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Solution of the Odderon Problem for Arbitrary Conformal Weights
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A new method is applied to solve the Baxter equation for three coupled, noncompact spins.
Because of the equivalence with the system of three Reggeized gluons, the intercept of the odderon

trajectory is predicted for the first time, as the analytic function of the two relevant parameters.
[S0031-9007(97)04273-7]
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Calculation of the QCD prediction for the intercept The intercept of the odderon trajectory is given by
of the odderon trajectory still remains a challenge for
the leading Iogarithmic; scheme Qf th_e Reggeization of ap(0) =1 + asNe [e3(h, q3) + &7 g5)], (L)
QCD [1,2]. In the first approximation the problem 4
naturally separates into sectors with fixed numbeof
the Reggeized gluons propagating in thehannel. The
lowest nontrivial casey = 2, was solved in the classical
papers by Balitskii, Fadin, Kuraev, and Lipatov (BFKL)

wheree; and€; are, respectively, the largest eigenvalues
of the n = 3 Reggeon Hamiltonian and its antiholomor-

phic counterpart [5,6]. This system is equivalent to the
one dimensional chain of three noncompact spins with

3] resulting in the simple expression for the intercept of ) ) . X
'Eh]e hard p?)meron Tff)e notgble progress for arbitvgry nearest-neighbor interactions. Applying Bethe ansatz to
' the latter one obtains

was achieved by Lipatov, and Faddeev and Korchemsky
[4,5] who have established exact equivalence with the . Q3(—i) Q3(l-)
one dimensional chain of nhoncompact spins. Leading €3 = l(Q = - 0 (i)) -6,
high energy behavior of QCD amplitudes is given by 3 3
the highest eigenvalue of the corresponding Heisenbe
Hamiltonian ofn spins with nearest-neighbor interaction.
Moreover, by identifying enough constants of motionthey (y + ;)30;(A + i) + (A — i)*Q3(A — i)

were able to prove that this system is soluble for arbitrary 3

n. The success of this, rather mathematical, approach = 24 + @24 + ¢3)03(A).  (3)

was confirmed by rederiving the Lipatat al. result in . .

the n = 2 case [5,6]. However, the adopted procedure?2 and g3 are th? eigenvalues of _the two, commuting

requires an analytic continuation from the integer value ith f[he Hamiltonian, operators which play an important
role in the proof of the solubility of the above system

of the relevant conformal weight (see later) because 451 Th ¢ <k ¢ the ot
only for integer h they were able to diagonalize the [co’n]s.idera?iosr?sec rum ofy; is known from symmetry

two-spin Hamiltonian. The: = 3 case, which gives the

(2)

r\Q/hereQ3()\) satisfies the following Baxter equation:

lowest contribution to the odderon exchange, was also _ _ 1 .

- ’ =hn(l —h), h=501+m—iv,
studied by Faddeev and Korchemsky, and Korchemsky a2 ( ) 2 m) = iv (4)
[5,6]. Again, the spectrum of the system for integer m € Z, v ER.

can be found for any finité = m. However, the general i i

expression for arbitrary: is not known, and consequently 1he eigenvalues ofi; are known only for integer con-

the analytical continuation té = 1/2 is not available. formal weightsh, whereas the value af; for the ground

(The lowest state of the = 3 Hamiltonian is believed to  State of the three Reggeized gludhs= 1/2) is not avail-

oceur ath = 1/2.) able. Analogous expressions hold for the antiholomorphic
We have developed a new approach which (a) work§€ctor withi = (1. — m)/2 — iv [6]. ,

for arbitrary values of the conformal weight providing Our goal is to determine;(h, ¢3) for arbitrary h and

explicitly above continuation, and (b) gives the analytic43- 10 this end we begin with the trick of Ref. [8] and

solution of then = 3 case for arbitrarys andgs. Forn = seek the solution of the Baxter equation (3) in the form of

2 our method reproduces again the BFKL result clarifyingthe doublecontour representation

the problem of boundary conditions for arbitrary This _ .

and the details of the = 3 calculation will be presented 05(A) = ] Q1()z "z — 1)* g

elsewhere [7]. In this Letter we address directly the G

odderon case. We rely on the results derived in Refs. [4— T N

6] and follow the conventions and notation of Refs. [5,6]. + fc,, Qu(2)z (@ = 1" dz. (5
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Provided the boundary contributions cancel, Eq. (3) isThe series in Eq. (8) are convergent in the unit circle
equivalent to the following ordinary differential equation K, aroundz = 0. Similarly one can construct th&(z)

for 0;(z) andQy;(z) [= 0(2)]

|:<Z(1 - z)%)3 — 2221 — z)zdiZ +

igzz(1 — Z):|Q(Z) =0. (6)

This is a third order linear equation of the Fuchs class

with the three regular singular points at= 0, 1, and o,

considered earlier in Refs. [5,6,9,10]. We will prove that
the complete boundary conditions Oa(z) andQy,(z) are

uniquely determined by the requirement of the cancella-
tion of the boundary terms among the integrals (5). This

solutions in the unit circleK; aroundz = 1. In fact,
because of the symmetry of the Eq. (6) we take

v(z:92,93) = u(l — z;592. —q3) . (14)

Since any solution is the linear combination of the
fundamental solutions, we have

01(z) = au(z) + bux(z) + cus(z)
=A-uz)=A - Quv(z),

011(z) = duy(z) + euz(z) + fus(z)
=B-ulz) =B-Qu(z),

(15)

is the distinctive feature of the = 3 case which allows With an obvious vector notation. The transition matflx

for the successful application of our strategy.

We begin with the construction of the two fundamental

sets of three, linearly independent solutions

(z) = (u1(2), u2(2), u3(2)) ,

. )
U(z) = (v1(2), v2(2), v3(2)),
aroundz = 0 andz = 1, respectively.
(@) = > faz",
n=0
1 L < ()
() = — Inzn@) + — > V2",
T i o
[ 2 (1) ®
u3(z) = — In“ zu;(z) + — Inz ry’z
™ ™ n=0
+ Lz r@zn,
T 1=0

where the coefficients of the expansions are determined
by the recursion relations easily obtained from Eq. (6).

fn+1 = (bnfn - Cn—lfn—l)/an-H’
f() = 17 f*l = 09
an = n39 (9)

b, =iq; + n(gp + 2n + 1)(n + 1)),
co =n(g2 + (n+ 1)(n +2),

and for the logarithmic solutions

(1 (1
Fn+1 = (_P,sl) + bnr,gl) - Cn*lrnfl)/a)H»l,
=1, Y=o,

pV =3 + 121 — [1 + g2 + 6n(n + 1],

(10)

+ (=1 + g2 + 30D furs (11)
e = (P2 + bur® = comin ) aner.
r(()z) =1, r(ﬂ =0, (12)
p2 =6(n + 1)fuser — 6Qn + 1)fy + 6nfu_y

+ 6(n + 1)2r,(11ll = 2[1 + g2 + 6n(n + 1)]”,(11)

+ 202+ g + 30 — DR, (13)
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is defined by

u(z) = Qo(z), (16)
and plays an important role in the following. It provides
the analytic continuation of our solution3(z) between

Ky andK;. Transition matrix() can be easily determined
from Eq. (16) once both bases, Egs. (8) and (14), are

known. For example, théth row, (B,T, of ) can be
obtained as
&))i = (ET)ilv_‘)}i, Ekr = Uk(Zr), (17)
(M_})l)r = ui(zl‘)9 i’k9r = 1’2’39

where z1,z;, and zz are arbitrary three points inside
the intersection ofKy, and K;. Next we introduce the
monodromy matrixM which describes the behavior of
the basisz upon the2# rotation around the branch point
z=0

1 0 O
Zt(zend) = M’j‘(zstart)’ M = 2 1 0]. (18)
-4 —4 1

We are now ready to write the condition for the
cancellation of the boundary contributions in Eq. (5). Let
us choose the contous; and C;; as shown in Fig. 1.
Then, the boundary contributions cancel if

ATMI = PT, BTMII = _PT, PT = (a’lg’ﬂy),
(19)
id
gstart  zend zm
2z mid zstart zend
C; Cp
FIG. 1. Integration contours used in Eq. (5). Staft",

middle z™¢, and end:z*"¢ points coincide, but they lay on the
different sheets of the Riemann surface of the integrands.
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where the combined monodromy matrices for the corre- Now the contour integrals and derivatives overcan
sponding contours read be done analytically sinc&; and C;; lay within the
M, = QMO — M1, My =QM Q' — M. cor_responding domains of_convergence of all inyolved
(20) series [we use t_he(v) basis onCI(CH)]. Integrgtmg
resulting expressions term by term [consistent choice of the
(Matching the coefficients of expansion into the funda-appropriate branches of the kernel and of the multivalued
mental set of solutions guarantdesctionalequality, i.e.,  functions Q1.11(z) must be made [7]] we have obtained
including derivatives as well.) the final formula fore; (i, ¢3) in the form of absolutely
Hence the original freedom of six coefficients in convergent series for arbitrary values of the conformal
Egs. (15) was reduced to the three free parameters whigkeighti andgs. The resulting expression is rather lengthy
we conveniently choose as, 3, andy. This was ex- and will not be quoted here; however, it provides, for the
pected. However, in the: = 3 case additional sim- first time, the energy of the three Reggeon Hamiltonian as
plification occurs which, remarkably, allows one to fix the analytic function of the relevant parameters.
completely the remaining freedom. Let us discuss now some consistency checks of our re-
The key point is the observation that the monodromysult. First, for intege = m there exists a discrete set of
matrices (20) are singular, i.e., d&y) = detM;;) = 0.  quantized values af; = g% (m) for which the polynomial
To see this it is enough to inspect the Riema@haymbol  solution u;(z) exists. This quantization ofs is known,

corresponding to Eg. (6). and the eigenenergies(e3) at these points can be calcu-
0 1 o0 lated [6]. We quote the first few levels in Table I.
0 0 0 Our formula reproduces these results exactly providing
p 0 0 1+hnr?s[" (21)  continuous interpolation between values quoted in Table I.
00 2—rh In fact, at these “polynomial values” oi and g3 our

expression contains undefined terms of the typ& 0.
However, the limith, g3) — (m, q’3‘ (m)) is finite and gives
levels in Table I.

It is readily seen that, contrary to the= 2 case, there
exists a solution which isegular at z = «. Therefore
the reduce_d monodromy matricaty andM’.’ must have Second, our expression agrees with the asymptotic
the zero eigenvalue corresponding to this solution. A . i .
. ormula derived in Ref. [11]. In the limith, g3 —

a consequence, Egs. (19) do not have the unique solu- 3 . .
. ! . e . %, g3/h° = const, Korchemsky has derived a simple
tion for (a, ..., f). Different choices of coefficients differ .

o S : expression
by the zero mode. This difference is inessential because

the integrals of the solution, regular at infinity, vanish. e3(h,q3) = —2In2

We therefore proceed to isolate the zero mode explicitly, 3

and then impose the condition of cancellation of bound- — Z[tp(l + ihxy) + (1 — ihxy)

ary contributions. To this end we introduce the new ba- k=0

sis 7(z) such thatrs(z) is the solution regular at = . - 2¢4(1)], (24)

Transformation matrix_, i(z) = 7T 7(z), to the7(z) basis ,
can be readily obtained by diagonalizing the commutind"’hgerzexk’ g‘ = 1,2,3 are three roots of the polynomial
matricesMA = MM, and M2 = M;M~". In the new 2h"x" * h (1 = h)x + ¢g3. Figure 2 shows compari-

basis (marked by the subscriptthe cancellation condi- SOn of this asymptotic form with our exact formula
tion reads for g3/h° = 1. Agreement is very striking indeed and

P T P N persists toh as low ash ~ 0.4. Interestingly, it turns

Af My = Py, B My =—P/ M, (22)  out that the expression (24) contains many terms which
where M# and M2 are diagonal with one (third, say) are nonleading in the above limit. Retaining consistently
zero eigenvalued’” = (a/,b/,c}) = ATM; !, andM, = the terms up to a given order ityh, as was also done
T 'MT is the monodromy matrix in the new basis. in Ref. [11], gives yet a simpler result which, however,
Our final conclusions follow now trivially from Eq. (22). does not work so well. Also the analytic structure of
Coefficientsc, and f, are arbitrary (and irrelevanty, =  €3(h, ¢3) is reasonably well reproduced by Eq. (24) while
0 anda/, b!,d,, e, are determined uniquely by, and 8,  the rigorous expansion it/ fails here (see later).
provided theadditional consistency condition,

amyz + Bimyz =0, (23) TABLE I. Quantization ofg; and first few levels of the holo-
is satisfiedm;; being the matrix elements aff,'. The morphic Hamiltonian in the polynomial case.

last condition fixes completely the remaining freedom.s q3 €3
Now the integral transform@;(z) andQ;(z) [hence also 4 +2./3 -71
the solution of the Baxter equatig(A)] are determined g +63 _g3
uniquely up to an irrelevant normalization. This endsg 43 +430 gl 6_10
our proof. — —
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n = 3,43 = 0 sectors is maintained also at the level of
solutions.

A variational estimate of the lower bound for the
odderon interceptro(0) > 1 + 0.28¢2/7> was derived
in Ref. [13]. Together with the present result it limits
rather severely the allowed region gf for the ground
state of the system.

Because of the singularity structure seen above, the
final prediction forao(0) requires, however, more de-
tailed knowledge of the spectrum ¢f. Some progress
in this area has been reported in Refs. [14,15] and further
work is in progress.

Our approach may be generalized to high¢r]. Such
a program would provide the leading intercept of the
h Reggeized gluons as the analytic function of the- 1
parametergy, ..., q,.

We thank L. Lipatov and G. Korchemsky for interest-
ing discussions. This work is supported by the Polish
Committee for Scientific Research under Grants No. PB

Finally, we discuss some consequences and relatiorfd_ 03819609 and No. PB 2P03B04412.
of this result with other works. Since the lowest state
of the three Reggeized gluons is expected to occur at
h = % we have mapped numerically the analytic structure
of 63(%,6]3) in the complexgs plane. It turns out that

e, (h,h?)

-10

I i L L L 1
05 1

FIG. 2. Comparison of the exact result (solid line) with the
asymptotic formula (dashed line), Eq. (24), described in text.
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