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Total and Parity-Projected Level Densities of Iron-Region Nuclei
in the Auxiliary Fields Monte Carlo Shell Model
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We use the auxiliary fields Monte Carlo method for the shell model in the completespf 1 0g9y2d
shell to calculate level densities. We introduce parity projection techniques which enable us to calculat
the parity dependence of the level density. Results are presented for56Fe, where the calculated total
level density is found to be in good agreement with the experimental level density. The parity-projected
densities are well described by a backshifted Bethe formula, but with significant dependence of th
single-particle level-density and backshift parameters on parity. We compare our exact results with
those of the thermal Hartree-Fock approximation. [S0031-9007(97)04221-X]
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Nuclear level densities are important for theoretica
estimates of nuclear reaction rates in nucleosynthes
The s and r processes that involve medium-mass an
heavier nuclei are determined by the competition betwe
neutron-capture andb decay, and the neutron-capture
cross sections are strongly affected by the level dens
around the neutron resonance region. Reliable estimate
nuclear abundances often require accurate level densit
For example, the abundance ofs-process nuclei with
nonmagic neutron number is (in the local approximation
inversely proportional to the neutron-capture cross secti
[1] which in turn is proportional to the level density. Most
conventional calculations of the nuclear level density a
based on the Fermi gas model within the grand-canonic
ensemble [2]. For a gas of free nucleons one obtai
the well-known Bethe formula. A simple but usefu
phenomenological modification is often adopted, in whic
the excitation energyEx is backshifted [3], giving a total
nuclear level density of

rBBF sExd ­ g

p
p

24
a2 1

4 sEx 2 Dd2 5

4 e2
p

asEx2Dd (1)

with g ­ 2. The backshiftD originates in pairing correla-
tions and shell effects, while the parametera is determined
by the single-particle level density at the Fermi energy. B
adjusting the value ofa for each nucleus, the backshifted
Bethe formula (BBF) (1) fits well a large volume of ex-
perimental data. The value of the parameter, however,
not well understood; the Fermi gas model grossly unde
estimates the value ofa, and cannot account for its exact
mass and nucleus dependence. Consequently, it is di
cult to predict the level density to an accuracy better tha
an order of magnitude. Much less is known about the pa
ity dependence of the level density. The finite-temperatu
mean-field approximation [4] offers an improvement ove
the Fermi gas model but still ignores important two-bod
correlations, especially at low temperatures.

In this paper we study the nuclear level density in th
framework of the interacting shell model, in which the
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two-body correlations are fully taken into account withi
the model space. It should be noted, however, that
finite size of the model space limits the validity of suc
calculations to below a certain excitation energy. Th
size of the valence shells required to describe the neutr
resonance region for medium-mass and heavier nucle
too large for conventional diagonalization techniques
be practical. However, the recently proposed shell mod
Monte Carlo (SMMC) method [5] makes it possible t
calculate thermal averages in much larger model spa
by using fluctuating auxiliary fields. As shown below
these methods are particularly suitable for calculations
level densities.

Nuclei in the iron region play a special role in nucle
osynthesis. They are the heaviest nuclei created by fus
of charged particles inside stars, and the starting point
the synthesis of heavier nuclei. These nuclei are in t
middle of thepf-shell, and are just beyond the range o
nuclei where conventional shell model techniques can
applied in a completepf-shell model space [6,7]. Trun-
cated shell calculations [8] were successfully used to d
scribe the low-lying states in these nuclei. However, the
neutron separation energy, typicallyEx , 5 15 MeV, is
too high to justify such truncation. The SMMC metho
was used to calculate thermal properties of54Fe in a full
pf-shell [9] with the Brown-Richter Hamiltonian. The
Monte Carlo sign problem of this realistic interaction i
overcome through the techniques of Ref. [10]. Howeve
the statistical errors were too large to obtain accurate le
densities. Furthermore, the energy range of interest in
iron region (Ex , 5 15 MeV) contains negative-parity
states which are not included in thepf-shell model space.
In this Letter we introduce parity-projection methods fo
the auxiliary fields, and use the SMMC within the ful
pf- and0g9y2- shell to calculate total and parity-projecte
level densities in the iron region. This model space is su
ficient to describe both positive- and negative-parity stat
for excitation energies up to 20 MeV. To keep the stati
tical errors small, we construct an interaction that is fre
© 1997 The American Physical Society 2939
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from the Monte Carlo sign problem, yet realistic enou
to describe collective features that affect the level dens
In particular we present results for56Fe, for which experi-
mental data are available.

We adopt an isoscalar Hamiltonian of the form [11]

H ­
X
a

ean̂a 1 g0Ps0,1dy ? P̃s0,1d

2 x
X
l

klOsl,0d ? Osl,0d, (2)

where

Psl,Tdy ­

p
4p

2s2l 1 1d

X
ab

k jakYlkjbl fay
ja

3 a
y
jb

gsl,Td,

Osl,Td ­
1

p
2l 1 1

X
ab

k jak
dV
dr

Ylkjbl fay
ja

3 ãjb gsl,Td,

(3)

and s?d denotes a scalar product in both spin and isosp
The modified annihilation operator is defined byãj,m,mt ­

s2dj2m1 1

2
2mt aj,2m,2mt , and a similar definition is used

for P̃sl,Td. To conserve the isospin symmetry, the sing
particle energiesea are taken to be equal for proton
and neutrons, and are determined from a Woods-Sa
potential plus spin-orbit interaction with the paramete
quoted in Ref. [12]. V in (3) is the central part of
this single-particle potential. The multipole interactio
in (3) is obtained (with kl ­ 1) by expanding the
separable surface-peaked interactionysr, r0 d ­ 2xsdVy
drd sdVydr 0ddsr̂ 2 r̂0d. The interaction strengthx is
fixed by a self-consistency relation [11], and we findx ­
0.026 MeV21 fm2 for 56Fe. In our present calculation
we include the quadrupole, octupole, and hexadecup
terms (l ­ 2, 3, and 4, respectively). Since our shell
model configuration space includes the valence sh
alone, core polarization effects are taken into account
using renormalization factorskl. We adopt the values
k2 ­ 2, k3 ­ 1.5, andk4 ­ 1, which are consistent with
a realistic effective interaction in this shell derived by th
folded-diagram technique [13]. This interaction satisfi
the modified sign rule (suitable for shells with mixe
parities) [10], and therefore has a Monte Carlo sign
kFl ­ 1 for even-even nuclei. The pairing strengthg0

is determined by using the experimental odd-even m
differences [14] for nuclei in the mass regionA ­ 40 80
to estimate the pairing gap. The number-projected B
calculation is then performed for fifteen spherical nuc
with Z ­ 20, N ­ 28, Z ­ 28, or N ­ 40 to find the
value ofg0 that will reproduce the estimated pairing gap
In contrast to heavier nuclei [15], we find no systema
A dependence ing0, and a constant mean value ofg0 ­
0.212 MeV is adopted.

It is difficult to obtain detailed spectroscopic infor
mation on excited states in the SMMC method. I
stead, it is possible to calculate directly low momen
of strength functions [16], such as the average ene
of the quadrupole excitationEsQs2,0dd ; f

P
i Exs21

i d 3

jk21
i jQs2,0dj01

1 lj2gyf
P

i jk21
i jQs2,0dj01

1 lj2g. Here Qsl,Td is
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defined by replacingdVydr of Osl,Td in Eq. (3) by rl.
Data on the strength function of the mass quadrupo
moment are available fromsp, p0 d experiments in a
broad energy range in56Fe [17]. We findEexpsQs2,0dd .
2.16 MeV, in fairly good agreement with the theoretica
value ofEcalsQs2,0dd ­ 2.12 6 0.11 MeV. While this in-
teraction is not fully realistic, it does include the dominan
collective components of realistic effective nuclear inte
actions [18] and seems to reproduce quite well the colle
tive features of the nucleus.

Since both the0f7y2 and0g9y2 orbits are included in our
model space, spurious center-of-mass motion may occ
Although this problem has not been fully explored withi
the SMMC framework, it is expected to be unimportant
our case. The energy difference between0f7y2 and0g9y2
is 9.6 MeV, so we expect spurious states to appear
excitation energies around 10 MeV and higher. Howeve
their density is comparable to that of the nonspurio
states but at about 10 MeV lower in energy, and is th
a negligible fraction of the total density at the actua
excitation energy.

In the SMMC the energy is calculated as a functio
of inverse temperatureb, from the canonical expectation
value of the HamiltonianEsbd ; kHlb through an exact
particle-number projection [19] of both protons and ne
trons. The partition functionZsbd is then determined by
a numerical integration ofEsbd:

lnfZsbdyZs0dg ­ 2
Z b

0
db0 Esb0 d , (4)

where Zs0d ­ Tr 1 is just the total number of states
within the model space. The level densityrsEd is the
inverse Laplace transform ofZsbd, and is calculated in
the saddle-point approximation from

rsEd ­ s2pb22Cd21y2eS;

SsEd ­ bE 1 ln Zsbd, b22Csbd ­ 2dEydb .
(5)

Here b ­ bsEd is determined by inverting the relation
E ­ Esbd, and C is the heat capacity calculated by
numerical differentiation ofEsbd.

We now introduce parity-projection techniques in th
SMMC to calculate parity-projected observables. Usin
the Hubbard-Stratonovich representation fore2bH and
the projection operatorsP6 ­ s1 6 Pdy2 (P is the par-
ity operator) on states with positive and negative pa
ity, respectively, we can write the projected energie
E6sbd ; TrsHP6e2bH dyTrsP6e2bHd in the form

E6sbd ­

R
DfsgW ssd fkHls 6 kHlPszPssdyz ssdgR

DfsgWssd f1 6 zPssdyz ssdg
.

(6)

The integration over the auxiliary fieldss is performed
with the usual Monte Carlo weight functionW ssd ­
Gssdz ssd, where G is a Gaussian factor andz ssd ­
Tr Us is the partition function of the noninteracting
propagator Us [5]. In (6) zPssd ; TrsPUsd and
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kHlPs ; TrsHPUsdyTrsPUsd. Since P can be ex-
pressed as a product of the parity operators of each
the particles, it follows that the operatorPUs can be
represented in the single-particle space by the mat
PUs , where Us is the matrix representingUs in the
single-particle space, andP is a diagonal matrix with
elementss2d,i (,i is the orbital angular momentum of
the single-particle orbiti). This representation allows the
calculation ofzPssd and kHlPs through matrix algebra
in the single-particle space, similar to the calculation
z ssd and kHls , except that the matrixUs is replaced
by PUs . Once we calculateE6sbd, we can proceed to
calculate the densitiesr6sEd as for the total level density.

In the following we present results for56Fe.
For each b we used a Monte Carlo time slice o
Db ­ 0.031 25 MeV21, and collected more than 4000
samples. To describe the level density as a functi
of the excitation energyEx, we also need to know the
ground-state energy. The latter is calculated by extrap
lating Esbd to b ! `. Figure 1 shows the energyE as
a function ofb. The SMMC results are the solid square
and include statistical errors (although the errors are oft
too small to be visible in the figure). We compare ou
results with those of the thermal Hartree-Fock approx
mation (HFA) [4], where we observe large deviations
low temperatures. In the HFA, a shape phase transit
occurs aroundb , 1.3 MeV21 from a spherical configu-
ration (at higher temperatures) to a deformed one, and
signature is observed in the bending ofEsbd. The inset
to Fig. 1 presentsE6 as a function ofb, calculated using
the parity-projection technique of Eq. (6). Because
the energy gap betweenpf and 0g9y2, E2sbd is notably
higher thanE1sbd at low temperatures.

The SMMC and HFA entropiesS (versusE) and heat
capacitiesC (versusb) are shown in Fig. 2. We observe

FIG. 1. The total energyE as a function ofb for 56Fe. The
SMMC values are shown by solid squares, while the HF
values by a dashed line. The inset shows the positive (circl
and negative (triangles) parity-projected SMMC energies.
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a substantial enhancement in the SMMC entropy over th
HFA entropy, which is due to the full inclusion of the
two-body correlations. The heat capacity is useful fo
determining the range of excitation energies for whic
the present model space is sufficient. The decrease
C at high excitation energy (i.e., smallb) is associated
with the truncation of the single-particle space, and w
conclude that our present calculation is meaningful up
Ex , 20 MeV. The discontinuity of the heat capacity at
b , 1.3 MeV21 in the HFA is a signature of the shape
transition, but this effect is washed out in the SMMC.

The SMMC total level density is shown in Fig. 3
(left panel) as a function ofEx . Although it is difficult
to measure the total level density directly, it can b
reconstructed from a few parameters that are determin
experimentally. The solid line in Fig. 3 shows such a
experimental level density determined from charged pa
ticle spectra [20]. The level density of Ref. [21], with the
BBF parameters ofa ­ 5.80 MeV21 andD ­ 1.38 MeV
(where a is determined experimentally), is nearly iden-
tical in the energy range shown. Our SMMC leve
density is in good agreement with these experiment
results. The small discrepancy at low energies ma
be ascribed to deviations of the moment-of-inertia pa
rameter [22] from its rigid-body value: a rigid-body mo-
ment was assumed in deriving the experimental values
a andD. We can also use our microscopically calculate
level densities to extract the level density parameters via
fit to Eq. (1). Using the energy range4.5 MeV , Ex ,

20 MeV , we obtain a ­ 5.780 6 0.055 MeV21 and
D ­ 1.560 6 0.161 MeV. We note that the statistical
errors of the present calculations are substantially smal
than those of Ref. [9]. Consequently, accurate leve
densities can be calculated in the present work. Als
shown in Fig. 3 is the level density in the HFA, where
the excitation energy has been corrected by the differen
between the mean-field and SMMC ground-state energie
The SMMC level density is significantly enhanced in
comparison with the HFA level density. The kink around
9 MeV in the HFA level density is related to the shape
transition, and disappears in the SMMC.

The Fermi gas model predicts equal positive- an
negative-parity level densities at all energies. Howeve

FIG. 2. Right: the entropy as a function of energyE. Left:
the heat capacityC as a function ofb. The conventions are as
in Fig. 1.
2941
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FIG. 3. Level densities of56Fe. Left: total level density. The
SMMC level density (solid squares) is compared with the HFA
level density (dashed line). The solid line is the experimenta
level density [20]. Right: positive- and negative-parity level
densities in the SMMC. The conventions are as in Fig. 1 inse
The dotted lines are the fit to Eq. (1) with the parameters quote
in the text.

this is unrealistic in the neutron resonance regime wher
the neutron resonance energy is comparable to or eve
smaller than the energy gap among major shells. Th
SMMC results for the parity-projected level densities of
56Fe are shown in the right panel of Fig. 3. They can
be well fitted to a BBF (1) withg ­ 1, but with parity-
specific parametersa6 andD6. We finda1 ­ 5.611 6

0.073 MeV21, D1 ­ 0.550 6 0.196 MeV and a2 ­
6.209 6 0.625 MeV21, D2 ­ 3.172 6 1.637 MeV. We
remark that negative-parity states in56Fe are possible
only when theg9y2 level is populated. Because of the
energy gap between thepf and g9y2 orbits we expect
the negative-parity level density to be lower than the
positive-parity density at low energies. Thus the back
shift D2 should be larger thanD1, in agreement with our
results. BothD6 are significantly different fromD of
the total level density. On the other hand,a1 is rather
close toa, while a2 is larger thana1 (and a). At high
excitation energies the Fermi gas model is expected t
be a reasonable approximation, implying the approximat
equality of positive- and negative-parity level densities
(in our caser1 . r2 aboveEx . 17 MeV). Therefore,
in the low energy region the negative-parity density is
expected to rise more quickly as a function of energy
i.e., a2 . a1. This relation is confirmed by the present
calculations. So far there has been no systematic stud
of the parity dependence of the level density parameter
It would be interesting to investigate how this parity
dependence affects neutron-capture reaction rates.

In conclusion, we have used the auxiliary fields Monte
Carlo methods to calculate the level density of56Fe
in the completepf- and g9y2-shell, and found good
agreement with the experimental level density. The
SMMC calculations are an important improvement ove
the finite temperature Hartree-Fock approximation. We
have introduced a novel parity-projection technique in the
SMMC, which allows us to study the parity dependence
of both the single-particle level density parametera
and the backshift parameter. Work in progress include
2942
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a systematic study of level densities for nuclei in the
s pf 1 g9y2d shell.
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