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The relaxation kinetics of the diffusion-influenced reversible reactionA 1 B % C is studied in
the pseudo-first-order limitsfBg ¿ fAgd when A and C are static and theB’s move independently
with diffusion coefficient D. For the initial condition fAs0dg ­ 1, fCs0dg ­ 0, it is shown that
the asymptotics offAstdg for t ! ` is given in d dimensions bys1 1 KeqfBgd21 1 K2

eqfBgys1 1

KeqfBgd3fdstd with f1std ­ spDtd21y2, f2std ­ s4pDtd21, and f3std ­ s4pDtd23y2, and whereKeq

is the equilibrium constant. By comparing with accurate simulations, this result is found to be ex
for d ­ 1, and we predict that it is exact for higher dimensions. [S0031-9007(97)04276-2]
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Arguably the simplest irreversible diffusion-influenced
reaction isA 1 B ! 0 in the limit thatfBg ¿ fAg. When
A is static and theB’s diffuse independently, the concen
tration ofA is exactly described by the Smoluchowski re
sult: fAstdg ­ expf2fBg

Rt
0 kirr std dtg, wherekirr std is the

familiar time-dependent rate coefficient. The reversib
analogsA 1 B % Cd has not been solved exactly but ha
been attacked by a variety of analytic approaches [1–
In one dimension, computer simulations of the kinetics
this reaction were first performed independently by Ag
mon, Schnörer, and Blumen [9], and Szabo and Zwanz
[10]. Both of these papers suggested that the conce
tration of A approaches its equilibrium value ast21y2.
In particular, by performing a long simulation involving
a large number of particles for a single set of param
ters, Szabo and Zwanzig [10] presented rather convinci
evidence that this asymptotic behavior is exact in the the
modynamic limit. These authors also compared the pr
dictions of several theories with the simulations. The
found excellent agreement at short times. Small but s
nificant deviations were seen at longer times, especially
the reaction approached the irreversible limit.

The most successful theory was the “superpositio
approximation” (SA) approach [4,10] based on the wor
of Lee and Karplus [1]. This theory involves only the
reactive pair distribution function betweenA and B and
can be regarded [4] as the natural generalization
the Smoluchowski theory of irreversible reactions. B
linearizing this theory near equilibrium, Szabo [4] wa
able to express analytically the Laplace transform
the concentration deviation in terms of the transform o
kirr . In this way, it was found that the SA predicted
that equilibrium is approached ast2dy2 in d dimensions
[4,10]. Thus while the SA was not exact at long
times, it did predict thet21y2 dependence found in the
simulations.

The validity of thet2dy2 asymptotics was questioned
by the experimental study of Huppertet al. [11] who
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monitored the kinetics of reversible proton transfer aft
photoexcitation of a dye. Based on an analysis of th
data, it appeared that equilibrium was approached ast2a

wherea, while close to3y2, depended on the proton con
centration. This apparent deviation from the theoretic
asymptotics motivated Agmon and Edelstein [12] to rei
vestigate the kinetics of this reaction in one dimension
extremely long times for a wide range of parameters. T
do this they had to develop a new and powerful Brownia
dynamics algorithm to handle reversible reactions. Th
work showed unambiguously [12–15] that for all con
centrations equilibrium was approached ast21y2. More-
over, they found, in agreement with earlier work [10], tha
the SA approach, while it does predictt21y2 asymptotics,
does not predict the correct amplitude and deteriorates
the product of the equilibrium constant and theB concen-
tration increases.

This state of affairs led Naumann [16] to extend th
SA by explicitly considering not only theA–B pair
correlation functionsgABd, but also the pair correlation
function betweenC and B sgCBd. Starting with the
exact hierarchy satisfied by the many-particle reduc
distribution functions, he truncated this hierarchy b
invoking superposition approximations for bothAB and
CB distribution functions, and obtained a coupled s
of nonlinear partial differential equations involving the
concentrationsgAB andgCB.

In this paper we consider this extended approach (ES
in d dimensions and compare its predictions in one dime
sion with essentially exact results obtained via Brownia
dynamic simulations. By linearizing the ESA about equ
librium, we obtain an analytic expression for the Laplac
transform of the deviation of the concentration from it
equilibrium value, in terms of the transform of the time
dependent rate coefficient of irreversible reactions. Usi
this, we obtain an analytic expression for the conce
tration as t ! `, which turns out to be exact in one
dimension.
© 1997 The American Physical Society
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Our microscopic many-particle model can be describe
as follows. A single staticA is surrounded byB’s at
concentrationfBg which do not interact with each other
and move with diffusion coefficientD. The interaction
of B with A and C is described by the same sphericall
symmetric potential of mean forceUsrd. The reaction
betweenA and B occurs at contact (i.e., when the inter
particle separation isR) with the intrinsic rate constantka.
The intrinsic dissociation constant ofC to form a contact
pair iskd. The equilibrium constantKeq is kae2bUsRdykd

[with b ­ skBT d21]. We choose concentration units so
that fAstdg 1 fCstdg ­ 1. The equilibrium concentration
of A is fAs`dg ­ s1 1 KeqfBgd21. Below, we explicitly
consider the initial conditionfAs0dg ­ 1 and thusfAstdg
denotes the concentration at timet for this initial condi-
tion. The simulations were performed with initial condi
d

y

-

-

tion fAs0dg ­ 0. We denote the concentrations at timet
for this initial condition byfAstdg0. These two quantities
are related byfAstdg 1 KeqfBg fAstdg0 ­ 1, which is ex-
act for the above many-particle model [10].

The ESA equations obtained by Naumann ford ­ 1
[16] can be readily generalized tod dimensions. In this
approach, the concentrations satisfy

dfAg
dt

­ 2kESAstd fAstdg fBg 1 kdfCstdg , (1)

where kESAstd is related to theAB pair correlation
function at contact by

kESAstd ­ kagABsR, td . (2)

The pair correlation functionsgABsr, td and gCBsr, td
satisfy
l

≠tgAB ­ D=e2bUsrd=ebUsrdgAB 2 kd
fCstdg
fAstdg

sgAB 2 gCBd , (3)

≠tgCB ­ D=e2bUsrd=ebUsrdgCB 1 kESAstd
fAstdg fBg

fCstdg
sgAB 2 gCBd , (4)

subject to the initial conditionsgABsr, 0d ­ gCBsr, 0d ­ e2bUsrd and the boundary conditions

sJgABdr­R ­ kagABsR, td 2 kd
fCstdg

fAstdg fBg
, (5)

sJgCBdr­R ­ 0 , (6)

where J is the flux operator [J ­ De2bUsxds≠y≠xdebUsxd for d ­ 1, 2prDe2bUsrds≠y≠rdebUsrd for d ­ 2, and
4pr2De2bUsrds≠y≠rdebUsrd for d ­ 3]. Equation (6) means thatC cannot react withB. When gCBsr, td is
approximated bygABsr, td, the above equations reduce to the SA equations [4].

One can linearize the above equations near equilibrium. By setting

fAstdg ­ s1 1 KeqfBgd21 1 Dstd , (7)

fCstdg ­ KeqfBg s1 1 KeqfBgd21 2 Dstd (8)

in the above equations and retaining only terms linear inDstd, one can show that for a spherically symmetric potentia
Usrd, the Laplace transform ofDstd f f̂ssd ­

R`

0 e2stfstd dtg is given by

D̂ssd
Ds0d

­ hs 1 skae2bUsRdfBg 1 kddsk̂sgssdyksgs0dj21, (9)

where

1

sk̂sgssd
­

1

sk̂irr ssd
1

KeqfBg
ss 1 kae2bUsRdfBg 1 kddk̂irr ss 1 kae2bUsRdfBg 1 kdd

. (10)

Equation (9) is the generalization of a result obtained within the framework of the SA [4], reducing to it whenksg is
replaced bykirr . Sincekirrs0d ­ kae2bUsRd but ksgs0d ­ kirr s0dys1 1 KeqfBgd, the ESA yields (see below) the identical
power law asymptotics as the SA, but with an amplitude that is smaller by a factors1 1 KeqfBgd. The subscript “sg”
was chosen because it turns out thatksg is the generalization ofkirr to thestochastically gatedirreversible reaction in
which the system fluctuates between an “open” or reactive state (i.e.,A) and a “closed” or inert state (i.e.,C) with rate
coefficients

sopend
kae2bUsRdfBg%

kd

sclosedd (11)

[see Eqs. (2.8) in Ref. [17] ].
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In order to construct a linearized ESA approximation (LESA) that is applicable to all times, we chooseDs0d so that
Eq. (7) is exact att ­ 0. This gives

fAstdg ­ s1 1 KeqfBgd21 1
KeqfBg

1 1 KeqfBg
Dstd
Ds0d

, (12)

where DstdyDs0d is given by Eq. (9). To implement the LESA one needsk̂irr ssd. Neglecting interaction force
fUsrd ­ 0g, for d ­ 1, 2, 3 these are given by (see, for example, Ref. [18])

k̂irrssd ­
kasDySd1y2

ka 1 sDsd1y2
, d ­ 1 (13)

­
ka2pDssR2yDd1y2K1sssssR2yDd1y2ddd

shkaK0sssssR2yDd1y2ddd 1 2pDssR2yDd1y2K1sssssR2yDd1y2dddj
, d ­ 2 (14)

­
ka4pDRf1 1 ssR2yDd1y2g

shka 1 4pDRf1 1 ssR2yDd1y2gj
, d ­ 3 , (15)
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where theKn are modified Bessel functions of the secon
kind.

For Usrd fi 0 and d ­ 3 the following asymptotic
approximation forkirr is exact whens ! 0 or s ! `

k̂irr ssd }
kae2bUsRd4pDRef1 1 ssR2

eyDd1y2g
shkae2bUsRd 1 4pDRef1 1 ssR2

eyDd1y2gj
,

(16)

where

R21
e ­

Z `

R
r22ebUsrd dr (17)

(see Ref. [18]). To find the long-time limit behavior of
fAstdg within the LESA, we take thes ! 0 limit of the
Laplace transform of Eq. (12) witĥDssdyDs0d given by
Eqs. (9) and (10). In this way we find for the initial
condition fAs0dg ­ 1 [and by assuming ford ­ 1 and
d ­ 2 quite analogous asymptotiĉkirr ssd approximations
for U fi 0 as Eq. (16) ford ­ 3]

fAstdg ­ s1 1 KeqfBgd21

1
K2

eqfBg
s1 1 KeqfBgd3

8<: spDtd21y2, d ­ 1 ,
s4pDtd21, d ­ 2 ,
s4pDtd23y2, d ­ 3 .

(18)

For future reference we shall also need the correspon
ing result for the initial conditionfAs0dg ­ 0. This
is readily found by using the exact relationfAstdg 1

KeqfBg fAstdg0 ­ 1 to be

fAstdg0 ­ s1 1 KeqfBgd21

2
Keq

s1 1 KeqfBgd3

8<: spDtd21y2, d ­ 1 ,
s4pDtd21, d ­ 2 ,
s4pDtd23y2, d ­ 3 .

(19)

In Figs. 1 and 2 we compare Brownian dynamics curv
of Edelstein and Agmon (see Figs. 6 and 9 in Ref. [19]) fo
d ­ 1 with ESA relaxation curves based on Eqs. (1)–(6
and with the LESA asymptotics predicted forfAstdg0 in
3076
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Eq. (19). The ESA curves were calculated using an i
plicit finite-difference scheme for time, applied previous
by one of us in Refs. [20–23]. Figure 1 corresponds to
“concentration series” studied in Ref. [19] (ka ­ D ­ 1,
kd ­ 0.1, fBg ­ 0.002, 0.02, 0.2, 0.4), whereas Fig. 2 cor-
responds to the parameter sets of the “reactivity seri
(ka ­ D ­ 1, fBg ­ 0.4, kd ­ 0.001, 0.01, 0.1, 1).

The figures demonstrate that the ESA approach, wh
is the best one can do by truncating the reduced dis
bution function hierarchy at the pair level using supe
position, correctly predicts both the amplitude and pow
exponent of the relaxation to equilibrium in one dime
sion. When KeqfBg ø 1, it predicts the time course
of the concentrations with high accuracy. Howeve
when KeqfBg . 1, it fails to describe the kinetics in the
preasymptotic region. This is somewhat disappointi
and a reflection of the complexity of what appears at fi
sight to be a simple problem. It is well known that on
dimension, although of limited experimental interest, do

FIG. 1. Comparison of the ESA predictions forfAs`dg 2
fAstdg0 (full lines) with Brownian dynamics simulation data
(data marks) and with the asymptotic LESA prediction (19)
d ­ 1 (broken lines) for the “concentration series” in Ref. [19
(ka ­ D ­ 1, kd ­ 0.1, varying fBg).
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FIG. 2. Comparison of the ESA predictions forfAs`dg 2
fAstdg0 (full lines) with Brownian dynamics simulation data
(data marks) and with the asymptotic LESA prediction (19
in d ­ 1 (broken lines) for the “reactivity series” in Ref. [19]
(ka ­ D ­ 1, fBg ­ 0.4, varyingkd).

provide the most demanding test for theories of diffusion
influenced reactions. Therefore, it is expected that t
ESA and LESA will be more satisfactory in three dimen
sions. Since our derivation of the amplitude and exp
nent of the relaxation to equilibrium treats all dimension
on equal footing, we fully expect that our result will turn
out to be exact ind ­ 2, 3. The availability of an exact
analytic expression for both the time course and amp
tude of the relaxation to equilibrium of this many-body
model, should serve as a stimulus to finding an exa
solution valid for all times or at least a rigorous proo
of our asymptotic result.
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