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The relaxation kinetics of the diffusion-influenced reversible reacdon B = C is studied in
the pseudo-first-order limif{B] > [A]) when A and C are static and thd8's move independently
with diffusion coefficientD. For the initial condition[A(0)] = 1, [C(0)] = 0, it is shown that
the asymptotics ofA(r)] for + — « is given ind dimensions by(l + K.[B])~' + qu[B]/(l +
Keg[BD fa(t) with f1(t) = (wD1)"'2, f2(t) = 4wDr)~", and f3(t) = (4mwDt)~>/2, and wherek.,
is the equilibrium constant. By comparing with accurate simulations, this result is found to be exact
for d = 1, and we predict that it is exact for higher dimensions. [S0031-9007(97)04276-2]

PACS numbers: 82.20.Wt

Arguably the simplest irreversible diffusion-influenced monitored the kinetics of reversible proton transfer after
reaction isA + B — 0 in the limit that[B] > [A]. When photoexcitation of a dye. Based on an analysis of their
A is static and thd8’s diffuse independently, the concen- data, it appeared that equilibrium was approached é&s
tration of A is exactly described by the Smoluchowski re-wherea, while close ta3/2, depended on the proton con-
sult:[A(z)] = exd —[B] f(t) ki (1) d7], wherek;,(¢) isthe  centration. This apparent deviation from the theoretical
familiar time-dependent rate coefficient. The reversibleasymptotics motivated Agmon and Edelstein [12] to rein-
analog(A + B = C) has not been solved exactly but hasvestigate the kinetics of this reaction in one dimension at
been attacked by a variety of analytic approaches [1—8xtremely long times for a wide range of parameters. To
In one dimension, computer simulations of the kinetics ofdo this they had to develop a new and powerful Brownian
this reaction were first performed independently by Ag-dynamics algorithm to handle reversible reactions. Their
mon, Schnérer, and Blumen [9], and Szabo and Zwanzigvork showed unambiguously [12-15] that for all con-
[10]. Both of these papers suggested that the concementrations equilibrium was approached:a¥2. More-
tration of A approaches its equilibrium value as'/2.  over, they found, in agreement with earlier work [10], that
In particular, by performing a long simulation involving the SA approach, while it does predict!/? asymptotics,

a large number of particles for a single set of paramedoes not predict the correct amplitude and deteriorates as
ters, Szabo and Zwanzig [10] presented rather convincinthe product of the equilibrium constant and 88eoncen-
evidence that this asymptotic behavior is exact in the thertration increases.

modynamic limit. These authors also compared the pre- This state of affairs led Naumann [16] to extend the
dictions of several theories with the simulations. TheySA by explicitly considering not only theA—B pair
found excellent agreement at short times. Small but sigeorrelation function(gag), but also the pair correlation
nificant deviations were seen at longer times, especially asinction betweenC and B (gcg). Starting with the

the reaction approached the irreversible limit. exact hierarchy satisfied by the many-particle reduced

The most successful theory was the “superpositioistribution functions, he truncated this hierarchy by
approximation” (SA) approach [4,10] based on the workinvoking superposition approximations for bo#B and
of Lee and Karplus [1]. This theory involves only the CB distribution functions, and obtained a coupled set
reactive pair distribution function betweekandB and of nonlinear partial differential equations involving the
can be regarded [4] as the natural generalization ofoncentrationgap andgcs.
the Smoluchowski theory of irreversible reactions. By In this paper we consider this extended approach (ESA)
linearizing this theory near equilibrium, Szabo [4] wasin d dimensions and compare its predictions in one dimen-
able to express analytically the Laplace transform ofsion with essentially exact results obtained via Brownian
the concentration deviation in terms of the transform ofdynamic simulations. By linearizing the ESA about equi-
kir. In this way, it was found that the SA predicted librium, we obtain an analytic expression for the Laplace
that equilibrium is approached as%/? in d dimensions transform of the deviation of the concentration from its
[4,10]. Thus while the SA was not exact at long equilibrium value, in terms of the transform of the time-
times, it did predict ther~'/2 dependence found in the dependent rate coefficient of irreversible reactions. Using
simulations. this, we obtain an analytic expression for the concen-

The validity of thes~4/2 asymptotics was questioned tration ast — o, which turns out to be exact in one
by the experimental study of Huppeet al.[11] who dimension.
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Our microscopic many-particle model can be describedion [A(0)] = 0. We denote the concentrations at timne
as follows. A single staticA is surrounded byB's at  for this initial condition by[A(7)]. These two quantities
concentration B] which do not interact with each other are related byA(r)] + Keq[B][A(t)]o = 1, which is ex-
and move with diffusion coefficienD. The interaction act for the above many-particle model [10].
of B with A and C is described by the same spherically The ESA equations obtained by Naumann &b 1
symmetric potential of mean forc&(r). The reaction [16] can be readily generalized tbdimensions. In this
betweenA and B occurs at contact (i.e., when the inter- approach, the concentrations satisfy
particle separation iR) with the intrinsic rate constam,. d[A]
The intrinsic dissociation constant 6fto form a contact —— = —kgsa(t)[A(®)][B] + x4[C(2)], 1)
pair isk,. The equilibrium constank, is k,e PU®) /k, dt
[with 8 = (kzT)~']. We choose concentration units so where kgsa(r) is related to theAB pair correlation
that[A(z)] + [C(r)] = 1. The equilibrium concentration function at contact by
of Alis [A(®)] = (1 + K.,[B])~!. Below, we explicitly _
consider the initial condciltiorﬁA(O)] =1 and thus[A(¢)] kesat) = Kagan(R D). (2)
denotes the concentration at tirhéor this initial condi- The pair correlation functiongag(r,7) and gcg(r, )
tion. The simulations were performed with initial condi- satisfy

[C(1)]

digap = DVe PUOIVeRU g p — iy m(gAB — &cB), 3
_ A(t)]|B
digcp = DVe PUOIVAUM gy + kESA(t)[[(C)%]](gAB — &cB), 4)

subject to the initial conditiongag(r,0) = gcg(r,0) = ¢ AU and the boundary conditions
[C(1)]
J r=R = Ka R,1) — TA(AITRT’ 5
( gAB) R K gAB( ) Kd [A(t)][B] ( )
(JgcB)r=k =0, (6)

where J is the flux operator J = De AU (a/ax)eBU™ for d = 1, 2mrDe PU0)(9/ar)ePV") for d =2, and
47r’De PUN(9/9r)ePU) for d = 3]. Equation (6) means tha€ cannot react withB. When gcg(r, 1) is
approximated by Ag(r, t), the above equations reduce to the SA equations [4].

One can linearize the above equations near equilibrium. By setting

[A()] = (1 + Keg[B) ™' + AGr), (7)
[C(t)] = Keq[B] 1+ Keq[B:l)_1 - A(r) (8)

in the above equations and retaining only terms lineak(n, one can show that for a spherically symmetric potential
U(r), the Laplace transform af(z) [ f(s) = ff)o e’ f(r) dt] is given by

A B R _
AE(S); = {s + (kae PUP[B] + kq)skg(s)/ksg (0)} ", ©)
where
| | Keq[B]

Fo®)  n0) 5+ rae PUOIB] + xhinls + xge PURIB] + ) 4o
Equation (9) is the generalization of a result obtained within the framework of the SA [4], reducing to itkyhisn
replaced bykiy,. Sinceki(0) = x,e PUR) butky(0) = ki (0)/(1 + Keq[B]), the ESA yields (see below) the identical
power law asymptotics as the SA, but with an amplitude that is smaller by a fdcterK.,[B]). The subscript “sg”
was chosen because it turns out thatis the generalization of;,; to the stochastically gatedireversible reaction in
which the system fluctuates between an “open” or reactive stateAj.and a “closed” or inert state (i.eC) with rate
coefficients

K e*ﬁU(R)[B]

(open = = (closed (11)
[see Egs. (2.8) in Ref. [17]].
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In order to construct a linearized ESA approximation (LESA) that is applicable to all times, we ch(®sso that
Eq. (7) is exact at = 0. This gives
Keq[B] A1)
1 + Keq[B] A0)°
where A(r)/A(0) is given by Eq. (9). To implement the LESA one nedds(s). Neglecting interaction forces
[U(r) = 0], for d = 1,2,3 these are given by (see, for example, Ref. [18])
Ka(D/S)'?

[A(N] = (1 + Keo[B) ™' +

(12)

ki (s) = (D" d=1 (13)
- ka2mD(sR*/D)'*K\((sR*/D)'"?) d=2 14
 s{k.Ko((sR>/D)'?) + 27D (sR*/D)"/?K\((sR?/D)'/?)}’ N 4

KqaT /
_ kq4mDR[1 + (sR*/D)"*] d=3. (15)

s{k, + 4wDR[1 + (sR%/D)\/2]}’

where theK,, are modified Bessel functions of the seconlwqu. (19). The ESA curves were calculated using an im-

kind.
For U(r) # 0 and d = 3 the following asymptotic
approximation fork;,, is exact whers — 0 or s — ©
kee PUR®47DR,[1 + (sR?/D)"/?]
s{k,e PUR) + 47 DR,[1 + (sR2/D)'/2]}’
(16)

i%irr (S) =

where

Rgl =f r 2PV gy a7
R

(see Ref. [18]). To find the long-time limit behavior of
[A()] within the LESA, we take the — 0 limit of the
Laplace transform of Eq. (12) wit(s)/A(0) given by
Egs. (9) and (10). In this way we find for the initial
condition [A(0)] = 1 [and by assuming fod = 1 and

d = 2 quite analogous asymptotig,(s) approximations
for U # 0 as Eq. (16) fod = 3]

[A()] = (1 + Keq[BD ™

K2 [B] (wD1)"12,  d =1,
—— L1 4mwD),  d =2,
U+ KealBY”  (47rpr)32, = 3

(18)

For future reference we shall also need the correspond-

ing result for the initial condition[A(0)] = 0. This
is readily found by using the exact relatidm(z)] +
Keq[BI[A(2)]p = 1 to be

[A(l)]o =(1+ Keq[B])il

Keq (wDt)"'2,  d =1,

- =1 (4wDn)”!,  d =2,

(I + Keal BD® | (4rpr) 32, a =3,
(19)

In Figs. 1 and 2 we compare Brownian dynamics curve
of Edelstein and Agmon (see Figs. 6 and 9 in Ref. [19]) fo

plicit finite-difference scheme for time, applied previously
by one of us in Refs. [20—23]. Figure 1 corresponds to the
“concentration series” studied in Ref. [1R(= D =1,

kg = 0.1,[B] = 0.002,0.02,0.2,0.4), whereas Fig. 2 cor-
responds to the parameter sets of the “reactivity series”
(ke = D = 1,[B] = 04, k; = 0.001,0.01,0.1, 1).

The figures demonstrate that the ESA approach, which
is the best one can do by truncating the reduced distri-
bution function hierarchy at the pair level using super-
position, correctly predicts both the amplitude and power
exponent of the relaxation to equilibrium in one dimen-
sion. WhenK[B] < 1, it predicts the time course
of the concentrations with high accuracy. However,
when K.4[B] > 1, it fails to describe the kinetics in the
preasymptotic region. This is somewhat disappointing
and a reflection of the complexity of what appears at first
sight to be a simple problem. It is well known that one
dimension, although of limited experimental interest, does

KeglBl = 002

In { [A(w)]- [AD], }

50

In (DY)
Comparison of the ESA predictions fgA()] —

IG. 1.
fA(z)]O (full lines) with Brownian dynamics simulation data

(data marks) and with the asymptotic LESA prediction (19) in

d = 1 with ESA relaxation curves based on Egs. (1)—(6)7 = 1 (broken lines) for the “Concentration series” in Ref. [19]

and with the LESA asymptotics predicted fiot(r)]y in

3076

(ko = D =1, k; = 0.1, varying[B]).
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