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Quantum Coherence in Small Antiferromagnets
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An antiferromagnetic particle with an excess spin$j has 2 degrees of freedom. The one associa
with $j is ferromagnetic, while the antiferromagnetic behavior involves Néel vector$n. It is shown that
the spin-parity effect described by Losset al. has to do with the ferromagnetic degree of freedom a
doesnot imply the localization of$n for small enough particles for half-integer spin. It is also show
that the tunnel splitting associated with$n is insensitive to applied fields. [S0031-9007(97)03553-9]

PACS numbers: 75.10.Jm, 03.65.Sq, 75.30.Gw, 75.50.Tt
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The possibility of quantum tunneling in mesoscop
magnetic systems is of fundamental interest since
tests our understanding of the transition between class
and quantum physics [1]. Within the past year or so h
emerged the first strong evidence for quantum tunneling
very small molecularferromagnets[2]. However, what
is observed is the relaxation from a higher to a low
quantum well, the analogy of alpha decay. In order
observequantum coherence, a symmetric double well
potential is needed (but see below for coherence in exc
states). The ground state has equal probability of be
in each well, and, if the system is started in one we
it will tunnel back and forth between wells. Evidenc
for such quantum coherence effects in magnetic syste
is highly controversial [3]. The realization of symmetr
double wells for a ferromagnet isvery delicate since the
two wells correspond to time reversal conjugate states
the symmetry is easily destroyed by external fields. H
it is shown that the tunneling of the Néel vector$n in
an antiferromagnet [4] avoids this problem since it c
occur between wells which are unaffected by weak exter
fields.

Interference involving the Berry phase [5] is the orig
of a number of interesting effects. The Haldane conj
ture [6] that integer spin chains have gaps while simi
half-integer system do not can be interpreted in terms
this phase. Losset al. [7] have examined the role of suc
interference effects on the quantum tunneling of$n. They
identify tunneling with the amplitude for thecomplete
reversal of $n, and show, if thetotal or excess spin$j is
half-integer, interference destroys this amplitude. This
interpreted[7] as an absence of tunneling for$n. In fact,
this zero amplitude implies rather a degenerate grou
state. Here, as is more usual, the absence of tunne
is taken to imply$n is localized in one or the other quan
tum well. It is not implied that Berry phase interferenc
effects are absent, but rather that the resulting dou
ground state for the spin half-integer does not have a
direct consequence the localization of$n.

On the other hand, the results presented heredo
confirm, for larger antiferromagnets, there are importa
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differences between the cases of excess whole and h
integer spin,j.

The nature of the anisotropy energy is also of cons
erable importance [4]. This energy is the origin of th
double well potential. Invariably there is a uniaxia
anisotropy2Kk cos2 u, or 2AS2

z , here assumed to corre
spond to aneasy axis. This suffices for antiferromagnetic
tunneling. If there is also an energyK' sin2 u sin2 f ;
BS2

y , there is also a tunnel effect associated with exce
spin $j and this and$n are coupled. Here, unless state
otherwise, it will be assumed thatK' ­ 0.

The problem will be formulated using the auxiliar
particle method [8]. This replacesexactly the spin
problem with one which involves the tunneling of asingle
auxiliary particle described by a tight binding model i
which the number of sites is determined by the spin valu

Following earlier work [4,9], it will be assumed tha
the essentials of the problem are contained in a mo
which comprises two large spins$S1 and $S2 which reflect
the two sublattice magnetizations of the antiferromagn
The value of the excess spinj ­ jS1 2 S2j. The effec-
tive Hamiltonian contains the exchange and a suita
anisotropy energy, i.e.,

H ­ J $S1 ? $S2 2 A
£°

S1,z

¢
2 1

°
S2,z

¢
2
§

. (1)

If He andHa are the basic exchange and anisotropy field
then the Hamiltonian parameters scale asJ , HeyN and
A , HayN , whereN is the total number of spins. The
quantityA reflects theKk anisotropy.

In general,m ­ S1z 1 S2z , S1 1 S2 $ m $ 0, is a
good quantum number, and the solution is a linear com
nation of jn 1 m, 2n .; jS1, S2; S1z ­ n 1 m, S2z ­
2nl. The auxiliary particlesan,m create single parti-
cle statesjn, m .; ay

n,mj . which map to thejn 1

m, 2n .. The constraint isQm ­
P

n ay
n,man,m ­ 1. No

mean-field approximation is to be made. The auxiliary
particle Hamiltonian is

Hm ­
ntX

n­2nb

h
enay

n,man,m 1 tn11
n say

n11,man,m 1 H.c.d
i

,

(2)
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where the upper limitnt is the smaller ofS2 andS1 2 m
while nb is the lesser ofS2 and S1 1 m, and where the
diagonal energies are

en ­ 2Jsn 1 mdn 2 Afsn 1 md2 1 n2g (3)

and the hopping matrix elements

tn11
n ­

J
2

Mn1m11
n1m sS1dMn11

n sS2d , (4)

and where the

Mn11
n sSd ­ fSsS 1 1d 2 nsn 1 1dg1y2 (5)

are the usual matrix elements of the raising operators.
uniform external field adds a constant termmsgmHd and
can be neglected,thus reflecting the insensitivity of th
present results to an external field. The time independen
Schrödinger equation for such a tight binding model is

sen 2 edfsnd ­ 2tn11
n fsn 1 1d 2 tn21

n fsn 2 1d , (6)

wherefsnd is the wave function amplitude for siten.
For large spin values, the continuum approximati

requires jtn11
n j ¿ jen 2 en11j, which is equivalent to

J ¿ A. When the excess spinj ­ 0, the ground state
will have m ­ 0. The result for this value ofm is

fE 1 2S2As1 2 x2dgf ­
d

dx
s1 2 x2d

df
dx

, (7)

whereE ­ 2SsS 1 1d 2 2S2sAyJd 2 seyJd and where
x ­ nyS. A very similar continuum limit approach which
maps certain spin problems to that of a particle in
potential has been developed [10] by others. If nowA ­
0, the solutions aref ­ Pnsxd, the Legendre polynomials
The energiese ­

J
2 fksk 1 1d 2 2SsS 1 1dg, and are

exact. The wave functions, superimposed on the barr
are shown in Fig. 1(a). The localization of the Né
vector $n is equivalent to a wave function peaked ne
eithern ­ 6S. If j is finite, the degenerate ground sta
will have m ­ j, and directly, the solutions of Eq. (6
are just the Clebsch-Gordon coefficients, Figs. 1(b), 1
Clearly, for finite j there is only a weak tendenc
to localize near6S, and this is independent of th
integer or half-integer nature ofj. The ground state
is determined by the value of the excess spin, i.e.,
smallest possible value ofk ­ j, and the first excited
states lie an energys j 1 1dJ higher. For finiteA, the
matrix elements to these excited states are,S2A and the
Pnsxd (or Clebsch-Gordon coefficients) remain a go
approximation providedS2A , s j 1 1dJ. The barrier
height is Ba ­ S2A while the spin-flop energyv0 ­
S
p

JA so that this is equivalent toBa , s j 1 1d1y2v0 or
v0 , s j 1 1d1y2HeyN and implies a small magnet. The
quantitys j 1 1d1y2HeyN is the exchange only zero poin
energy appropriate to this regime.

For a larger magnet, vo . s j 1 1d1y2HeyN (but
still A ø J) the exchange remains responsible for t
“stiffness” of the wave function. Again, consider firs
j ­ 0. It might be anticipated, for a state localized
290
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FIG. 1. Shown are the barrierBsnd and the wave functions,
fsnd, labeled 1, 2, 3 . . . by ascending order in energy. The
excess spinj and m are given along with the energiesEn.
When the energies are indicated as being equal, this is o
approximate. There is always a small tunnel splitting of th
order of Eq. (9). All statesare strictly doubly degeneratesm !
2md exceptm ­ 0. The calculations are all forS ­ 15 but
are typical. Whens j 1 1d1y2 sHeyNd . v0 (anisotropy energy
A ­ 0.001J), the system issmall, and, (a)–(c), the wave
function for $n is delocalized. In (a) the excess spin is zer
while for (b) it is half-integer and for (c) integer. The existenc
of an excess spindoesinduce a weak tendency to localize$n;
however, this tendency is determined by the fractional exc
spin and isindependentof the integer or half-integer nature ofj.
For the sequence, (d)–(f ),v0 . s j 1 1d1y2HeyN sA ­ 0.2Jd
corresponding to amidsizedparticle. With no excess spin, (d)
all states, including the ground state, are delocalized. Wh
(e), the excess spin is half-integer all states are well localiz
with alternate states, in energy, being on opposites6Sd sides
of the barrier. For integer excess spin, (f ), the ground st
is well localized but the excited states are delocalized. In
are shown results for aBsSzd4 anisotropy withj ­ m ­ 2 and
B ­ 0.003J. All states are localized with the first three bein
on the same sides1Sd of the barrier. Higher states alternat
sides with energy. The last panel (h) illustrates the crosso
to the large particle limit v0 . HeyN1y2 when the fluctuations
in $n are suppressed.

a singlewell, the wave function isfsxd ­ e6lxPnsxd. In
fact, assuming the wave functions arestrongly localized
near eitherx ­ 61, and usingJ ø S2A, the properties
of thePn permit the wave function fornth excited state to
be written ase6lx

P
k#n akPksxd, and the energies are

en ­
J
2

fnsn 1 1d 2 2SsS 1 1dg

2 2S2A 1 2sn 1 1dS
p

JA , (8)



VOLUME 79, NUMBER 2 P H Y S I C A L R E V I E W L E T T E R S 14 JULY 1997

f

s

h
it

t

e
t

e

e
n
t

ve.

g),

s
m

de
n

f

l

-
to
., a
te

or-

st
ust
with

the
te

py

e

ge
a

-

ed
with l ­ 2S
p

AyJ. Notice, the zero point energy is
greater than interlevel spacing; i.e., this energy is ov
twice that appropriate for a harmonic oscillator. Numer
cally, the spacing decreases with increasingn, consistent
with the weakening of the strong localization assumptio
For the same regime, wave functions which account
tunneling are of the formselx 6 e2lxd

P
k#n akPksxd ­

elxs1 6 e22lxd
P

k#n akPksxd, and at the same level of
approximation the tunnel splitting is

4S
p

JAe24S
p

sAyJd , (9)

which conforms with the usual wisdom that this must b
the zero point energy times a WKB exponential [4].

In the same midsize regime, but now with an exce
spin, j ø S, the wave functions remain localized nea
x ­ 61, and the wave equation becomes∑

E 1 2S2As1 2 x2d 1
s j 6

m
2 d2

1 2 x2

∏
f ­

d
dx

s1 2 x2d
df
dx

.

(10)
where the positive (minus) sign corresponds to localiz
tion nearx ­ 21 (x ­ 11). The solutions involve as-
sociated Legendre polynomials,P

m
n , with energies given

by Eq. (8), if m ­ s j 6 mdy2 is an integer. For half-
integerm the energies lie roughly halfway between thos
of Eq. (8). The important physics lies in the restriction
on the P

m
n , i.e., that m # n. Consider, e.g.,j ­ 2, if

m ­ 2 the ground state hasm ­ n ­ 0 and lies near
x ­ 11, while the first excited state hasn ­ 1. The
lowest lying state nearx ­ 21 hasm ­ 1 and therefore
n ­ 1, which is degenerate with the first excited state ne
11. Tunneling states can be constructed by taking t
sum and difference of these degenerate states, and, w
the present strong localization approximation, the tunn
splitting is again given by Eq. (9). The numerical resul
show delocalization causes the tunnel splitting to increa
fairly rapidly as the states mount in energy.

The situation changes for half-integer spins. If, e.g
j ­ 1y2, the ground state withm ­ 1y2 is still localized
near x ­ 11. However, the lowest state in thex ­
21 well has m ­ 1y2, and this corresponds to a stat
which is roughly halfway between the ground sta
and the first excited state in the11 well, and indeed,
numerically, Fig. 1(e), with mounting energy, the stat
alternate between thex ­ 61 wells.

In this midsize regime there is a clear differenc
between integer and half-integer total spin. Only th
former exhibits the small tunnel splitting Eq. (9) and ha
well delocalized excited states. However, in both cas
theground stateis essentially localized. There is a simpl
scaling argument by which to understand this phenome
With increasingA the energy levels must evolve withou
crossing (for fixedm) from the A ­ 0 limit to a fixed
point associated withA ! `. At the fixed point, the
eigenenergies are

en ­ 2Jsn 1 mdn 2 Afsn 1 md2 1 n2g , (11)
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and, forj integer and fixedm, the j lowest energy states
are singlets with the rest doublets. Forj half-integer,
all the states are singlets consistent with the abo
However there is no assurance, for integerj, the states are
delocalized, and indeed, the numerical results, Fig. 1(
for an anisotropy termAfsn 1 md4 1 n4g, which has an
equivalent fixed point structure, exhibit wave function
which are strongly localized even though the levels for
relatively close pairs. Forj integer andm ­ 0 the wells
arealwayssymmetric and states always delocalized.

The decay lengthDx ; l21 ­ s1ySd
p

JyA or Dn ­p
JyA. This represents an uncertainty in the magnitu

of the Néel vector, and is small when it is less tha
the quantum uncertainlyS1y2 in the transverse parts o
the same vector; i.e., there is acrossoverwhich oc-
curs when

p
JyA , S1y2 or v0 , HeyN1y2. The field

HeyN1y2 drives the longitudinal fluctuation in the Née
vector. Only whenv0 . HeyN1y2, Fig. 1(h), is the sys-
temmacroscopicwith a fully developed classical order pa
rameter,$n. This final characteristic energy corresponds
a zero point energy of the bulk Néel state. Consider, e.g
hypothetical linear chain with a fully developed Néel sta
j "#"#"# . . . .. This trivially haskS2l , N which implies
an exchange energy cost,HeyN1y2. This estimate is in-
dependent of dimension and essentially unaltered by c
rections due to spin-wave zero-point motion.

Turning now to experimental consequences. At lea
for the small excess moments and larger particles, it m
be recognized that there are two energies associated
the reversal of the excess spinj, these corresponding to the
distinct possibilities of reversing$j with or without the Néel
vector $n. The barrierBa , S2A ­ SHa, proportional to
the size of the system, must be surmounted when$n is
reversed. Theground stateswith m ­ 6j are on opposite
sides of this barrier and to pass from one to the other
Ba barrier is relevant. However, there is another sta
with m ­ 2j which is on thesameside of this barrier as
m ­ 1j, but at an energyjv0 higher. This latter energy
has the size dependence ofj. Thus if SHa . jv0, it
costs less energy to reverse$j with $n fixed, and there is
a unidirectional anisotropy field of magnitudeHA , v0
and which is very much bigger that the bare anisotro
field Ha.

In connection with ferritin [3], measurements in th
classical regime are fitted to an Arrhenius lawf ­
t0e2EbykT and imply a barrier heightEb , 235 T and a
t0 , 10211 10213 s (,3 T 3 3 102 T). However, the
dependence ofEb on volume, while linear,does not
extrapolate to zero as it should if it is the barrierBa. Thus
that the barrier height,J and thatt0 is very large, begs
the interpret of this relaxation as being of purely exchan
origin, with the barrier being that required to reverse
single spin in the exchange field.

If the experiment is to be interpreted in terms of tun
neling, then the actionSAFM ; 4S

p
HayHe , 7.5. The

Néel temperature is about 240 K, and it is estimat
291
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that He , 130 T. For the S state Fe13, it is dif-
ficult to imagine the single ion anisotropy,Ha1, much
greater than a few times1022 T. The anisotropy in the
exchange scales with that in theg factor. This latter is
typically less than1023 and implies anHa2 , Ha1. The
sumHa ­ Ha1 1

1
2 Ha2 determinesSAFM. The spin per

sublatticeS , s5y2d 3 sNy2d ­ 5000, and would imply
an Ha which is ,1026 T and an incredible cancellation
accident.

However, potential tunneling datashould, perhaps
surprisingly, be interpreted in terms of the small partic
limit. With j , 150 the energy s j 1 1d sHeySd , 4
T while, with Ha , 1023 T, SHa , 5 T, placing the
system on the edge of the small regime. Numeri
studies show, when firstSHa . s j 1 1d sHeySd, the
absolute ground states hasm ­ 6j and is,jHa , 0.15
T lower than the states withm ­ 0 which are the lowest
to exhibit a tunnel splitting. TheHa ­ 0 splitting
,sj 1 1d sHeySd between the first two states withm ­ 0
decreases dramatically to approach a value given by
tunnel formula (9),but with a much smaller coefficien
before

p
AyJ in the exponential consistent with the ob

servation of tunneling [3]. The dependence ofSAFM on
particle size should be faster than linear. Notice with
iron loading of 1000,HeyS , 0.05T , 1.5 3 108 Hz,
which is the order of magnitude of the observed splitti
[3]. This puts smaller particles truly in the small partic
limit.

Since theyare excited states, them ­ 0 levels must
be populated if tunneling is to be observed. SincejHa

is a smallish faction of 1 K, these levels will hav
an appreciable equilibrium population. In addition, f
T , 200 mK and dilute ferritin it is difficult to imagine
a sizable relaxation mechanism which can change
quantum numberm and a slow relaxation of the amplitud
might be expected for a modestly rapid cooling protoco

There is the possibility that the anisotropy energy f
the total moment$j has the opposite sign, correspondin
to an easy plane, to that relevant for the dynamics of$n,
i.e., and easy axis. In this casem ­ 0 is the ground state
and there is no slow relaxation of the signal.

There are no magnetic dipole matrix elements betwe
the m ­ 0 levels, and hence no coupling to a strict
uniform field. When the Néel vector$n is reversed, the
up and down dipoles are displaced by one lattice spac
and soany antiferromagnet has a quadrupole mome
Particles with an excess spin can have much larger s
moments. The measuring system [3] comprises flat lo
for both the detection and applied ac and dc fields, a
hence therewill be both a dynamic and static couplin
to the tunnel levels, although the precise magnitude
difficult to estimate.

In connection with these experiments, Garg [3] h
argued that the hyperfine field of,2% Fe57 would destroy
the coherence. However, the analysis of tunnelingwith
nuclear spin flips corresponds to the presently defin
292
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midsized regime. The hyperfine field,Hhf, is, at least,
comparable with the presently suggested small value f
Ha, and with the present small particle interpretation o
experiment the relevant “reduction factor” depends o
HhfyHa andnot Hhfyv0, and, depending upon the precise
numbers, might not lead to a reduction at all. In fact
involving nuclear spin flips has theadvantageof giving
the tunneling signature a much larger strength. A mor
detailed analysis of this will be presented elsewhere.

If K' is finite, ferromagnetic tunneling “turns on”
and n is coupled to$j. For integer spin all remaining
degeneracies will be lifted;however, for smallK' the new
ferromagnetic tunnel splitting will be very much smaller
than those discussed above. For a midsized particle, it
necessary toadd a ferromagnetic exponential factor [11],
e2j lns4KAyK'd ­ sK'y4KAdj . For ferritin with j , 150,
this is most probably averysmall quantity. Furthermore,
this splitting isverysensitive to an applied magnetic field.
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