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A new method is applied to solve the Baxter equation for three coupled, noncompact
Because of the equivalence with the system of three Reggeized gluons, the intercept of the o
trajectory is predicted for the first time, as the analytic function of the two relevant parame
[S0031-9007(97)04273-7]

PACS numbers: 12.38.Cy, 12.40.Nn
Calculation of the QCD prediction for the intercep
of the odderon trajectory still remains a challenge fo
the leading logarithmic scheme of the Reggeization
QCD [1,2]. In the first approximation the problem
naturally separates into sectors with fixed numbern of
the Reggeized gluons propagating in thet channel. The
lowest nontrivial case,n ­ 2, was solved in the classical
papers by Balitskii, Fadin, Kuraev, and Lipatov (BFKL)
[3] resulting in the simple expression for the intercept o
the hard pomeron. The notable progress for arbitraryn
was achieved by Lipatov, and Faddeev and Korchems
[4,5] who have established exact equivalence with th
one dimensional chain ofn noncompact spins. Leading
high energy behavior of QCD amplitudes is given b
the highest eigenvalue of the corresponding Heisenbe
Hamiltonian ofn spins with nearest-neighbor interaction
Moreover, by identifying enough constants of motion the
were able to prove that this system is soluble for arbitra
n. The success of this, rather mathematical, approa
was confirmed by rederiving the Lipatovet al. result in
the n ­ 2 case [5,6]. However, the adopted procedur
requires an analytic continuation from the integer value
of the relevant conformal weighth (see later) because
only for integer h they were able to diagonalize the
two-spin Hamiltonian. Then ­ 3 case, which gives the
lowest contribution to the odderon exchange, was al
studied by Faddeev and Korchemsky, and Korchems
[5,6]. Again, the spectrum of the system for integerh
can be found for any finiteh ­ m. However, the general
expression for arbitrarym is not known, and consequently
the analytical continuation toh ­ 1y2 is not available.
(The lowest state of then ­ 3 Hamiltonian is believed to
occur ath ­ 1y2.)

We have developed a new approach which (a) wor
for arbitrary values of the conformal weighth, providing
explicitly above continuation, and (b) gives the analyti
solution of then ­ 3 case for arbitraryh andq3. Forn ­
2 our method reproduces again the BFKL result clarifyin
the problem of boundary conditions for arbitraryh. This
and the details of then ­ 3 calculation will be presented
elsewhere [7]. In this Letter we address directly th
odderon case. We rely on the results derived in Refs. [4
6] and follow the conventions and notation of Refs. [5,6]
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The intercept of the odderon trajectory is given by

aOs0d ­ 1 1
asNc

4p
fe3sh, q3d 1 e3sh, q3dg , (1)

wheree3 ande3 are, respectively, the largest eigenvalues
of the n ­ 3 Reggeon Hamiltonian and its antiholomor-
phic counterpart [5,6]. This system is equivalent to the
one dimensional chain of three noncompact spins with
nearest-neighbor interactions. Applying Bethe ansatz to
the latter one obtains

e3 ­ i

√
ÙQ3s2id
Q3s2id

2
ÙQ3sid
Q3sid

!
2 6 , (2)

whereQ3sld satisfies the following Baxter equation:

sl 1 id3Q3sl 1 id 1 sl 2 id3Q3sl 2 id

­ s2l3 1 q2l 1 q3dQ3sld . (3)

q2 and q3 are the eigenvalues of the two, commuting
with the Hamiltonian, operators which play an important
role in the proof of the solubility of the above system
[4,5]. The spectrum of̂q2 is known from the symmetry
considerations

q2 ­ hs1 2 hd, h ­
1
2 s1 1 md 2 in ,

m [ Z, n [ R .
(4)

The eigenvalues of̂q3 are known only for integer con-
formal weightsh, whereas the value ofq3 for the ground
state of the three Reggeized gluonssh ­ 1y2d is not avail-
able. Analogous expressions hold for the antiholomorphic
sector withh ­ s1 2 mdy2 2 in [6].

Our goal is to determinee3sh, q3d for arbitrary h and
q3. To this end we begin with the trick of Ref. [8] and
seek the solution of the Baxter equation (3) in the form of
thedoublecontour representation

Q3sld ­
Z

CI

QI szdz2il21sz 2 1dil21dz

1
Z

CII

QII szdz2il21sz 2 1dil21dz . (5)
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Provided the boundary contributions cancel, Eq. (3)
equivalent to the following ordinary differential equatio
for QI szd andQII szd f; Qszdg∑µ

zs1 2 zd
d
dz

∂3

2 q2z2s1 2 zd2 d
dz

1

iq3zs1 2 zd
∏

Qszd ­ 0 . (6)

This is a third order linear equation of the Fuchs cla
with the three regular singular points atz ­ 0, 1, and`,
considered earlier in Refs. [5,6,9,10]. We will prove th
the complete boundary conditions onQI szd andQII szd are
uniquelydetermined by the requirement of the cancell
tion of the boundary terms among the integrals (5). Th
is the distinctive feature of then ­ 3 case which allows
for the successful application of our strategy.

We begin with the construction of the two fundament
sets of three, linearly independent solutions

$uszd ­ sssu1szd, u2szd, u3szdddd ,

$yszd ­ sssy1szd, y2szd, y3szdddd ,
(7)

aroundz ­ 0 andz ­ 1, respectively.

u1szd ­
X̀
n­0

fnzn,

u2szd ­
1

pi
ln zu1szd 1

1
pi

X̀
n­0

r s1d
n zn,

u3szd ­
1

p2 ln2 zu1szd 1
2

p2 ln z
X̀
n­0

r s1d
n zn

(8)

1
1

p2

X̀
n­0

r s2d
n zn,

where the coefficients of the expansions are determin
by the recursion relations easily obtained from Eq. (6).

fn11 ­ sbnfn 2 cn21fn21dyan11 ,

f0 ­ 1, f21 ­ 0 ,

an ­ n3, (9)

bn ­ iq3 1 nsssq2 1 s2n 1 1d sn 1 1dddd ,

cn ­ nsssq2 1 sn 1 1d sn 1 2dddd ,

and for the logarithmic solutions

r
s1d
n11 ­ s2ps1d

n 1 bnr s1d
n 2 cn21r

s1d
n21dyan11 ,

r
s1d
0 ­ 1, r

s1d
21 ­ 0 , (10)

ps1d
n ­ 3sn 1 1d2fn11 2 f1 1 q2 1 6nsn 1 1dgfn

1 s21 1 q2 1 3n2dfn21 , (11)

r
s2d
n11 ­ s2ps2d

n 1 bnr s2d
n 2 cn21r

s2d
n21dyan11 ,

r
s2d
0 ­ 1, r

s2d
21 ­ 0 , (12)

ps2d
n ­ 6sn 1 1dfn11 2 6s2n 1 1dfn 1 6nfn21

1 6sn 1 1d2r
s1d
n11 2 2f1 1 q2 1 6nsn 1 1dgr s1d

n

1 2f2 1 q2 1 3sn2 2 1dgrs1d
n21 . (13)
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The series in Eq. (8) are convergent in the unit circl
K0 aroundz ­ 0. Similarly one can construct the$yszd
solutions in the unit circleK1 around z ­ 1. In fact,
because of the symmetry of the Eq. (6) we take

$ysz; q2, q3d ­ $us1 2 z; q2, 2q3d . (14)

Since any solution is the linear combination of the
fundamental solutions, we have

QI szd ­ au1szd 1 bu2szd 1 cu3szd

; A ? $uszd ­ A ? V $yszd ,

QII szd ­ du1szd 1 eu2szd 1 fu3szd
(15)

; B ? $uszd ­ B ? V $yszd ,

with an obvious vector notation. The transition matrixV

is defined by

$uszd ­ V $yszd , (16)

and plays an important role in the following. It provides
the analytic continuation of our solutionsQszd between
K0 andK1. Transition matrixV can be easily determined
from Eq. (16) once both bases, Eqs. (8) and (14), a
known. For example, theith row, $vT

i , of V can be
obtained as

$vi ­ sST d21 $wi , Skr ­ ykszr d ,

s $widr ­ uiszrd, i, k, r ­ 1, 2, 3 ,
(17)

where z1, z2, and z3 are arbitrary three points inside
the intersection ofK0 and K1. Next we introduce the
monodromy matrixM which describes the behavior of
the basis$u upon the2p rotation around the branch point
z ­ 0

$uszendd ­ M $uszstartd, M ­

0B@ 1 0 0
2 1 0

24 24 1

1CA . (18)

We are now ready to write the condition for the
cancellation of the boundary contributions in Eq. (5). Le
us choose the contoursCI and CII as shown in Fig. 1.
Then, the boundary contributions cancel if

AT MI ­ PT , BT MII ­ 2PT , PT ­ sa, b, gd ,
(19)

FIG. 1. Integration contours used in Eq. (5). Startzstart,
middle zmid, and endzend points coincide, but they lay on the
different sheets of the Riemann surface of the integrands.
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where the combined monodromy matrices for the corr
sponding contours read

MI ­ VMV21 2 M21, MII ­ VM21V21 2 M .
(20)

(Matching the coefficients of expansion into the funda
mental set of solutions guaranteesfunctionalequality, i.e.,
including derivatives as well.)

Hence the original freedom of six coefficients in
Eqs. (15) was reduced to the three free parameters wh
we conveniently choose asa, b, and g. This was ex-
pected. However, in then ­ 3 case additional sim-
plification occurs which, remarkably, allows one to fix
completely the remaining freedom.

The key point is the observation that the monodrom
matrices (20) are singular, i.e., detsMI d ­ detsMII d ­ 0.
To see this it is enough to inspect the RiemannP symbol
corresponding to Eq. (6).

P

8>><>>:
0 1 `

0 0 0
0 0 1 1 h
0 0 2 2 h

; z

9††=††; . (21)

It is readily seen that, contrary to then ­ 2 case, there
exists a solution which isregular at z ­ `. Therefore
the reduced monodromy matricesMI andMII must have
the zero eigenvalue corresponding to this solution. A
a consequence, Eqs. (19) do not have the unique so
tion for sa, . . . , fd. Different choices of coefficients differ
by the zero mode. This difference is inessential becau
the integrals of the solution, regular at infinity, vanish
We therefore proceed to isolate the zero mode explicit
and then impose the condition of cancellation of boun
ary contributions. To this end we introduce the new b
sis $tszd such thatt3szd is the solution regular atz ­ `.
Transformation matrixT , $uszd ­ T $tszd, to the$tszd basis
can be readily obtained by diagonalizing the commutin
matricesMA ­ MMI and MB ­ MIIM21. In the new
basis (marked by the subscriptt) the cancellation condi-
tion reads

A0T
t MA

t ­ PT
t , BT

t MB
t ­ 2PT

t M21
t , (22)

where MA
t and MB

t are diagonal with one (third, say)
zero eigenvalue,A0T

t ; sa0
t , b0

t , c0
td ­ AT

t M21
t , andMt ­

T 21MT is the monodromy matrix in the new basis
Our final conclusions follow now trivially from Eq. (22).
Coefficientsc0

t andft are arbitrary (and irrelevant),gt ­
0 anda0

t , b0
t, dt, et are determined uniquely byat andbt

provided theadditional consistency condition,

atm13 1 btm23 ­ 0 , (23)

is satisfied,mik being the matrix elements ofM21
t . The

last condition fixes completely the remaining freedom
Now the integral transformsQI szd andQIIszd [hence also
the solution of the Baxter equationQsld] are determined
uniquely up to an irrelevant normalization. This end
our proof.
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Now the contour integrals and derivatives overl can
be done analytically sinceCI and CII lay within the
corresponding domains of convergence of all involv
series [we use theusyd basis onCI sCII d]. Integrating
resulting expressions term by term [consistent choice of
appropriate branches of the kernel and of the multivalu
functions QI ,IIszd must be made [7] ] we have obtaine
the final formula fore3sh, q3d in the form of absolutely
convergent series for arbitrary values of the conform
weighth andq3. The resulting expression is rather length
and will not be quoted here; however, it provides, for t
first time, the energy of the three Reggeon Hamiltonian
the analytic function of the relevant parameters.

Let us discuss now some consistency checks of our
sult. First, for integerh ­ m there exists a discrete set o
quantized values ofq3 ­ qk

3 smd for which the polynomial
solution u1szd exists. This quantization ofq3 is known,
and the eigenenergiese3se3d at these points can be calcu
lated [6]. We quote the first few levels in Table I.

Our formula reproduces these results exactly provid
continuous interpolation between values quoted in Table
In fact, at these “polynomial values” ofh and q3 our
expression contains undefined terms of the type` 3 0.
However, the limitsh, q3d ! sssm, qk

3 smdddd is finite and gives
levels in Table I.

Second, our expression agrees with the asympto
formula derived in Ref. [11]. In the limith, q3 !

`, q3yh3 ­ const, Korchemsky has derived a simp
expression

e3sh, q3d ­ 22 ln 2

2

3X
k­0

fcs1 1 ihxkd 1 cs1 2 ihxkd

2 2cs1dg , (24)

where xk , k ­ 1, 2, 3 are three roots of the polynomia
2h3x3 1 h2s1 2 hdx 1 q3. Figure 2 shows compari-
son of this asymptotic form with our exact formul
for q3yh3 ­ 1. Agreement is very striking indeed an
persists toh as low ash , 0.4. Interestingly, it turns
out that the expression (24) contains many terms wh
are nonleading in the above limit. Retaining consisten
the terms up to a given order in1yh, as was also done
in Ref. [11], gives yet a simpler result which, howeve
does not work so well. Also the analytic structure
e3sh, q3d is reasonably well reproduced by Eq. (24) whi
the rigorous expansion in1yh fails here (see later).

TABLE I. Quantization ofq3 and first few levels of the holo-
morphic Hamiltonian in the polynomial case.

h q3 e3

4 62
p

3 27 1
2

5 66
p

3 28 5
6

6 64
p

3 64
p

30 29 1
4 210
2937
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FIG. 2. Comparison of the exact result (solid line) with the
asymptotic formula (dashed line), Eq. (24), described in text.

Finally, we discuss some consequences and relatio
of this result with other works. Since the lowest stat
of the three Reggeized gluons is expected to occur
h ­ 1

2 , we have mapped numerically the analytic structur
of e3s 1

2 , q3d in the complexq3 plane. It turns out that
the holomorphic energye3s 1

2 , q3d has a series of simple
poles on the imaginary axis, and behaves regularly in t
remaining part of theq3 plane. In fact, Ree3s 1

2 , q3d is
negative almost in the wholeq3 plane except for the small
regions in the vicinity of the above poles. Interestingly, th
approximate solution, Eq. (24), has the same singular
structure with similar location of poles. This suggests th
there may exist a better approximation scheme than1yh
expansion in which Eq. (24) is the lowest order.

Because of Eq. (1) and the symmetrysen ­ e?
n d, the

intercept of the odderon trajectory is smaller than1 for
most values ofq3. In particular,aOs0d , 1 for all real
q3. At the origin e3s 1

2 , q3d is a continuous function of
q3 and

e3s 1
2 , 0d ­ 20.738 . . . , (25)

which indicates that the boundary conditions propose
here single out a different solution than that considered
Ref. [12]. Although their intercept, being exactly one, i
bigger than that given by Eq. (25), their solutionQsld ­
1yl3 has a strong singularity atl ­ 0 and consequently
would lead to a non-normalizable wave function.

At q3 ­ 0 the Baxter equations for two and three
Reggeons coincide, therefore one expects the degen
acy among the solutions. It was found in Ref. [7] tha
the condition of cancellation of boundary terms does n
determine uniquely the two-Reggeon solution. Neverth
less, the one parameter family of solutions, for which th
boundary terms cancel, contains the solution with the e
ergy (25). Hence the correspondence betweenn ­ 2 and
2938
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n ­ 3, q3 ­ 0 sectors is maintained also at the level of
solutions.

A variational estimate of the lower bound for the
odderon interceptaOs0d . 1 1 0.28g2

s yp2 was derived
in Ref. [13]. Together with the present result it limits
rather severely the allowed region ofq3 for the ground
state of the system.

Because of the singularity structure seen above, th
final prediction for aOs0d requires, however, more de-
tailed knowledge of the spectrum ofq̂3. Some progress
in this area has been reported in Refs. [14,15] and furthe
work is in progress.

Our approach may be generalized to highern [7]. Such
a program would provide the leading intercept of then
Reggeized gluons as the analytic function of then 2 1
parametersq2, . . . , qn.
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