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Low Temperature Phase of Asymmetric Spin Glass Model in Two Dimensions
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We investigate low temperature properties of a random Ising model withand —aJ (a # 1)
bonds in two dimensions using a cluster heat bath method. It is found that the Binder paragneters
for different sizes of the lattice come together at almost the same temperature, implying the occurrence
of the spin glass (SG) phase transition. From results of finite size scaling analyses, we suggest that
the SG phase really occurs at low temperatures, which is characterized by a power law decay of spin
correlations. [S0031-9007(97)04260-9]

PACS numbers: 75.50.Lk, 02.70.Lq, 05.50.+q

Spin glasses have attracted great challenge for comptattice of L X L (L = 18) using the CHB method. In
tational physics in these two decades. It is widely befact, g; does not saturate down to a very low temperature.
lieved now in the bond-random Ising model that spin glas®Ve find that as the temperature decreasgss for
(SG) transitions occur at a finite, nonzero temperaturelifferent L meet at almost the same temperature and then
T. # 0 in three dimensions (3D) [1-4] and at zero tem-increase together. This property rather resembles that of
peraturel. = 0 in two dimensions (2D) [4—-8]. Recently, the =J model in 3D in which the SG phase transition
the present authors [9] reexamined the SG phase trangiecurs atT. # 0. We make the FSS analyses and find
tion of the =J Ising model on a square lattice 8f X L thatg; and ysg for different L scale well using a finite,
by means of an exchange Monte Carlo method [10] andionzero value off. and that the distribution functions
found that the Binder parametegs for L < 16 intersect P, (Q) of the spin overlapQ scale at all temperatures
atT # 0. They also found that better finite-size scalingbelow 7.. Thus we suggest that in this model the SG
(FSS) fits of the spin glass susceptibiljpgs are obtained phase occurs at low temperatures, which is characterized
whenT,. # 0. These results imply the occurrence of theby a power law decay of the spin correlations. The
SG phase transition &, # 0. If so, it is quite interest- properties foflT > T, found here are very similar to those
ing, because it disproves the beliefif = 0. However, of the =J model in 2D [9]. We believe, hence, that
there remain two problems which should be considered tthe SG phase transition also occurslat# 0 in the =J
suggest. # 0in 2D. One is thag, for a smaller lattice model in 2D.
almost saturates below a rather high temperature [7] and We start with an Ising model on a square latticex L
its saturation value slightly increases with[9]. There- described by the Hamiltonian
fore, it is difficult to see whether the intersection gf
for smaller L suggests the presence of the SG phase at H=— Z Jijoioj, 1)

T. # 0 or is merely due to a finite size effect. The other (@.j)

is that it is still open whether or not the model really ex-where o;(= *1) are Ising spins andij) runs all near-
hibits the nature of the SG phaseTZat< T, because the est neighbor pairs. Distributions of bonds for different
estimated transition temperaturg is slightly lower than samples are given as

the lowest temperature which is reached in the simula- |

tion. The problems would be solved if we study the same P(Jij) = 5[6(;; — J) + 8(Ji; + aJ)]. (2)
model on bigger lattices at lower temperatures. The satu- L -
ration of ¢, at rather high temperatures, however, may béf the lattice is rather smaII_ anq a free boundary _condltlo_n
removed if we treat an asymmetric random Ising modelS US€d at least for one direction, we may readily obtain
with +7 and—aJ (a # 1) bonds, because the energy g(,leeq.umbnum spin configurations at any temperatmd_ay _
of 2|1 — alJ in that model between the ground state and“S'ng the CHB method, because _the_cluster deflped In
the lowest excitation state is much smaller than thatbf <€l [13] can be chosen as thg Iattlce_‘ itself. That is, the
in the =J model [11], and, if the lattice is rather small, cluster is composed df layers withZ spins and exchange

we may study equilibrium properties at any temperatureﬁelds from the outside are absent. We b.riefly note the
using a cluster heat bath (CHB) method [12,13]. method [14]. For every sample, the weight functions

. . . . U] : : :
In this Letter, we investigate low temperature properties”:({o; '}) can be Unlql(Jl()?W determined by using Eq. (7)
of the asymmetric random Ising model on the squaren Ref. [13], becausé:;” = 0. Once the set of these
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functlons{Fl({a })} is obtained, the spin configurations
of individual layers can be determined successively from
the layer(L) to the layer(1) by using Egs. (8) or (11)

in Ref. [13] and random numbers. Thus one of the
spin configurations of the lattice is generated. Repeating
this procedure, we may generate any number of the

spin configurations with the aid o{fF,({(ri(l)})}. These
spin configurations are independent of each other and in
accordance with the Boltzmann’s weight [13]. For each
of the samples, abou = 200 spin configurations are
generated [15]. We calculate, as well as usual magnetic
quantities, an overlap function of the spins between the

different spin configurationB(Lk)(Q) for every sample:

o't
& I
ph (k) 1
L (Q) = 5( . (3
0 M(M Z m(Zm 0 - 0 (3) _
0_ 1 ] L 1 1
with Ot = (1/N) SV, "™ wheres!"" is the -! 0

ith spin of thenth spin conflguration for théth sample.

The overlap functionP.(Q) of the system is given as
P (Q) = (1/Ny) Ziv;l Pik)(Q), whereN; is the number

of the samples. Onceé;(Q) is determined, we may
obtain various SG quantities. Th¢h moment of the spin
overlap is defined as

+1
e - [ e, @

where(- - -y and[- - -] mean the spin configuration (thermal) FIG. 1. P.(Q) versusQ at (&)T = 0.3/, (b) T = 0.2/, and
average and the sample average, respectively. The S@ 7 = 0.1J in the random Ising model wita = 0.8 on the

susceptibilityysg is determined from square lattice of. X L.
xsc = N[(OH)], (®) T, g, and ysg scale as
and the Binder parametgj from gL = G(eL'"), @)
gL = (3 — [(OH/KeHP)/2. (6) xsc = L "X(eL'"), (8)

We have performed this CHB simulation of the model ofwheree = (T — T,)/J, v is the exponent of the correla-
Eq. (1) witha = 0.8 for L = 18. The numbers of the tion length,» is the exponent which describes the decay
samples areV, = 4000 for L = 14 and Ny, = 1000 for  of the spin correlation &f = T., andG andX are some
L =16 and18. scaling functions. Having assum&d = 0.19J, we could
Figure 1 showsP,(Q) for differentL. For every size obtain good scaling plots fdf = T.. Typical examples
L, the shape is symmetric with respect @= 0 and are shown in Figs. 3(a) and 3(b). Of course, the values
the peaks aD ~ *1 become steeper as the temperatureof v estimated from both the scaling plots are almost the
decreases. Figure 2 shows plotsggfagainstT. Asthe same. We also examined the other possibility’of= 0
temperature decreases,’s for different L meet at almost As for ysg, we could scale the data only in the neighbor-
the same temperature & ~ 0.2J and then increase hood of7T = 0 usingn ~ 0 andv ~ 2.6. As forg;, on
together. This behavior is quite similar to thatgfof the  the other hand, we could never scale the data using any
+J model in 3D in which the SG phase transition occursplausible value ofy. The scaling plots folf. = 0 are
atT. # 0[1]. shown in Figs. 4(a) and 4(b). These results clearly reveal
We examine the results in more detail using the FSShat if a conventional phase transition occurs, the transi-
analyses. First, we perform the FSS plotggfand ysg  tion temperature ig,. ~ 0.19J, not 7, ~ 0. However,
to estimate the value df.. If the SG transition occurs at the data folT < T, deviate from the scaling plots.
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l————7—T—7 7 T Since P;(Q) for smaller L has a considerable weight
at Q = =1 and, for L = 16, the peak height rather
decreases with increasing, we could not scale all the
data over the entire range ¢f. These difficulties may,
however, come from finite size effects. In fact, the
weights atQ = *1 become smaller as increases and,
for T = 0.2J, the peak height fof. = 18 becomes larger
than that forL = 16. If we overlook the discrepancy
around the peak oP.(Q), the data scale fol. = 10
at T ~ T, by using the same value of ~ 0.14 for
XxsG, Which is shown in Fig. 5(a). However, the data for
T < T, can also be scaled by using a smaller value of
06— —— b —— 8 n as shown in Fig. 5(b) [16]. A natural interpretation
iy of this result is that the model is close to criticality at
FIG. 2. Temperature dependencesggfof the random Ising all temperatures below., like the XY ferromagnet in 2D
model witha = 0.8. [17]. This picture is, of course, compatible with the fact
that g, and ysg scale only forT = 7T.. We suggest,
hence, that the SG phase really occurs belpw- 0.19J
which is characterized by a power law decay of the spin
correlations.
Our present result is in agreement with our previous
result of T, # 0 in the =J model [9]. Especially, the
— 70/ n/2 _ value ofv ~ 0.18 in the =J model is in good agreement
Pi(q) = L""P(@L"") atT =T.. ®) With that obtained in the present model [18]. Thus we
predict that the occurrence of the SG phaselat 0
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Next, we examineP;(Q) itself to see whether or not
the SG phase is realized belotv < T.. If the phase
transition occurs al’ = T,, P.(Q)’s for different L will
scale as
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FIG. 3. Scaling plots of (a}; and (b) ysg, assumingl’, =

0.19J. FIG. 4. Scaling plots of (ag, and (b) s, assumind’. = 0.
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T. # 0 appears incompatible with the previous belief
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have concluded only thaheir data are not incompatible
with the prediction that7. = 0, and have not ruled than0.1% after sample averages are taken out.
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distribution of excitation energies of that model is quite
different from that of the present model.



