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Dispersion inequalities are presented to check for the self-consistency of experimentally obtained
complex moduli, such as the complex dielectric constant, magnetic permeability, and complex bulk
and shear moduli of viscoelastic materials. Unlike the Kramers-Kronig dispersion relations, they only
require measurements over a finite frequency range. They can provide highly accurate interpolation
formulas for the real part, given its value at a few selected frequencies and given the imaginary part
over a range of frequencies. [S0031-9007(97)04253-1]

PACS numbers: 77.22.—d

Dispersion relations are prevalent throughout physicshe frequency dependent response of electrical networks
and derive from the causal nature of the response dnd elastic structures. They are also applicable (with
materials, bodies, or particles to electromagnetic, elastic, aninor modification) in particle physics [3—5], specifically
other fields. The classic example of a dispersion relatioio testing the compatibility of measurements of the
is the Kramers-Kronig (KK) relation [1,2] that couples the complex forward scattering amplitude collected over a
real and imaginary parts of the complex dielectric constanfinite range of energies.

e(w) = €1(w) + iex(w) of a material by Our bounds have potentially greater utility than the KK
relation Eqg. (1), being valid when the data have been mea-
alw) = 1+ gpj“’ w'e (') Jo! (1) sured only over dinite frequency range They provide a
7 Jo (0)? — w? ’ simple series of tests to self-consistently analyze the com-

patibility of measured real and imaginary dielectric con-

whereP denotes the principle value of the integral. [An- stants. Each successive bound is more strict, but requires
other KK relation expresses;(w) in terms ofe;(w) is  more experimental data. Specifically, it is assumed the
not discussed here.] The chief obstacle to the practicamaginary part is known over an entire interval of fre-
application of the KK relation is that one needs to knowquencies and bounds are obtained that correlate the values
e(w) over all frequencies to determing(w), whereas a of the real part atv selected frequenciesithin the in-
given experiment yields values @b(w) only over a fi- terval. These bounds are calléd point bounds, where
nite frequency range. This is typically handled in a crudeM = N — 1, because the bound on the real part at one
manner which is only sometimes effective: Some approxiof the selected frequencies incorporates information about
mation fore;(w) is used outside the measured frequencythe real part at tha/ remaining selected frequencies.
range. When the measured and computed functjdne) The bounds are theharpest possiblavithin the class
disagree, one is left in doubt as to whether the measuref functions compatible with the required analytic con-
ments ofe;(w) ande,(w) are compatible with each other, straints. Moreover, they providanalytically admissible
or whether the data set violates what is known about thepproximantsto the experimental data within the mea-
analytic properties ok(w). In this paper we overcome sured frequency range. Outside this range, the approxi-
these problems in a systematic and mathematically justimants may be poor predictors of the behavior. See [5-7]
fied manner [assumingnly the standard analytic proper- for discussions of the hazards and methods of extrapolat-
ties of e(w) including the positivity ofe;(w) for @ > 0],  ing experimental data using analyticity.
by deriving rigorous bounds on the functiai(w) for Additional information about the high frequency be-
w € (w—,w+) given e;(w) over the same frequency in- havior (assuming the plasma frequency is known) could
terval. The appearance of bounds is natural and refleceasily be incorporated to yield even tighter bounds. Also
the incompleteness of our knowledgeesfw). the bounds are easily generalized to allow one to test

Analogous KK relations exist which give the real part the compatibility of measurements taken over two disjoint
of the complex magnetic permeability and the complexfrequency ranges. This is particularly useful when a dif-
bulk and shear moduli in terms of their positive imaginaryferent experimental apparatus is used to take the measure-
parts. Therefore, our bounds apply equally well to testingnent over the second frequency range.
the compatibility of experimental data for these magnetic Figures 1-3 illustrate the practical utility of the bounds
and viscoelastic moduli. With appropriate normalizationas applied to high frequency transmission line measure-
(to capture the correct high frequency limit) they apply toments of the complex relative magnetic permeability of
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15 rrrry — T —r The basis for our compatibility tests are the following
_________ —DATA well-known properties of the complex dielectrical constant
\ -_-_'vlog\lglggggmlg e as a function of frequency: (ik(—w) = €*(w®),
. |® ANCHOR where = denotes complex conjugation; (ii) the function
\ e(w) is analytic in the upper half plane; (ii§;(w’) = 0
whenw' is real andw’ > 0; (iv) lim ,— e(w) = €(») =
1. For technical reasons, the last constraint (iv) will
be replaced by theelaxed constraint(iv’) e(«) = 1.
Any function e(w) satisfying (iv’) can be converted to
a function satisfying (iv), while maintaining properties
@), (i), and (iii), by adding[e(®) — 1]w?/(w§ — w?)
to e(w). Providedw, is chosen sufficiently large, this
5 10 0" '1'00 2% produces negligible change in the function except at very
FREQUENCY (MHz) high frequencies.
The bounds and a brief description of their derivation

FIG. 1. Measurements of the real and imaginary parts of theya now given. It is convenient to introduce the variable
complex relative magnetic permeability of a composite made ~ 5 d to study the functi
with equal parts of barium titanate (BaTjcand a magnesium- < — @~ @nd 1o study the function
copper-zinc ferrite (GuMgo.4ZNo 4F60,). Also graphed are the _ _
one-point bounds. gz) = e(z) — 1, (2)
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whereg(z) = g1(z) + igx(z). It follows from the prop-
erties ofe(w) that (i) g(z) = g*(z%). (ii) g(z) is an ana-
Iytic function in the plane, except on the real positive axis.
(iii) g2(z’ + i6) = 0 for positive infinitesimal values of
8 whenz’ is real and positive, angv’) g() = 0. Thus
§(Z) — g() is a Stieltjes function of-z.

The dispersion relation fog,(z) given g,(z) is

01() = g() + — P [ Tl
a

0o 2/ —z2

a composite made with equal parts (by volume) of bar
ium titanate (BaTi@) and a magnesium-copper-zinc fer-
rite (Cw, o,Mgg .Zny sF6,0,). The measurements were taken
over the frequency range-500 MHz. Further informa-
tion about the material and the experiments which supplie
the data can be found in the paper by Mantgtsd. [8]. As
these examples demonstrate, the bounds provide a highly
useful tool for judging the reliability of experimental data,
and for earmarking frequency ranges over which the data i ) )
need to be reexamined. Moreover, Fig. 3 shows that th¥ 82(z) = €2(/z) is known for an interval of frequencies
bounds can be very tight. Therefore, if one has a high de< € (z-»z+), then a computable estimate fgri(z) =
gree of certainty about the imaginary part, then these dat(vz) — 1is

can sometimes be used to construct the real part if one 1 “og()
knows the values at a few selected frequencies [9]. go(z) = P Pf 7 — 2 dz. (4)
-
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FIG. 2. The two-point bounds applied to the data are shown.

The violation of the two-point bounds below 26 MHz indicates FIG. 3. The three-point bounds applied the data, disregarding
an error in the real part below 26 MHz or an error in thethose measurements taken at frequencies less than 26 MHz.
imaginary part, possibly at frequencies greater than 26 MHzThese data were substantiated by an independent set of
Thus the measurements below 26 MHz, if not unreliable, are amneasurements. There is good agreement between the data and
least inconsistent with the measurements above 26 MHz. the bounds.
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Both gi(z) and go(z) are real whenz is real. The f(z) = maX f(z1),z1f(z1)/z} when z = z;, and
difference between them definesdscrepancy function, f@) = min{f(z1),z21f(z1)/z}  whenz=2z. (6)

f(z) = gi1(z) — go(z) or . e _ .
While crude, this is the best possible one-point bound.

f(z) = g(») + lpfb %L_Z/)dzl For example, in the case wheyéz)) > 0 the function
T 0o <z Z f(z) = f(z1) + c(1/z1 — 1/z) takes every value permit-
1 (z)) ted by the bound asranges betweedande. The bound
82\2 / . . . : . .
TP R dz'. (5)  in this case is equivalent to stating th&t) is monotone

increasing inz for all z € (z—,z+). This monotonicity

The discrepancy functiory(z) has the same basic can be proved by calculatingf(z)/dz and using the posi-
properties (i), (ii), (iii), and(iv’) as the functiong(z). tivity of g,(z). [The positivity ofg,(z) is needed to prove
In addition it is analytic along the intervdk_,z+) on  not just this bound but also the higher order bounds.]
the positive real axis. Rational functions have these The two-point bounds require knowledge of the discrep-
properties if and only if they have (a) an equal number ofancy function at two distinct pointg andz,. The bounds
poles and zeros which are all simple and located along thare constructed by considering the simplest possible ratio-
non-negative real axis, (b) their poles and zeros interlacedal functions that interpolate the known points, and that do
with a pole near (or at) the origin and a zero near (or athot have any free parameters. More specifically, the candi-
infinity, (c) no poles lie in the intervalz—, z+), (d) each date bounding functiong,(z) are constructed so that only
pole has a negative real residue. one pole or zero remains, not counting pole$,at-, and

Known bounds on Stieltjes functions due to Baker [10]z+, and not counting any zero @& The amplitude of the
can be used to generate boundsfdn) incorporating the  function and the position of this pole or zero is determined
known valuesf(zi), f(z2), ..., f(zs). However, the re- by the constraints that,(z1) = f(z1) andf,(z2) = f(z2).
sulting bounds are generally suboptimal because they in- The seven rational functions listed below are the only
corporate only the analyticity gf(z) along a single interval rational functions consistent with these criteria for the

on the real axis, and not along two disjoint intervals. two-point bound.
Our optimal bounds orf(z) for all real z € (z—,z+) Candidate +—Set
provide a quantitative compatibility test for experimental (z1 — 22)

data. The one-point bound requires knowledge of the fr(z) = G- 2)/f) + (a1 - /f @) (7)

discrepancy function at a single point It states that .
| Candidates 2—4-Take a polef; at0, z—, or z4, set

(z1 = 4) @z — 22)f (@) + (2 — &) (21 — 2)f(22)

folzs&1) = PR E— (8)
Candidates 5—7Take pole; > {, at0,z_, orz4, set
el b) = [z = &)z = Oz~ 2)f@) + (22 = &) (22 = &) (@ — Z)f(Zz)]_ )

(z—0)(z— ) — )

Of these seven candidate rational functions, we disclardl(w) (wherew = /z ) and the measured real and imagi-
those functions that do not meet the required analytic comary dielectric data are deemed incompatible if the real
straints (a), (b), and (c). The remaining functions necespart lies outside the bounds.
sarily satisfy the constraint (d) because the interlacing of In the limit asz_ approaches zero and approaches
the poles and zeros automatically ensures that the polésfinity our two-point bounds tighten and reduce to the
have negative residues. [Assumiri¢z;) and f(z2) sat- familiar Kramers-Kronig relations. This is because both
isfy the monotonicity requirement that; — z2)[ f(z1) —  f(z1) andf(z») approach zero, which forces each candidate
f(z2)] = 0.] Atagiven value of; betweern;_ andz; the function to approach zero (except possiblyzat 0, z_,
bounds are then the minimum and maximum values takear z..) By letting z, approachz; one obtains bounds
by the accepted candidate functions. Which pair of funcwhich incorporatef(z;) and the derivativedf(z;)/dz;.
tions gives the bounds turns out to depend on the value @dounds on Stieltjes functions incorporating the value of the
g = [z1f(z1) — 22f(z2)1/[ f(z1) — f(z2)], which is nec- function and its derivatives, or equivalently the moments of
essarily positive when the one-point bounds are satishe associated positive measure, are well known from the
fied. We find thatf(z) lies betweenf,(z;z—,0) and theory of moments [11]. Our bounds are tighter because
fr(z;z+,0) when z_ = g = 0; betweenf,(z;z—) and they incorporate the additional fact that the measure is
fr(z:z+,0) whenz, =g = z_; and betweery,(z;z-)  supported on two disjoint intervals.
and f,(z;z+) wheng = z,. These bounds orf(z) = The construction of the multipoint bounds is similar.
€1(+/z) — 1 — go(z) are translated back into bounds on Suppose thaf(z) is known atz; for i = 1,2,..., M with
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M > 2. In the candidate rational functions one choosesndicating the presence of undiscovered resonances at
to either position a pole or not position a pole at each ofntermediate frequencies.
the three points 0z—, or z. This step generates eight Experimental measurements will also have er-
possibilities. Additional poles and zeros, totali®g— 1  rors associated with them. Errors e (w) are
in number (orM in number if one of the zeros is at easily treated. The bounds define a regidR
) are placed along the real axis, so the overall numbein a (N + 1)-dimensional space where the point
of poles equals the overall number of zeros. This lattefe;(w), €;(w1), €1(w>), ..., €1(wy)] must lie. Allowing
constraint determines whether or not we place a zero dbr known errors the measurements define a box in this
., The amplitude of the function and the positions ofspace wherge|(w), €;(w1), €1(w>), ..., €1(wy)] must lie.
the additional poles and zeros are determined byMhe The data are deemed incompatible if the box does not
constraints that, (z;) = f(z;)fori = 1,2,...,M. (Ifthis  intersect the regiorR. Since the bounds may be very
is impossible then we move on to consider the next oharrow for modest values &, the transverse dimensions
the eight possibilities.) Of the eight candidate functionsof R are small. In this case, a slight underestimation of
we discard those that do not meet the required analytithe experimental errors can lead to a possibly erroneous
constraints (a), (b), and (c). Ata given valuezdfetween conclusion that for a givel, the data are incompatible.
z— and z4+ the bounds are the minimum and maximumThis is not a difficult problem to overcome in practice
values taken by the accepted candidate functions (of whichecause one must compute the one-point bound, the
there is at least one and generally at least two.) Thes®vo-point bound, etc., before thd-point bounds. From
bounds are translated back to the original variables, anthis sequence it is logical to stop computing tighter bounds
the measured real and imaginary dielectric data are deemeehen the width of the current bounds is comparable to
incompatible if the real part lies outside the bounds. Onehe known experimental error. Errors éa(w) are not as
cautionary remark: Before applying té-point bounds easy to treat. However, if the errors are not systematic
one must first check the compatibility of thé known then go(z) and hence also the bounds should be fairly
valuesf(zy),...,f(zn), i.€., thatf(z,) satisfies the one- insensitive to these errors because of the convolution ap-
point bound whery'(z;) is given, thatf(z;) satisfies the pearingin Eq. (4). See also [13] and [14], and references
two-point bound whery(z;) and f(z,) are given, and so therein, for a discussion of how errors can be handled.
forth. If the bounds are violated at any stage, the data set It is a pleasure to thank R.C. McPhedran and A.J.
is deemed incompatible. Sievers for valuable comments and references. The work

The proof of these bounds rests on an extension oéf G.W.M. and D.E. was supported by the General
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(12). Briefly, f(z) can be approximated by a rational through Grants No. DMS-9629692, No. DMS-9501025,
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