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We use the auxiliary fields Monte Carlo method for the shell model in the comfjgtet 0go/)
shell to calculate level densities. We introduce parity projection techniques which enable us to calculate
the parity dependence of the level density. Results are presentétFgrwhere the calculated total
level density is found to be in good agreement with the experimental level density. The parity-projected
densities are well described by a backshifted Bethe formula, but with significant dependence of the
single-particle level-density and backshift parameters on parity. We compare our exact results with
those of the thermal Hartree-Fock approximation. [S0031-9007(97)04221-X]

PACS numbers: 21.10.Ma, 21.60.Cs, 21.60.Ka, 27.40.+z

Nuclear level densities are important for theoreticaltwo-body correlations are fully taken into account within
estimates of nuclear reaction rates in nucleosynthesishe model space. It should be noted, however, that the
The s and r processes that involve medium-mass andinite size of the model space limits the validity of such
heavier nuclei are determined by the competition betweenalculations to below a certain excitation energy. The
neutron-capture angd decay, and the neutron-capture size of the valence shells required to describe the neutron-
cross sections are strongly affected by the level densityesonance region for medium-mass and heavier nuclei is
around the neutron resonance region. Reliable estimatestafo large for conventional diagonalization techniques to
nuclear abundances often require accurate level densitidse practical. However, the recently proposed shell model
For example, the abundance efprocess nuclei with Monte Carlo (SMMC) method [5] makes it possible to
nonmagic neutron number is (in the local approximation)calculate thermal averages in much larger model spaces
inversely proportional to the neutron-capture cross sectioby using fluctuating auxiliary fields. As shown below,
[1] which in turn is proportional to the level density. Most these methods are particularly suitable for calculations of
conventional calculations of the nuclear level density ardevel densities.
based on the Fermi gas model within the grand-canonical Nuclei in the iron region play a special role in nucle-
ensemble [2]. For a gas of free nucleons one obtainesynthesis. They are the heaviest nuclei created by fusion
the well-known Bethe formula. A simple but useful of charged particles inside stars, and the starting point of
phenomenological modification is often adopted, in whichthe synthesis of heavier nuclei. These nuclei are in the
the excitation energ¥, is backshifted [3], giving a total middle of thepf-shell, and are just beyond the range of
nuclear level density of nuclei where conventional shell model techniques can be

= X applied in a complete f-shell model space [6,7]. Trun-

pBBF(Ey) = g¥X—a T(E, — A) 7¢2VeETY (1) cated shell calculations [8] were successfully used to de-

24 scribe the low-lying states in these nuclei. However, their
with ¢ = 2. The backshift originates in pairing correla- neutron separation energy, typically ~ 5—15 MeV, is
tions and shell effects, while the parameigs determined too high to justify such truncation. The SMMC method
by the single-particle level density at the Fermi energy. Bywas used to calculate thermal properties e in a full
adjusting the value of for each nucleus, the backshifted pf-shell [9] with the Brown-Richter Hamiltonian. The
Bethe formula (BBF) (1) fits well a large volume of ex- Monte Carlo sign problem of this realistic interaction is
perimental data. The value of the parameter, however, isvercome through the techniques of Ref. [10]. However,
not well understood; the Fermi gas model grossly underthe statistical errors were too large to obtain accurate level
estimates the value af, and cannot account for its exact densities. Furthermore, the energy range of interest in the
mass and nucleus dependence. Consequently, it is diffiron region E, ~ 5-15 MeV) contains negative-parity
cult to predict the level density to an accuracy better tharstates which are not included in th-shell model space.
an order of magnitude. Much less is known about the parin this Letter we introduce parity-projection methods for
ity dependence of the level density. The finite-temperatur¢he auxiliary fields, and use the SMMC within the full
mean-field approximation [4] offers an improvement overpf- and0gy/,- shell to calculate total and parity-projected
the Fermi gas model but still ignores important two-bodylevel densities in the iron region. This model space is suf-
correlations, especially at low temperatures. ficient to describe both positive- and negative-parity states

In this paper we study the nuclear level density in thefor excitation energies up to 20 MeV. To keep the statis-
framework of the interacting shell model, in which the tical errors small, we construct an interaction that is free
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from the Monte Carlo sign problem, yet realistic enoughdefined by replacing/V /dr of 0“T) in Eq. (3) by r?.
to describe collective features that affect the level densityData on the strength function of the mass quadrupole
In particular we present results ffiFe, for which experi- moment are available fronfp,p’) experiments in a
mental data are available. broad energy range i#fFe [17]. We findEe, (Q*?) =
We adopt an isoscalar Hamiltonian of the form [11]  2.16 MeV, in fairly good agreement with the theoretical
value of E.,;(Q??) = 2.12 = 0.11 MeV. While this in-

H = ey + goP"VT - pOV teraction is not fully realistic, it does include the dominant

“ collective components of realistic effective nuclear inter-
- x ZkAO(“)) .00 ) a_lctions [18] and seems to reproduce quite well the collec-

T tive features of the nucleus.
where Since both th®f7,, and0gy,, orbits are included in our

Jar model space, spurious center-of-mass motion may occur.

PODT = 2T NG vallip) [a) X af 107, Although this problem has not been fully explored within

222 + 1) 5 7 3) the SMMC framework, it is expected to be unimportant in

O — 1 Z( . IIdVY i f oy o our case. The energy difference betw@gh,, and0gy/,

NES £ Ja dr A Jorla;, X aj, ) is 9.6 MeV, so we expect spurious states to appear at

, ] , . excitation energies around 10 MeV and higher. However,
and(-) denotes a scalar product in both spin and isospingeijr density is comparable to that of the nonspurious
The modified annihilation operator is defined®y,.., =  states but at about 10 MeV lower in energy, and is thus
=) " ™A, L m,, and a similar definition is used a negligible fraction of the total density at the actual
for PAT). To conserve the isospin symmetry, the single-excitation energy.

particle energiese, are taken to be equal for protons In the SMMC the energy is calculated as a function
and neutrons, and are determined from a Woods-Saxaof inverse temperatur@, from the canonical expectation
potential plus spin-orbit interaction with the parametersvalue of the HamiltoniarE(3) = (H)g through an exact
qguoted in Ref. [12]. V in (3) is the central part of particle-number projection [19] of both protons and neu-
this single-particle potential. The multipole interactiontrons. The partition functioZ( 8) is then determined by

in (3) is obtained (withk, = 1) by expanding the a numerical integration af(3):

separable surface-peaked interactiaim, r’) = — y(dV/ B

dr)(dV/dr')6(f — #'). The interaction strengthy is In[Z(B)/Z(0)] = —] dB'E(B"), (4)
fixed by a self-consistency relation [11], and we fipd= 0

0.026 MeV~'fm? for Fe. In our present calculations where Z(0) = Tr 1 is just the total number of states
we include the quadrupole, octupole, and hexadecupolgithin the model space. The level densiyE) is the
terms = 2, 3, and 4, respectively). Since our shell- inverse Laplace transform df(3), and is calculated in
model configuration space includes the valence shethe saddle-point approximation from

alone, core polarization effects are taken into account by B 2 n—-1/2.5.

using renormalization factors,. We adopt the values p(E) = 2mB "C) /7’ 5)

ky = 2, k3 = 1.5, andky = 1, which are consistent with  §(E) = BE + InZ(B), B2C(B) = —dE/dB.
a realistic effective interaction in this shell derived by the ) ) ) ) )
folded-diagram technique [13]. This interaction satisfied?e"® 8 = B(E) is determined by inverting the relation
the modified sign rule (suitable for shells with mixed £ = E(B), and C is the heat capacity calculated by

parities) [10], and therefore has a Monte Carlo sign oftumerical differentiation o£(5). _ _

(®) = 1 for even-even nuclei. The pairing strength We now introduce parity-projection techniques in t_he

is determined by using the experimental odd-even massVMC to calculate parity-projected opservaPI%s. Using

differences [14] for nuclei in the mass regian— 40-g0  the Hubbard-Stratonovich _repref,entatlon for®" and

to estimate the pairing gap. The number-projected BC&'€ Projection operatorg. = (1 = P)/2 (P is the par-

calculation is then performed for fifteen spherical nucleily OPerator) on states with positive and negative par-

With Z =20, N = 28, Z = 28, or N = 40 to find the ity, respectively, v!%Hcan wrlteiglbe 'prOJected energies

value ofg, that will reproduce the estimated pairing gaps.E=(8) = Tr(HP+e”F7)/Tr(P+e”F7) in the form

In(;:ontra;t to heavier (rjwuclei [15], we find ncl) systeTatic E£.(8) = [DlelW (o) [{H)s = (H)psLp(0)/{(0)]

A dependence igo, and a constant mean value gf = * [D[eIW (o)1 = &p(0)/L ()]

0.212 MeV is adopted. 6)
It is difficult to obtain detailed spectroscopic infor-

mation on excited states in the SMMC method. In-The integration over the auxiliary fields is performed

stead, it is possible to calculate directly low momentswith the usual Monte Carlo weight functioW (o) =

of strength functions [16], such as the average energg(o){ (o), where G is a Gaussian factor and(o) =

of the quadrupole excitatiok (Q?0) = [>, E.(2) % Tr U, is the partition function of the noninteracting

121000 P/ 127 10%V101)I°]. Here ) is  propagator U, [5]. In (6) ¢p(o) = Tr(PU,) and
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(H)p, = Tr(HPU,)/Tr(PU,). Since P can be ex- a substantial enhancement in the SMMC entropy over the
pressed as a product of the parity operators of each dfiFA entropy, which is due to the full inclusion of the
the particles, it follows that the operatd®tU, can be two-body correlations. The heat capacity is useful for
represented in the single-particle space by the matridetermining the range of excitation energies for which
PU,, where U, is the matrix representing/, in the the present model space is sufficient. The decrease of
single-particle space, anB is a diagonal matrix with C at high excitation energy (i.e., sma#l) is associated
elements(—)% (¢; is the orbital angular momentum of with the truncation of the single-particle space, and we
the single-particle orbit). This representation allows the conclude that our present calculation is meaningful up to
calculation of{p(o) and (H)p, through matrix algebra E, ~ 20 MeV. The discontinuity of the heat capacity at
in the single-particle space, similar to the calculation of@ ~ 1.3 MeV~! in the HFA is a signature of the shape
(o) and (H),, except that the matridU, is replaced transition, but this effect is washed out in the SMMC.
by PU,. Once we calculat&-(3), we can proceed to  The SMMC total level density is shown in Fig. 3
calculate the densitigs-(E) as for the total level density. (left panel) as a function of,. Although it is difficult

In the following we present results for®Fe. to measure the total level density directly, it can be
For each 8 we used a Monte Carlo time slice of reconstructed from a few parameters that are determined
AB = 0.03125 MeV~!, and collected more than 4000 experimentally. The solid line in Fig. 3 shows such an
samples. To describe the level density as a functiomxperimental level density determined from charged par-
of the excitation energ\E,, we also need to know the ticle spectra [20]. The level density of Ref. [21], with the
ground-state energy. The latter is calculated by extrapoBBF parameters of = 5.80 MeV~! andA = 1.38 MeV
lating E(B) to B — . Figure 1 shows the energyas (wherea is determined experimentally), is nearly iden-
a function of 3. The SMMC results are the solid squarestical in the energy range shown. Our SMMC level
and include statistical errors (although the errors are oftedensity is in good agreement with these experimental
too small to be visible in the figure). We compare ourresults. The small discrepancy at low energies may
results with those of the thermal Hartree-Fock approxibe ascribed to deviations of the moment-of-inertia pa-
mation (HFA) [4], where we observe large deviations atrameter [22] from its rigid-body value: a rigid-body mo-
low temperatures. In the HFA, a shape phase transitioment was assumed in deriving the experimental values of
occurs aroung@ ~ 1.3 MeV~! from a spherical configu- « andA. We can also use our microscopically calculated
ration (at higher temperatures) to a deformed one, and itevel densities to extract the level density parameters via a
signature is observed in the bending&fB). The inset fit to Eq. (1). Using the energy ranges MeV < E, <
to Fig. 1 present&- as a function ofg, calculated using 20 MeV, we obtain a = 5.780 + 0.055 MeV~!' and
the parity-projection technique of Eg. (6). Because ofA = 1.560 = 0.161 MeV. We note that the statistical
the energy gap betweerf and0gy/», E_(B) is notably  errors of the present calculations are substantially smaller
higher thanE ; (8) at low temperatures. than those of Ref.[9]. Consequently, accurate level

The SMMC and HFA entropie§ (versusk) and heat densities can be calculated in the present work. Also
capacitiesC (versusB) are shown in Fig. 2. We observe shown in Fig. 3 is the level density in the HFA, where

the excitation energy has been corrected by the difference
between the mean-field and SMMC ground-state energies.

-150 ' . The SMMC level density is significantly enhanced in
m -160 comparison with the HFA level density. The kink around
160 \ 1 9 MeV in the HFA level density is related to the shape
\ 180~ a transition, and disappears in the SMMC.
Y i ﬁaa‘ The Fermi gas model predicts equal positive- and
S -170 '\‘ 1 'u:fH negative-parity level densities at all energies. However,
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FIG. 1. The total energf as a function ofg for **Fe. The
SMMC values are shown by solid squares, while the HFAFIG. 2. Right: the entropy as a function of enerfly Left:
values by a dashed line. The inset shows the positive (circleghe heat capacit¢’ as a function of3. The conventions are as
and negative (triangles) parity-projected SMMC energies. in Fig. 1.
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- a systematic study of level densities for nuclei in the
(pf + gos2) shell.
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