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Free Energy of Crystalline Solids: A Lattice-Switch Monte Carlo Method
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We present a Monte Carlo method for evaluating the difference between the free energies of two
crystal structures. The method uses a biased sampling of atomic displacements to favor configurations
of one structure that can be replaced by corresponding configurations of the other through a Monte
Carlo switch of the lattice. The configurations of both structures can be sampled in a single process,
and the difference between their free energies evaluated from their measured probabilities. The method
is applied to the free energies of the fcc and hcp phases of hard spheres. [S0031-9007(97)04322-6]

PACS numbers: 64.70.Kb, 02.70.Lq

One of the fundamental tasks of theoretical condensethces a distinctive problem: finding a path that links
matter physics is to understand the observed structurgbe regions of configuration space associated with two
of crystalline materials in terms of microscopic modelsdifferent crystal structures [7{yithout traversing regions
of the atomic interactions. The principles involved areof noncrystalline order, which present problems [8] for
well known: one needs to evaluate which of the candidateven multicanonical MC studies. We show here that this
structures has the lowest free energy for given (modebproblem can be elegantly solved by combinib@sed
and thermodynamic) parameters. In practice the taskampling along an appropriate pathith a suitableglobal
is rather less straightforward. Conventional Boltzmanncoordinate transformation.The resulting (“lattice-switch
importance sampling Monte Carlo (MC) methods do notMC”) method allows direct high-precision measurement
yield the free energy [1]. It is therefore customary toof free-energy differences of crystal structures.
resort to integration methods (IM) which determine free The idea is simple; we describe it first in general and
energies by integrating free-enerdgrivativesmeasured qualitative terms. The atomic position coordinates are
at intervals along a parameter-space path connecting thweritten, in the traditions of lattice dynamics, as the sum
system of interest to a reference system whose freef a lattice vector [9], and a displacement vector. The
energy is already known. This procedure has beewgonfigurations associated with a particular structure are
used widely, and with ingenuity [2]. Nevertheless it explored by MC sampling of the displacements. Given
leaves much to be desired. In particular, to determin@ny configuration of one structure one may identify a
the differencebetween the free energies of two phasesonfiguration of the other, bgwitchingone set of lattice
one has to relateeach of them separately to some vectors for the other, while keeping the displacement
reference system, with uncertainties which are not alwaysectorsfixed. Such lattice switches can be incorporated
transparent, and which can be significant on the scalmto the MC procedure by regarding the lattice type as a
of the free-energy difference of interest. Clearly, onestochastic variable. Lattice switches have an intrinsically
would prefer a method which focuses more directly onlow acceptance probability, since typically they entail a
this difference. The elements of such a strategy are ttarge energy cost. But the multicanonical method can
be found in the umbrella-sampling techniques pioneerethe used to draw the system along a path comprising the
by Torrie and Valleau [3], and recently revitalized in macrostates of this “energy cost,” and thence into a region
the multicanonical method of Berg and Neuhaus [4].of displacement space in which the energy cost is low,
The key concept underlying this method is that of aand the lattice switch can be implemented. The net result
configuration-space path comprising the macrostates a6 a MC procedure which visits both structures in the
some chosen macroscopic propefM. The method course of a single simulation, while never moving out
utilizes a sampling distribution customized (biased) toof the space of crystalline configurations. The method
even out the probabilities of differed macrostates. In is potentially very general. As an illustration we use it
principle, it allows one to sample along a path (whoseto determine the difference between the free energies of
canonical probability is generally extremely small) chosernthe two close-packed structures (fcc and hcp) of a system
to connect the distinct regions of configuration spaceof hard spheres. This problem has a long history [10].
associated with two phases; the difference between th€he difference between the free energies (effectively,
free energies of the two phases can then be obtaindtie entropie$ is extremely small, and recent IM studies
directly from the ratio of the probabilities with which the have disagreed on its value [11,12]. It thus provides an
system is found in each of the two regions. This idea hagxacting and topical testing ground for our method [13].
been applied in the investigation of the phase behavior We consider a system @¥ particles [14] with spatial
of ferromagnets [4], fluids [5], and lattice gauge theoriescoordinates{#}. In common with previous studies we
[6]. However, its application tstructuralphase behavior work at constant volumey, with periodic boundary
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conditions; generalization to the constant pressure en n
semble is straightforward. We make the decomposition : i @)
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where the vector®;,i = 1...N = {E}a define the sites
of a lattice of typea (here, either fcc or hcp). Clearly
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explained in Figs. 1(a) and 1(b): it exploits the fact that
the two structures differ only in the stacking pattern of the
close-packed planes.

We define a partition function (and free energy) associ-
ated with the structure by [15]
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attached to the integral in Eq. (2) signifies that it must @ @ z @ @

include only contributions from configurations within the c @ L @

subspace associated with the struciurgl6]. X
Consider now the canonical ensemble with probabilityr 5 ¢

Schematic representation of the close-packed struc-

distribution tures. The points marked show the positions of the sites in
exd —®{i}, a)] one close-packedcf) layer; the circles show the boundaries of
P{u},a | N,V,T) = —————————, (4)  spheres occupying these sites in an ideal (zero-displacement)
Z(N,V,T) structure. The points marked and C show the projections

where Z(N,V,T) = Y. Z(N,V,T,«). The probabilit of sites in other layers (stacked along theaxis) onto the
hat th >0 i b O‘f d ’ h’ ' P id y xy plane; the fcc and hcp structures entail sequences of type
that the system will be found to have Structurrovides  4pca .. ‘andABAB..., respectively. Theattice switchfrom

a measure of the associated partition function, fcc to hep entailstranslations of the close-packed planes, as
detailed in (b). [(b), left side] The positions of the spheres in

Pla | N,V,T) = ] l_[[dﬁi]P({Z,},a | N,V,T) an arbitrary configuration of the fcc structure, projected onto
{ifea ~; the xz plane. We show 6 layers, with 3 spheres in each; the
Z(N,V,T, ) sites in the top 3 layer§A, B, C) correspond to those marked
= — 2 (5) (and underlined}, B, C in (a). [(b), center] The action of the
Z(N,V.,T) lattice switch: reading from the top, the first two layérs B)

The difference between the free energies of the tw®f the fc‘f stauctlure a[ﬁe i(T.variant; ghe next JW‘E’Af). Ialyers
structures may thus be expressed as are translated along the direction by —¢; and the final two

(B, C) layers are translated by, wherer is identified in (a).
Fiuep(N,V,T) — Fieoe(N,V,T) = NKTAf = kTInR, [(b), right side] Projections of the spheres in the resulting hcp
P arrangement. Here, the displacemefats realizable in the fcc

(6) structure, give two overlapping pairs of spheres (shaded) in the
where hcp structure so thatM ({u}) = 2 in this case. Note that the
picture is schematic:in particular, the density shown here is
Z(N,V,T,fcc)  P(fcc| N,V,T) 7) much lower than that chosen for the present studly.

Z(N,V,T,hcp  P(hcp| N,V,T)"
This identification is usefulonly if one can devise a

MC procedure that will actually visit the configurations
{u}, « with the probabilities prescribed by Eq. (4).

R =

the other [one which violates the hard-sphere constraint
implied by Eqg. (3)]. Figure 1(b) provides an example.
The resolution is tdbias the sampling procedure so as
do so one must deal with the ergodic block againsgo'favor t_he occurrence of co_nfigurations which tra_nsform
lattice switches (“updates” of the lattice labe): almost without violating this constraint. To do so we define an

invariably such a switch maps an accessible configuratioRVeriap order parameter
of one structure onto an inaccessible configuration of M{u}) = M{a}, hcp — M{u}, fco), (8)
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where M({u}, @) counts the number of pairs of over- 0.03 . . :
lapping spheres associated with the configurafi@n o 10
[again, see Fig. 1(b)]. Sinc#f({u}, «) will necessarily
be zero for any set of displacemerisg actually visited 10
when the system has lattieg, the order parameteM is 002 +
necessarily=0 (=0) for realizable configurations of the 10
fcc (hep) structure. The displacement configurations with g

N’

o

M = 0 are accessible ibothstructures and thus offer no
barrier against lattice switches. Accordingly the sefidf
macrostates provides us with the required “path” connect-
ing the two phases, through a lattice switchZst = 0.

To pick out this path we must sample from the biased
configuration distribution

P({i,a | N,V, T {n}) < P({i}, & | N, V,T)en ),
9)
where{n} = n(M), M = 0,x1,+2,... define a set of FIG. 2. The distribution of the overlap paramet®d for a

multicanonical weights [4], which have to be determinedsystem ofN = 1728 spheres; the inset shows the distribution

such that configurations of all relevadM values are 9N a logarithmic scale. The statistical uncertainties are smaller
tgan the symbol size. The free-energy differens¢g is

Sar_npled. _Oﬁce ,this is done, one can _measure tf\ entified from the logarithm of the ratiR of the weights
Welgh_ted dlstrlbunon_ ofM values, and rgwelght (unfold. of the two peaks [Eq. (11)]. The smallness/f allows both
the bias) to determine the true canonical form of thispeaks to be displayed on one linear scale in this case.

distribution,

—n(M , _ .

P(M | N,V,T) = P(M | N,V,T,{n}e "™, (10)  aple immediately and transparently from the ratio of the
Finally, the difference between the free energies ofntegrated weights of the two essentially Gaussian peaks.
the two structures may be read from this distribution Our results (for a range a¥ values) are summarized

0.01

400

through the identification [cf. Egs. (6) and (7f = in Table I, along with those of other authors. It is
N~ 'InR, with apparent that the present work greatly refines the largely
P(M |N,V,T inconclusive results of the original IM study [2]. Our
R = 220 P ) (11)  results are consistent with—though substantially more

. 2.91<0 P(j.Vl | N V.T) precise than—very recent IM studies [12]. They are
We have implemented this procedure to study systemconsistent with the result reported by Woodcock [11],
of N =216, 1728, and 5832 hard spheres (forming, ré-given that Af is believed todecreaseas the density
spectively, 6, 12, or 18 close-pac'ked layers). The volumeg reduced, towards melting [19]. While we have not
V was chosen such that the fraction of space fillgdsat-  aiiempted an explicit analysis of the finite-size behavior,
isfies p/pep = 0.7778 [17], where pe, = 0.7404 is the  he close agreement between our results Noe= 1728
space filling fraction in the closest packing limit. The MC 5,4 & = 5832 indicates that the latter should provide
procedure entails sampling the displacement variafiles 55 extremely good estimate of the thermodynamic limit,

and the lattice labekr. The variablesu} were updated confirming the stability of the fcc structure at this density.
by drawing new values from a top-hat distribution [18]

and accepting them provided they satisfy the hard-sphere

Constrain'F; the Iatti(;_e switches were attempted (a}nq ACTABLE I Results for the difference between the free energy
cepted with probabilityl /2) only when the system is in  of hcp and fcc structures, as defined in Eq. (6) with associ-
the M = 0 macrostate. The weights (which enable theated uncertainties in parentheses. Results attributed to Ref. [2]
system to reach this special macrostate) were obtained ugere deduced by combining the separate results for fcc and hcp
ing methods explained elsewhere [7]. We allowed typi-diven there. PW signifies the present work. The PW error

4 . . 7 bounds were computed from the statistical uncertainties in the
cally 2 X 10* sweeps for equilibration and up fox 10

. . . weights of the peaks i?(M) [21].
sweeps for final sampling runs on the largest system size

The simulations were conducted on DEC ALPHA work- £2/pPep N Af x10° Ref.
stations using overall some 800 hours CPU time. 0.7360 216 90 (135) [2]
Figure 2 shows the measured overlap distribution for0.7360 12000 500 (100) [11]
the N = 1728 system; the inset shows the probability on 0.7360 12906 90 (20) [12]
a logarithmic scale, exposing the enormity of the entropicO-7778 1152 —120 (180) (2]
“barrier” (probability “trough”) that the multicanoni- 0.7778 216 101 (4) PW

cal weighting enables us to negotiate. The difference> /778 1728 83 (3) PW

between the free energies of the two structures is identifio'7778 o832 8¢ S PwW

3004



VOLUME 79, NUMBER 16 PHYSICAL REVIEW LETTERS 20 OTOBER 1997

Our principal concern here, however, is with then- [1] K. Binder, J. Comput. Phy£9, 1 (1985).
eral lessons that can be learned about the method intro{2] D. Frenkel and A.J.C. Ladd, J. Chem. Phy, 3188
duced in this work. The precision we have achieved with (1984).
this method is self-evidently a significant advance on that[3] G- M. Torrie and J.P. Valleau, Chem. Phys. L& 578

of IM studies. Admittedly, this level of precision has en- 4 é;lsf4)|_5, d T. Neuh Bh R Lefis 9
tailed substantial processirtgne, principally because of [4] (1'99'2) €rg and 1. Neuhaus, Fhys. kev. Leus,

the relative_ sIowne;s of the diffusivg exploration of the [5] N.B. Wilding, Phys. Rev. B52, 602 (1995).
mquqanomcalIy weighted .confl.guranon space. But the [6] B. Grossmann et al., Phys. Lett. B 293 175
point is that the procedure acticable[20], with a com- (1992).

putational strategy that is, we suggest, less complex ang7] G.R. Smith and A.D. Bruce, Phys. Rev. &3, 6530
more transparent than that of IM. Thus, for example, the  (1996), apply multicanonical methods to a structural
method described in [2] involves integration (of a mean- phase transition which involveso change of symme-
square displacement) along a parameter-space path con- try, where an appropriate path is identified simply by
necting each structure to a reference system, comprisin M =p.

an Einstein model of the same structure; the MC integral[8] For example, the ergodic block associated with recrystal-
then has to be combined with the known free energy of the _ lization. . L

Einstein model, a virial correction, and a correction to the [9] We use the term “lattice vector® a lile loosely: we
virial correction, before taking the difference between mean the set of vectors identified by the orthodox

S tall hic lattice, Ived ith th tho-
the results for the two structures. The uncertainties in all gg/xs fagi%fap Ic latlice, convolved wi € ortho

the contributions have to be assessed separately. By COflp] B.J. Alder, B. P. Carter, and D. A. Young, Phys. R&83
trast, the present method focuses directly on the quantity = g31 (1969).

of interest (the relative weights of the peaks in Fig. 2); and11] L.V. Woodcock, Nature (Londor384, 141 (1997).

the precision with which it is prescribed is defined by stan{12] P.G. Bolhuis and D. Frenkel (unpublished).

dard MC sampling theory [21]. [13] The hard-sphere system has a wider significance.

More generally we note that, for systems other than Y. Choi et al., J. Chem. Phys99, 9917 (1993), show

hard spheres, the role of the overlap order parameter tha_t predictions for the phase c_ii_agram of a Lennard Jones
is played by theenergy barrierencountered in the lat- solid depend. extremely sensitively on the hard-sphere
tice switch; the generalization of the weighting procedure[1 4] ;eg_?izggg{/v?f{e;i?gig n(;?ilr;quaiucfﬁg Qfe\rlgcancies

should be straightforward. The formulation of the lattice ' 9 ;

itch. h i I . h ht i [15] We use a general notation; formally the properties of the
switch, however, will generally require some thought: in hard-sphere system are independent of

the present case one can readily identify a lattice-to-lattic@ 6] |n the MC context the configurationsssociatedwith a

mapping whichguaranteeso overlaps (high-energy-cost given structure are identified as the set which is actually

interactions) among subsets of the atoms (those lying  accessedn a simulation initialized within the set.

within the sameclose-packed plane); the optimal form of [17] This value ofp was chosen to coincide with one of those

mapping may not always be so evident. Onthe otherhand, studied in Ref. [2].

it seems that few problems will require the level of pre-[18] This choice of sampling procedure ensures that the center

cision needed here, where the two phases are so finely of mass is effe_cuv_ely_flxed. For consistency the width

balanced. of the top-.hat distribution must be large compared to the
We summarize and, in so doing, set this paper in a widey, .. 'ange of displacements actualgcepted. .

context. We have presented a method for dealing with 19] This follows from studies of the pressure in the two

) . . . structures: B.J. Aldert al., J. Comput. Phys7, 361

general class of problem in which the task is to compare (1971).

the statistical weights of two regions of configuration|»o] The time required is measured on a scale of hours

space (here, those of two crystal structures) such that = rather than the eons required if one were to attempt

a configuration belonging to one region can be mapped such a “direct” methodvithout the multicanonical strat-

onto a configuration of the other by a global coordinate  egy provided here: recall the scale in the inset of

transformation (here, the lattice switch). Biased sampling  Fig. 2.

within one region is used to enhance the probability ofl21] The full simulation run is divided into bins, each long on

acceptance of a Monte Carlo switch to the other. We the scale of the autocorrelation time. Each bin provides

have seen that this method provides a transparent way an gssentially independent estimate _of the probability

of dealing with the crystal-structure problem. Its utility ratio; error bounds follow from their variance.

may, we speculate, extend to other problems including th[ezz] gge%%g("l;és Kass and A. E. Raftery, J. Am. Stat. Assoc.

(Bayesian) comparison of many-parameter models [221123] See, e.g., M. Karplus and G.A. Petsko Nature (London)
and the comparison of conformations or mutations of 347631 (1990).

complex molecules [23].
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