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Finite Frequency Range Kramers Kronig Relations: Bounds on the Dispersion
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Dispersion inequalities are presented to check for the self-consistency of experimentally obtained
complex moduli, such as the complex dielectric constant, magnetic permeability, and complex bulk
and shear moduli of viscoelastic materials. Unlike the Kramers-Kronig dispersion relations, they only
require measurements over a finite frequency range. They can provide highly accurate interpolation
formulas for the real part, given its value at a few selected frequencies and given the imaginary part
over a range of frequencies. [S0031-9007(97)04253-1]
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Dispersion relations are prevalent throughout phys
and derive from the causal nature of the response
materials, bodies, or particles to electromagnetic, elastic
other fields. The classic example of a dispersion relat
is the Kramers-Kronig (KK) relation [1,2] that couples th
real and imaginary parts of the complex dielectric const
esvd ­ e1svd 1 ie2svd of a material by

e1svd ­ 1 1
2
p

P
Z `

0

v0e2sv0d
sv0d2 2 v2

dv0, (1)

whereP denotes the principle value of the integral. [An
other KK relation expressese2svd in terms of e1svd is
not discussed here.] The chief obstacle to the pract
application of the KK relation is that one needs to kno
e2svd over all frequencies to determinee1svd, whereas a
given experiment yields values ofe2svd only over a fi-
nite frequency range. This is typically handled in a cru
manner which is only sometimes effective: Some appro
mation fore2svd is used outside the measured frequen
range. When the measured and computed functione1svd
disagree, one is left in doubt as to whether the meas
ments ofe1svd ande2svd are compatible with each othe
or whether the data set violates what is known about
analytic properties ofesvd. In this paper we overcome
these problems in a systematic and mathematically ju
fied manner [assumingonly the standard analytic proper
ties ofesvd including the positivity ofe2svd for v . 0],
by deriving rigorous bounds on the functione1svd for
v [ sv2, v1d given e2svd over the same frequency in
terval. The appearance of bounds is natural and refl
the incompleteness of our knowledge ofe2svd.

Analogous KK relations exist which give the real pa
of the complex magnetic permeability and the compl
bulk and shear moduli in terms of their positive imagina
parts. Therefore, our bounds apply equally well to test
the compatibility of experimental data for these magne
and viscoelastic moduli. With appropriate normalizati
(to capture the correct high frequency limit) they apply
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the frequency dependent response of electrical netwo
and elastic structures. They are also applicable (w
minor modification) in particle physics [3–5], specifically
to testing the compatibility of measurements of th
complex forward scattering amplitude collected over
finite range of energies.

Our bounds have potentially greater utility than the K
relation Eq. (1), being valid when the data have been me
sured only over afinite frequency range. They provide a
simple series of tests to self-consistently analyze the co
patibility of measured real and imaginary dielectric con
stants. Each successive bound is more strict, but requ
more experimental data. Specifically, it is assumed t
imaginary part is known over an entire interval of fre
quencies and bounds are obtained that correlate the va
of the real part atN selected frequencieswithin the in-
terval. These bounds are calledM point bounds, where
M ­ N 2 1, because the bound on the real part at o
of the selected frequencies incorporates information ab
the real part at theM remaining selected frequencies.

The bounds are thesharpest possiblewithin the class
of functions compatible with the required analytic con
straints. Moreover, they provideanalytically admissible
approximantsto the experimental data within the mea
sured frequency range. Outside this range, the appro
mants may be poor predictors of the behavior. See [5–
for discussions of the hazards and methods of extrapo
ing experimental data using analyticity.

Additional information about the high frequency be
havior (assuming the plasma frequency is known) cou
easily be incorporated to yield even tighter bounds. Al
the bounds are easily generalized to allow one to te
the compatibility of measurements taken over two disjoi
frequency ranges. This is particularly useful when a d
ferent experimental apparatus is used to take the meas
ment over the second frequency range.

Figures 1–3 illustrate the practical utility of the bound
as applied to high frequency transmission line measu
ments of the complex relative magnetic permeability
© 1997 The American Physical Society
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FIG. 1. Measurements of the real and imaginary parts of t
complex relative magnetic permeability of a composite ma
with equal parts of barium titanate (BaTiO3) and a magnesium-
copper-zinc ferrite (Cu0.2Mg0.4Zn0.4Fe2O4). Also graphed are the
one-point bounds.

a composite made with equal parts (by volume) of ba
ium titanate (BaTiO3) and a magnesium-copper-zinc fer
rite (Cu0.2Mg0.4Zn0.4Fe2O4). The measurements were take
over the frequency range1–500 MHz. Further informa-
tion about the material and the experiments which suppli
the data can be found in the paper by Manteseet al. [8]. As
these examples demonstrate, the bounds provide a hig
useful tool for judging the reliability of experimental data
and for earmarking frequency ranges over which the da
need to be reexamined. Moreover, Fig. 3 shows that
bounds can be very tight. Therefore, if one has a high d
gree of certainty about the imaginary part, then these d
can sometimes be used to construct the real part if o
knows the values at a few selected frequencies [9].

FIG. 2. The two-point bounds applied to the data are show
The violation of the two-point bounds below 26 MHz indicate
an error in the real part below 26 MHz or an error in th
imaginary part, possibly at frequencies greater than 26 MH
Thus the measurements below 26 MHz, if not unreliable, are
least inconsistent with the measurements above 26 MHz.
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The basis for our compatibility tests are the following
well-known properties of the complex dielectrical constan
e as a function of frequency: (i)es2vd ­ epsvpd,
where p denotes complex conjugation; (ii) the function
esvd is analytic in the upper half plane; (iii)e2sv0d $ 0
whenv0 is real andv0 . 0; (iv) limv!` esvd ; es`d ­
1. For technical reasons, the last constraint (iv) will
be replaced by therelaxed constraintsiv0d es`d $ 1.
Any function esvd satisfying siv0d can be converted to
a function satisfying (iv), while maintaining properties
(i), (ii), and (iii), by adding fes`d 2 1gv2ysv2

0 2 v2d
to esvd. Providedv0 is chosen sufficiently large, this
produces negligible change in the function except at ver
high frequencies.

The bounds and a brief description of their derivation
are now given. It is convenient to introduce the variable
z ­ v2 and to study the function

gszd ­ es
p

z d 2 1 , (2)

wheregszd ­ g1szd 1 ig2szd. It follows from the prop-
erties ofesvd that (i) gszd ­ gpszpd. (ii) gszd is an ana-
lytic function in the plane, except on the real positive axis
(iii) g2sz0 1 idd $ 0 for positive infinitesimal values of
d whenz0 is real and positive, andsiv0d gs`d $ 0. Thus
gszd 2 gs`d is a Stieltjes function of2z.

The dispersion relation forg1szd giveng2szd is

g1szd ­ gs`d 1
1
p

P
Z `

0

g2sz0d
z0 2 z

dz0. (3)

If g2szd ­ e2s
p

z d is known for an interval of frequencies
z [ sz2, z1d, then a computable estimate forg1szd ­
e1s

p
z d 2 1 is

g0szd ­
1
p

P
Z z1

z2

g2sz0d
z0 2 z

dz0. (4)

FIG. 3. The three-point bounds applied the data, disregardin
those measurements taken at frequencies less than 26 MH
These data were substantiated by an independent set
measurements. There is good agreement between the data a
the bounds.
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Both g1szd and g0szd are real whenz is real. The
difference between them defines adiscrepancy function,
fszd ­ g1szd 2 g0szd or

fszd ­ gs`d 1
1
p

P
Z z2

0

g2sz0d
z0 2 z

dz0

1
1
p

P
Z `

z1

g2sz0d
z0 2 z

dz0. (5)

The discrepancy functionfszd has the same basic
properties (i), (ii), (iii), andsiv0d as the functiongszd.
In addition it is analytic along the intervalsz2, z1d on
the positive real axis. Rational functions have the
properties if and only if they have (a) an equal number
poles and zeros which are all simple and located along
non-negative real axis, (b) their poles and zeros interlac
with a pole near (or at) the origin and a zero near (or a
infinity, (c) no poles lie in the intervalsz2, z1d, (d) each
pole has a negative real residue.

Known bounds on Stieltjes functions due to Baker [10
can be used to generate bounds onfszd incorporating the
known valuesfsz1d, fsz2d, . . . , fszMd. However, the re-
sulting bounds are generally suboptimal because they
corporate only the analyticity offszd along a single interval
on the real axis, and not along two disjoint intervals.

Our optimal bounds onfszd for all real z [ sz2, z1d
provide a quantitative compatibility test for experimenta
data. The one-point bound requires knowledge of t
discrepancy function at a single pointz1. It states that
3064
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fszd $ maxh fsz1d, z1fsz1dyzj when z $ z1 , and

fszd # minh fsz1d, z1fsz1dyzj when z # z1 . (6)

While crude, this is the best possible one-point boun
For example, in the case wherefsz1d . 0 the function
fszd ­ fsz1d 1 cs1yz1 2 1yzd takes every value permit-
ted by the bound asc ranges between0 and`. The bound
in this case is equivalent to stating thatfszd is monotone
increasing inz for all z [ sz2, z1d. This monotonicity
can be proved by calculatingdfszdydz and using the posi-
tivity of g2szd. [The positivity ofg2szd is needed to prove
not just this bound but also the higher order bounds.]

The two-point bounds require knowledge of the discre
ancy function at two distinct pointsz1 andz2. The bounds
are constructed by considering the simplest possible ra
nal functions that interpolate the known points, and that
not have any free parameters. More specifically, the can
date bounding functionsfbszd are constructed so that only
one pole or zero remains, not counting poles at0, z2, and
z1, and not counting any zero at̀. The amplitude of the
function and the position of this pole or zero is determin
by the constraints thatfbsz1d ­ fsz1d andfbsz2d ­ fsz2d.

The seven rational functions listed below are the on
rational functions consistent with these criteria for th
two-point bound.

Candidate 1—Set

fbszd ­
sz1 2 z2d

sz 2 z2dyfsz1d 1 sz1 2 zdyfsz2d
. (7)

Candidates 2–4—Take a polez1 at 0, z2, or z1, set
fbsz; z1d ­
sz1 2 z1d sz 2 z2dfsz1d 1 sz2 2 z1d sz1 2 zdfsz2d

sz 2 z1d sz1 2 z2d
(8)

Candidates 5–7—Take polesz1 . z2 at 0, z2, or z1, set

fbsz; z1, z2d ­
fsz1 2 z1d sz1 2 z2d sz 2 z2dfsz1d 1 sz2 2 z1d sz2 2 z2d sz1 2 zdfsz2dg

sz 2 z1d sz 2 z2d sz1 2 z2d
. (9)
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Of these seven candidate rational functions, we disca
those functions that do not meet the required analytic co
straints (a), (b), and (c). The remaining functions nece
sarily satisfy the constraint (d) because the interlacing
the poles and zeros automatically ensures that the po
have negative residues. [Assumingfsz1d and fsz2d sat-
isfy the monotonicity requirement thatsz1 2 z2d f fsz1d 2

fsz2dg $ 0.] At a given value ofz betweenz2 andz1 the
bounds are then the minimum and maximum values tak
by the accepted candidate functions. Which pair of fun
tions gives the bounds turns out to depend on the value
q ­ fz1fsz1d 2 z2fsz2dgyf fsz1d 2 fsz2dg, which is nec-
essarily positive when the one-point bounds are sat
fied. We find thatfszd lies betweenfbsz; z2, 0d and
fbsz; z1, 0d when z2 $ q $ 0; betweenfbsz; z2d and
fbsz; z1, 0d when z1 $ q $ z2; and betweenfbsz; z2d
and fbsz; z1d when q $ z1. These bounds onfszd ­
e1s

p
z d 2 1 2 g0szd are translated back into bounds o
rd
n-
s-
of
les

en
c-
of

is-

e1svd (wherev ­
p

z ) and the measured real and imag
nary dielectric data are deemed incompatible if the r
part lies outside the bounds.

In the limit asz2 approaches zero andz1 approaches
infinity our two-point bounds tighten and reduce to th
familiar Kramers-Kronig relations. This is because bo
fsz1d andfsz2d approach zero, which forces each candida
function to approach zero (except possibly atz ­ 0, z2,
or z1.) By letting z2 approachz1 one obtains bounds
which incorporatefsz1d and the derivativedfsz1dydz1.
Bounds on Stieltjes functions incorporating the value of t
function and its derivatives, or equivalently the moments
the associated positive measure, are well known from
theory of moments [11]. Our bounds are tighter becau
they incorporate the additional fact that the measure
supported on two disjoint intervals.

The construction of the multipoint bounds is simila
Suppose thatfszd is known atzi for i ­ 1, 2, . . . , M with
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M . 2. In the candidate rational functions one choos
to either position a pole or not position a pole at each
the three points 0,z2, or z1. This step generates eigh
possibilities. Additional poles and zeros, totalingM 2 1
in number (orM in number if one of the zeros is at
`) are placed along the real axis, so the overall numb
of poles equals the overall number of zeros. This latt
constraint determines whether or not we place a zero
`. The amplitude of the function and the positions o
the additional poles and zeros are determined by theM
constraints thatfbszid ­ fszid for i ­ 1, 2, . . . , M. (If this
is impossible then we move on to consider the next
the eight possibilities.) Of the eight candidate function
we discard those that do not meet the required analy
constraints (a), (b), and (c). At a given value ofz between
z2 and z1 the bounds are the minimum and maximum
values taken by the accepted candidate functions (of wh
there is at least one and generally at least two.) The
bounds are translated back to the original variables, a
the measured real and imaginary dielectric data are deem
incompatible if the real part lies outside the bounds. O
cautionary remark: Before applying theM-point bounds
one must first check the compatibility of theM known
valuesfsz1d, . . . , fszmd, i.e., thatfsz2d satisfies the one-
point bound whenfsz1d is given, thatfsz3d satisfies the
two-point bound whenfsz1d and fsz2d are given, and so
forth. If the bounds are violated at any stage, the data
is deemed incompatible.

The proof of these bounds rests on an extension
the analysis of Milton [12]: See, in particular, formula
(12). Briefly, fszd can be approximated by a rationa
function of very high degree satisfying (a), (b), and (c
The positions of the poles and zeros of this function c
then be varied to maximize or minimizefszd at the given
value of z while maintaining its known valuesfszid and
the properties (a), (b), and (c). An examination of firs
order variations shows that a necessary condition for
maximum or minimum to occur is that the total numbe
of poles and zeros, not counting the poles at the endpo
z ­ 0, z ­ z2, z ­ z1 and the zero atz ­ `, must not
exceedM 2 1.

In actual experimentse2svd is measured not over an
interval of frequencies, but rather at a discrete set of fine
spaced frequenciesv1 , v2 , v3 , · · · , vk . In this
case nothing can be rigorously said about the valu
e1sv1d,e1sv2d . . . , e1svkd can take: By considering the
effect of very small amplitude delta-function resonance
resonant at frequencies very nearv1, v2, . . . , and vk ,
it is clear that any combination of values is possibl
Nevertheless, one can smoothly interpolate the measu
e2svd to all frequencies betweenv1 andvk and apply our
bounds. If inconsistencies occur and if one has compl
confidence in the measured values, then the interpolat
must be poor. This itself is useful information, likely
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indicating the presence of undiscovered resonances
intermediate frequencies.

Experimental measurements will also have er
rors associated with them. Errors ine1svd are
easily treated. The bounds define a regionR
in a (N 1 1)-dimensional space where the point
fe1svd, e1sv1d, e1sv2d, . . . , e1svN dg must lie. Allowing
for known errors the measurements define a box in th
space wherefe1svd, e1sv1d, e1sv2d, . . . , e1svN dg must lie.
The data are deemed incompatible if the box does n
intersect the regionR. Since the bounds may be very
narrow for modest values ofN, the transverse dimensions
of R are small. In this case, a slight underestimation o
the experimental errors can lead to a possibly erroneo
conclusion that for a givenN, the data are incompatible.
This is not a difficult problem to overcome in practice
because one must compute the one-point bound, t
two-point bound, etc., before theN-point bounds. From
this sequence it is logical to stop computing tighter bound
when the width of the current bounds is comparable t
the known experimental error. Errors ine2svd are not as
easy to treat. However, if the errors are not systemat
then g0szd and hence also the bounds should be fairl
insensitive to these errors because of the convolution a
pearing in Eq. (4). See also [13] and [14], and reference
therein, for a discussion of how errors can be handled.
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