counterion correlations are neglecte
This functional reads

F frs1dg ­ FidsNc, V , Td 1
kBT
2nc

Z
dr frs1dsrd 2 ncg2

1
Z

dr rs1dsrdUsrd

1
e2

2e

Z
dr dr0 rs1dsrdrs1dsr0d

jr 2 r0j
, (4)

where FidsNc, V , Td ­ NckBT flnsncL3d 2 1g is the ho-
mogeneous ideal gas term withL the thermal wavelength.
The second term of (4) represents the lowest order inh
mogeneous ideal gas contribution, the third one the co
pling to the macroionic external fieldUsrd, and the fourth
one the purely Coulombic counterion-counterion intera
tion. We assume thatUsrd ­

PNm
j­1 usr 2 Rjd is a mul-

ticentered sum of a macroion-microion pair interaction

usrd ­

8<: 2
Ze2

e

1
jrj jrj . R ,

2
Ze2

e

12a

R jrj , R ,
(5)

which is purely Coulombic outside the macroionic cor
and constant, parametrized bya, within. In principle,
one should consider the hard-core limita ! `, but this
is not compatible with the expansion of the full ideal-ga
contribution in (4), which requires smooth density profile
We will show below, however, thata can be chosen such
as to mimic the hard core in the functional (4).

Because of the expansion of the ideal-gas term, t
stationarity condition that follows from (4) is linear inrsrd,
and can be solved easily. It yieldsrsrd ­

PNm
j­1 r0sr 2

Rjd, where the “orbitals”r0srd are given by

r0srd ­

8<: k2Z.

4p

exps2krd
r r . R ,

k2Z,

4p

sinhskrd
r r , R ,

(6)
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Z. ­ Z

µ
s1 2 ad

sinhskRd
kR

1 a coshskRd
∂

,

Z, ­ Z

µ
exps2kRd

kR

∂
f1 2 askR 1 1dg .

(7)

The density profile (6) can be inserted back into th
functional (4) to yieldF0 ­ F frg, which leads to

Heff
m ­ Km 1

1
2

NmX
ifij

√
yhssRijd 1

Z2
.e2

e

exps2kRijd
Rij

!
1 FidsNc, V , T d 2

Z2e2

2e
kNmhsa; kRd , (8)

where

hsa; xd ­ s1 2 ad2 exps22xd 2 1 1 2x
2x2

1 2as1 2 ad
1 2 exps22xd

2x

1 a2 exps22xd 1 1
2

. (9)

Here the screening parameterk is given by (2) with
n ­ nc. A comparison of the first line of (8) with the
bare Hamiltonian (3) shows the well-known result tha
integrating out the counterions yields screened-Coulom
(or Yukawa) instead of bare-Coulomb repulsions betwee
the macroions. The second line of (8) does not depend
the coordinatesRj of the macroions, and would naively
be disregarded as an irrelevant constant energy offs
However, the key point of this Letter is that this offse
depends nontrivially on thedensityof macroions, and can
play an essential role in the total Helmholtz free energyF
of the system. The essence of the character of the fin
term of (8) is most easily understood for point macroion
as it follows fromhsa; kR ­ 0d ­ 1 that this term then
equals2Z2e2ky2e per macroion. This is of the order
of the electrostatic energy of a macroion with “its own
counterion orbital of range1yk. As k ~ n1y2

m , the final
term of (8) scales as2Vn3y2

m , and hence tends to drive a
van der Waals loop in the equation of state. A term o
this form also appears in the Debye-Hückel free energ
of symmetric electrolytes, where it is now known to drive
gas-liquid coexistence at sufficiently low temperatures [9
Moreover, such a structure-independent term also has
well-known analog in the theory of liquid metals, where
it is called the volume term [5,6]. The formal analogy
between liquid metals and colloidal suspensions has be
pointed out in Ref. [6], but the implications for the phas
behavior of colloidal suspensions has, to the best of o
knowledge, never been considered in detail. In this Lett
we show that the second line of (8) can drive a spinod
instability for finite values ofR, and lead to solid-solid,
solid-gas, or liquid-gas coexistence. It is essential
realize that these phase coexistences occur despite the
that the pairwise macroion-macroion interaction is pure
repulsive.
3083
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We have not yet included the effect of added salt, n
specified the parametera. The main complication of
added salt is the presence of more than one microion d
sity profile. It is straightforward, though, to generalize th
functional (4), and to solve for the profiles separately. Th
first difference between the resulting effective Hamiltonia
and that of (8) involves the definition ofk, which is still
given by (2) but now withn ­ Znm 1 2ns, wherens is
the number density ofpairsof monovalent added salt ions.
The second difference is the presence of homogene
ideal gas terms for each microion species. Concerni
the choice of the parametera, we first remark that the
choicea ­ 0 givesZ. ­ Z sinhskRdykR andhs0; xd ­
fexps22xd 2 1 1 2xgy2x2, which leads to identical expres-
sions as obtained by Sogami and Ise [10], who integrat
the linearized Poisson-Boltzmann equation. Note, how
ever, that their approach does not yield the ideal-gas te
that is present in (8), and that they proceeded by calculat
the pairwise Gibbs free energy, the interpretation of whic
is controversial [11]. Moreover, we see from (6) that th
choice a ­ 0 leads to a nonvanishing microion density
within the core about which it is centered. We argue, ther
fore, that the best choice to represent the hard core isa ­
s1 1 kRd21, since thenr0srd ­ 0 for r , R. This
choice, which will be used henceforth, leads to the effe
tive chargeZ. ­ Z expskRdys1 1 kRd, and thus exactly
reproduces the DLVO potential in (1). Usinghf1ys1 1 xd;
xg ­ 1ys1 1 xd, we thus obtain the effective Hamiltonian

Heff
m ­ Km 1

1
2

NmX
ifij­1

fyhssRijd 1 ysRijdg

1 FidsNs, V , Td 1 FidsZNm 1 Ns, V , T d

2
Z2e2

2e

Nmk

1 1 kR
, (10)

with ysrd defined in (1) andNs ­ Vns. We assumed here
that the released counterions are of the same species
the positive added salt ions. The first two terms of (10
constitute the Hamiltonian of a fluid of particles interact
ing with the pairwise DLVO potential. The final three
terms are constants as a function of the macroion co
dinates, butnot as a function of the macroion density
In fact, one can easily see that these three terms are c
stant as a function ofnm only in the high salt concentra-
tion regimens ¿ Znm, while thenm dependence is very
strong if ns # Znm. In the latter case, the final term of
(10) can drive a spinodal instability. On the basis of thi
one can understand qualitatively why theories based on
on the first two terms of (10) cannot explain the observe
phase behavior at low salt concentrations, while they
describe the physics at higher salt concentrations quali
tively correctly. In the sequel we show that the cross ov
from the low to the high salt concentration regime take
place atns , 1026 molyliter for typical values forR and
Z, which is in the regime of the experimentally observe
two-phase structures.
3084
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To deduce the phase diagram that follows from t
effective Hamiltonian (10), one first has to determine th
Helmholtz free energyF. This is done here variationally
using the Gibbs-Bogolyubov (GB) inequality, where th
reference fluid phase is the hard-sphere fluid, and
reference solid phase the Einstein crystal [12]. OnceF is
known, the phase coexistence is determined by impos
the standard conditions of equal osmotic pressure a
chemical potential (both for the macroions and add
salt), e.g., via suitable common tangent constructio
A drawback of the use of the GB inequality is that
underestimates the stability of the body-centered cu
phase (BCC) with respect to that of the face-center
cubic phase (FCC) and the fluid phase (F). It follows fro
our calculations that the F-BCC coexistence is alwa
preempted by F-FCC, whereas it is known that BC
can be stable at very low ionic strength. However, th
drawback, which was also encountered in Ref. [12], do
not affect our main conclusions, since the free ener
difference between FCC and BCC is much smaller th
that between F and either FCC or BCC; we can simp
not distinguish FCC and BCC accurately.

Below we present three phase diagrams that follo
from the effective Hamiltonian (10) and the procedu
described above. We consider aqueous colloidal s
pension at room temperature, and thus sete2yekBT ­
7.2 Å. We also take into account the dissociation of w
ter; the H1 and OH2 ions each provide an offset ofn0 ­
1 3 1027 molyliter to the total ion density in the fluid.
In the actual calculations we thus definek as in (2),
but with n ­ Znm 1 2ns 1 2n0. Of course, this off-
set is negligible at high salt concentrations or high co
loidal density, but is relevant at lower total ionic strengt
The three diagrams, presented in theh-ns plane with
the colloidal packing fractionh ­ s4py3dR3nm, all cor-
respond to the same realistic macroionic surface-cha
density2Zey4pR2 ­ 20.546eyÅ2, but differ in diame-
ter D and hence in total charge numberZ. The follow-
ing picture emerges. IfZ is small enough (this case is
not shown in a figure) there is no spinodal instabilit
and the only stable coexistence is F-FCC. The mec
nism of this transition is essentially that of the hard-sphe
freezing transition, which leads to coexisting phases of
most the same densities (narrow coexistence). AtZ ­
6881 andD ­ 633 nm [Fig. 1(a)] the total charge is suffi-
ciently large to cause an instability that drives a demixin
transition in the FCC phase atns , 2 mmolyliter. The
salt concentration in the dense phase is somewhat lo
than in the coexisting dilute phase. The main differen
with ordinary phase separation is the existence of an
per and a lower critical point, and a reentrant phenom
non. IncreasingZ by only 3%, so thatZ ­ 7300 andD ­
652 nm [Fig. 1(b)], leads to a region of instability that in
tersects the narrow F-FCC coexistence. Because of
reentrant phenomenon, this leads to two F-FCC-FCC tri
points, and to two distinct FCC-FCC coexistence regio
separated by a broad F-FCC coexistence. In this ca
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FIG. 1. Room temperature phase diagrams of aqueo
monodisperse suspensions of colloidal particles of diameterD
and charge numberZ, as a function of the colloidal packing
fraction h and the concentrationns of monovalent added salt
ion pairs. The phases are fluid (F), FCC-solid (FCC), liqui
(L), and gas (G). The critical points are indicated by3, the
triple points byD. Note that the F-FCC coexistence regime
becomes extremely narrow in (a) and (b) atns & 1 mmolyliter.
us

the lower critical point does no longer exist. Note tha
the present values ofZ and D are precisely those used
in recent experiments by Larsen and Grier [13], wh
showed the existence of long-lived metastable crystallit
at h ø 0.02 and ns # 2.5 mmolyliter. Although their
nonequilibrium experiments can never be fully explaine
by the present equilibrium theory, it is tempting to
argue that their long-lived metastable crystallites are n
separated from the equilibrium fluid phase by a narro
hard sphere like fluid-solid coexistence, but instead by
very broad one as in Fig. 1(b) atns # 2.5 mmolyliter.
IncreasingZ again by some 30%, so thatZ ­ 12 337 and
D ­ 847.6 nm [Fig. 1(c)], leads to a shift of the critical
point into the fluid phase, and hence to gas-liquid (G
L) and G-FCC coexistence. Note, however, the differe
scale of Fig. 1(c).

The theory we have presented here shows the possi
ity of a spinodal instability—and hence coexistence be
tween dilute and dense phases—without the presence of
effective attractions between the colloidal particles. A
though this does not mean that such attractions never
ist, we argue that their existence cannot be inferred on t
basis of observations of two-phase coexistence in expe
ments, as is often done [3,14]. The source of the instab
ity is the density dependence of the electrostatic energy
each macroion with its “own” cloud of microions.
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