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We investigate low temperature properties of a random Ising model with1J and 2aJ sa fi 1d
bonds in two dimensions using a cluster heat bath method. It is found that the Binder parametersgL

for different sizes of the lattice come together at almost the same temperature, implying the occurre
of the spin glass (SG) phase transition. From results of finite size scaling analyses, we suggest
the SG phase really occurs at low temperatures, which is characterized by a power law decay of
correlations. [S0031-9007(97)04260-9]

PACS numbers: 75.50.Lk, 02.70.Lq, 05.50.+q
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Spin glasses have attracted great challenge for com
tational physics in these two decades. It is widely b
lieved now in the bond-random Ising model that spin gla
(SG) transitions occur at a finite, nonzero temperat
Tc fi 0 in three dimensions (3D) [1–4] and at zero tem
peratureTc ­ 0 in two dimensions (2D) [4–8]. Recently
the present authors [9] reexamined the SG phase tra
tion of the6J Ising model on a square lattice ofL 3 L
by means of an exchange Monte Carlo method [10] a
found that the Binder parametersgL for L # 16 intersect
at T fi 0. They also found that better finite-size scalin
(FSS) fits of the spin glass susceptibilityxSG are obtained
whenTc fi 0. These results imply the occurrence of th
SG phase transition atTc fi 0. If so, it is quite interest-
ing, because it disproves the belief ofTc ­ 0. However,
there remain two problems which should be considered
suggestTc fi 0 in 2D. One is thatgL for a smaller lattice
almost saturates below a rather high temperature [7]
its saturation value slightly increases withL [9]. There-
fore, it is difficult to see whether the intersection ofgL

for smaller L suggests the presence of the SG phase
Tc fi 0 or is merely due to a finite size effect. The oth
is that it is still open whether or not the model really e
hibits the nature of the SG phase atT , Tc, because the
estimated transition temperatureTc is slightly lower than
the lowest temperature which is reached in the simu
tion. The problems would be solved if we study the sa
model on bigger lattices at lower temperatures. The sa
ration ofgL at rather high temperatures, however, may
removed if we treat an asymmetric random Ising mod
with 1J and2aJ sa fi 1d bonds, because the energy g
of 2j1 2 ajJ in that model between the ground state a
the lowest excitation state is much smaller than that of4J
in the 6J model [11], and, if the lattice is rather smal
we may study equilibrium properties at any temperatu
using a cluster heat bath (CHB) method [12,13].

In this Letter, we investigate low temperature propert
of the asymmetric random Ising model on the squa
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lattice of L 3 L sL # 18d using the CHB method. In
fact,gL does not saturate down to a very low temperatur
We find that as the temperature decreases,gL’s for
different L meet at almost the same temperature and th
increase together. This property rather resembles that
the 6J model in 3D in which the SG phase transition
occurs atTc fi 0. We make the FSS analyses and fin
that gL and xSG for different L scale well using a finite,
nonzero value ofTc and that the distribution functions
PLsQd of the spin overlapQ scale at all temperatures
below Tc. Thus we suggest that in this model the SG
phase occurs at low temperatures, which is characteriz
by a power law decay of the spin correlations. Th
properties forT . Tc found here are very similar to those
of the 6J model in 2D [9]. We believe, hence, that
the SG phase transition also occurs atTc fi 0 in the 6J
model in 2D.

We start with an Ising model on a square latticeL 3 L
described by the Hamiltonian

H ­ 2
X
ki,jl

Jijsisj , (1)

where sis­ 61d are Ising spins andkijl runs all near-
est neighbor pairs. Distributions of bonds for differen
samples are given as

PsJijd ­
1
2 fdsJij 2 Jd 1 dsJij 1 aJdg . (2)

If the lattice is rather small and a free boundary conditio
is used at least for one direction, we may readily obta
equilibrium spin configurations at any temperatureT by
using the CHB method, because the cluster defined
Ref. [13] can be chosen as the lattice itself. That is, th
cluster is composed ofL layers withL spins and exchange
fields from the outside are absent. We briefly note th
method [14]. For every sample, the weight function
Flshs

sld
i jd can be uniquely determined by using Eq. (7

in Ref. [13], becauseh
sld
i ­ 0. Once the set of these
© 1997 The American Physical Society 2887
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sld
i jdj is obtained, the spin configurations

of individual layers can be determined successively from
the layer sLd to the layers1d by using Eqs. (8) or (11)
in Ref. [13] and random numbers. Thus one of th
spin configurations of the lattice is generated. Repeatin
this procedure, we may generate any number of th
spin configurations with the aid ofhFlshs

sld
i jdj. These

spin configurations are independent of each other and
accordance with the Boltzmann’s weight [13]. For eac
of the samples, aboutM ­ 200 spin configurations are
generated [15]. We calculate, as well as usual magne
quantities, an overlap function of the spins between th
different spin configurationsP

skd
L sQd for every sample:

P
skd
L sQd ­

2
MsM 2 1d

MX
n

MX
ms.nd

dsQ 2 Qskd
nmd , (3)

with Q
skd
nm ­ s1yNd

PN
i­1 s

sn,kd
i s

sm,kd
i , wheres

sn,kd
i is the

ith spin of thenth spin configuration for thekth sample.
The overlap functionPLsQd of the system is given as
PLsQd ­ s1yNsd

PNs

k­1 P
skd
L sQd, whereNs is the number

of the samples. OncePLsQd is determined, we may
obtain various SG quantities. Thenth moment of the spin
overlap is defined as

fkQnlg ­
Z 11

21
QnPLsQddQ , (4)

wherek· · ·l andf· · ·g mean the spin configuration (thermal)
average and the sample average, respectively. The
susceptibilityxSG is determined from

xSG ­ NfkQ2lg , (5)

and the Binder parametergL from

gL ­ s3 2 fkQ4lgyfkQ2lg2dy2 . (6)

We have performed this CHB simulation of the model o
Eq. (1) with a ­ 0.8 for L # 18. The numbers of the
samples areNs ­ 4000 for L # 14 and Ns ­ 1000 for
L ­ 16 and18.

Figure 1 showsPLsQd for different L. For every size
L, the shape is symmetric with respect toQ ­ 0 and
the peaks atQ , 61 become steeper as the temperatur
decreases. Figure 2 shows plots ofgL againstT . As the
temperature decreases,gL’s for differentL meet at almost
the same temperature ofT , 0.2J and then increase
together. This behavior is quite similar to that ofgL of the
6J model in 3D in which the SG phase transition occur
at Tc fi 0 [1].

We examine the results in more detail using the FS
analyses. First, we perform the FSS plots ofgL andxSG

to estimate the value ofTc. If the SG transition occurs at
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FIG. 1. PLsQd versusQ at (a) T ­ 0.3J, (b) T ­ 0.2J, and
(c) T ­ 0.1J in the random Ising model witha ­ 0.8 on the
square lattice ofL 3 L.

Tc, gL andxSG scale as

gL ­ GseL1ynd , (7)

xSG ­ L22hXseL1ynd , (8)

wheree ­ sT 2 TcdyJ, n is the exponent of the correla-
tion length,h is the exponent which describes the deca
of the spin correlation atT ­ Tc, andG andX are some
scaling functions. Having assumedTc . 0.19J, we could
obtain good scaling plots forT $ Tc. Typical examples
are shown in Figs. 3(a) and 3(b). Of course, the value
of n estimated from both the scaling plots are almost th
same. We also examined the other possibility ofTc ­ 0.
As for xSG, we could scale the data only in the neighbor
hood ofT ­ 0 usingh , 0 andn , 2.6. As for gL, on
the other hand, we could never scale the data using a
plausible value ofn. The scaling plots forTc ­ 0 are
shown in Figs. 4(a) and 4(b). These results clearly reve
that if a conventional phase transition occurs, the trans
tion temperature isTc , 0.19J, not Tc , 0. However,
the data forT , Tc deviate from the scaling plots.
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FIG. 2. Temperature dependences ofgL of the random Ising
model witha ­ 0.8.

Next, we examinePLsQd itself to see whether or not
the SG phase is realized belowT , Tc. If the phase
transition occurs atT ­ Tc, PLsQd’s for different L will
scale as

PLsqd ­ Lhy2PsqLhy2d at T ­ Tc . (9)

FIG. 3. Scaling plots of (a)gL and (b)xSG , assumingTc ­
0.19J.
Since PLsQd for smaller L has a considerable weigh
at Q ­ 61 and, for L # 16, the peak height rather
decreases with increasingL, we could not scale all the
data over the entire range ofQ. These difficulties may,
however, come from finite size effects. In fact, th
weights atQ ­ 61 become smaller asL increases and,
for T # 0.2J, the peak height forL ­ 18 becomes larger
than that forL ­ 16. If we overlook the discrepancy
around the peak ofPLsQd, the data scale forL $ 10
at T , Tc by using the same value ofh , 0.14 for
xSG , which is shown in Fig. 5(a). However, the data fo
T , Tc can also be scaled by using a smaller value
h as shown in Fig. 5(b) [16]. A natural interpretation
of this result is that the model is close to criticality a
all temperatures belowTc like the XY ferromagnet in 2D
[17]. This picture is, of course, compatible with the fac
that gL and xSG scale only forT $ Tc. We suggest,
hence, that the SG phase really occurs belowTc , 0.19J
which is characterized by a power law decay of the sp
correlations.

Our present result is in agreement with our previou
result of Tc fi 0 in the 6J model [9]. Especially, the
value ofn , 0.18 in the 6J model is in good agreement
with that obtained in the present model [18]. Thus w
predict that the occurrence of the SG phase atTc fi 0

FIG. 4. Scaling plots of (a)gL and (b)xSG , assumingTc ­ 0.
2889
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FIG. 5. Scaling plots of PLsQd at (a) T ­ 0.2J and
(b) T ­ 0.1J.

is the common nature of 2D random Ising models wit
a discrete distribution of bonds [19]. Our prediction o
Tc fi 0 appears incompatible with the previous belie
of Tc ­ 0. We think, however, that these are no
necessarily incompatible, because the previous autho
have concluded only thattheir data are not incompatible
with the prediction thatTc ­ 0, and have not ruled
out the possibility of such lowTc as estimated here.
The thing that was certainly suggested by the previou
studies is that, atT ­ 0, no long-range order exists and
the spin correlation decays according to the power la
[5,6,8]. This is compatible with our result withTc fi 0.
Of course, further studies are necessary to confirm th
prediction ofTc fi 0. We believe that the present result
will stimulate not only the computational physics but also
experimental studies, because the bond distributions
real SG materials will be asymmetric.
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