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Theory of Solitary Holes in Coasting Beams
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A self-consistent theory of solitary hole structures in coasting beams is presented. These phase space
vortices are known from particle simulations and appear, e.g., due to a resistive wall instability. The
analysis reveals new intrinsic nonlinear modes which owe their existence to a deficiency of particles
trapped in the potential well, showing up as notches in the thermal range of the distribution function,
where linear wave theory would predict strong Landau damping. This sheds light on the spectrum
of small amplitude perturbations proving the incompleteness of linear and associated nonlinear wave
theories in the kinetic regime and offers a new interpretation of recent synchrotron experiments.
[S0031-9007(97)04245-2]
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Intense beams in synchrotrons that are operating close By(r,z) = % A(a, 2), E.(r,z) = %A(a,z),
to the linear stability limits exhibit a variety of nonlinear ¢
wave phenomena. Recent experiments on debunched ) ()
beams as, e.g., in the Fermilab [1,2], have unearthed a < r )

. 0 . =E.(z) +
number of collective phenomena pointing to the plasma E.(r,2) = E.(2) 29 0:A(a,2),
nature of the particle behavior. In fact, mode coupling
and forr = a
and parametric effects are standard in plasma physics as
are echolike phenomena. A special issue having a long g, (;, z) = UL; A(r,2) E(r,2) = — A(r,2)
tradition in plasma dynamics is the excitation of trapped 2
particle states which appear in phase space as vortexlike 2
structures. These states can be excited by launching an ro\?
electrostatic wave leading to a process called nonlinear E.(r,z) = E:(z) + 27 9:A(r,z)
Landau damping [3] or appear in two-stream unstable
situat'ions where the growing waves saturate by. particle + L A (z)ln L
trapping [4—6]. However, a linear instability is not 27eoyy
necessarily required for the formation of these structureghereA(r, z) is defined by
[7]. This suggests that there is some nonlinear wave q)t(z)
megr?

excitation mechanism in plasma dynamics, the details of A(r,z) == — — El(2), (3)
which are still to be understood.

Motivated by a similar phenomenon observed in theg being the charge of a particle ang) the vacuum
Fermilab experiments [2] (to be described in more detaipermittivity. A relation betweenE. (z) and E,,(z), the
later), we address this problem from an analytical poinwall electric field atr = b, can be found by a loop
of view. We show that certain structures such as electrointegral over Faraday’s law [10,11]. We obtain
and ion holes [8] which are BGK-like (Bernstein-Greene- b \? b
Kruskal) waves in plasma physics [9] can be transferred E.(z) = _<2 ) azA<\/_—sZ> + Ey(z), (4)
to beam dynamics as well. We shall investigate the Yw 80
conditions under which these states exist, analyze th@here gy ;=1 + 2In— Relating E,,(z) with Bg(b,z)
resulting modes, and make a comparison with experimenthrough the Iong|tud|na| wall impedance [12]

We first calculate the self-fields acting on a beam and _ _ o
take for simplicity a radially uniform beam of circular 0 Ey(z) Z[Bo(b,2) = By()], ©)
cross section with radiust moving with velocity v~ Where By is the magnetic field in the absence of a per-
along the axis of a circular pipe of radibls We allow turbation (i.e.A = A, E; = 0), we get from (2) and (4)
for space charge effects in the longitudinaldirection Zv,b b b
and assume that the line densityand the fields vary E;(z) + 202 Ai(b,2) + <2 > I A (\/—’Z> 0,
asz — v,t, wherew,, is the relativistic phase velocity 6
of the perturbation withy,, = (1 — v2/c?) "2 > 1. 6)
Assuming a TM-mode, Maxwell's equations are readilywhere A(r, z) equalsA(r, z) except thath in (3) is re-
solved in the wave frame by perturbation theory up toplaced byA; = A — A, i.e., by the perturbed line den-
0(y,?). We getforr = a sity. The generalized expression (6) has two interesting
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limits. For zero impedance, as for a noninductive, perguide fields. Below transition energy, i.é&y < Er =
fectly conducting wall, and for long wavelength perturba-mqyrc?, n is negative.

tions, such thakb <« 27v,,, wherek is a typical wave Introducing the dimensionless quantities

number, we obtain (assuming, = v the relativistic nor-

; > t 27 RoA
malized mass of a particle) Dol _, t, SN Z, 7oA _, AL
2T 27 Ry
E.(z) = 47ng02 Ai(2). @ , = Ao - 27 Roc? E (10)
oY o s ngq U2E0 F )

This well-known expression, when coupled with lin-
earized Vlasov equationv(, — Q/k, where Q) is the
complex frequency) yields the negative mass instabil- [0, + ud, — €d,]f(z,u,t) =0, (11a)
ity [11]. The latter assumes a beam with zero energy g6 = aA 11b
spread and an energy above transition energy [13]. When & = adt, (11b)
the limit of zero energy spread is lifted, the well-known with
Landau-type dispersion relation is obtained [15,16].

we obtain the dimensionless Vlasov-Poisson system

2
If, on the other hand, there is a large impedance a =7 2Rq <£> N (12)
(resistivity) Eq. (6) reduces ta;(b,z) = 0 and becomes €0Eo \ vb
g (2) being the space charge parameter. It carries the sign

(8) of n, is proportional to the number of beam particles
o _ ' N, and is independent on the sign of the chaggeThe
which is Poisson’s equation. distribution function in (11a) is normalized to unity:

We are mterested in the limit of a large FESIStIVItyf dz f+°° duf(z,u,t) = 1. If fo(u) describes the
Z~=R> kh ; for which linearized wave theory predicts unperturbed distribution, withf fo(«) du = 1, it holds
gxponentlally growing waves wnh_growth rates propor-,(z,t) = [duf — 1. For an antiproton beam below
tional toR [17]. Under such conditions [18] the excita- transition energy, Eq. (11) corresponds to an electronic
tion of a steady state structure imposed on the beam cgslasma system in which a positive potential hump,
be expected. ¢ = 0, is excited, the so-called electron hole. It holds

In the remainder we prove analytically the existenceg = —9.¢. On the other hand, Eq. (11) switches to an
of such states, develop its characteristic properties, andnic system with an excited potential wely = 0, an
show that new intrinsic modes are in play which havejon hole, when the beam is above transition energy. Both
no counterpart in linear wave theories and their nonlineagituations hence admit solutions. In the following, we
extensions. concentrate on the first situation [19].

The beam dynamics, first of all, is governed by the Going into the wave frame; — Aur — z, whereAu
Vlasov equation which reads in the frame moving withis the normalized phase velocityu = =

the beam [11] a steady state given by
a.f + 20.f + (AE) aAfE 0, (9) [ud, + d.¢0,]f =0, (13a)
where i’ = —aU [z u)du — 1] (13b)

¢ = Roho, (AE) = vqE: . The method of constructing a solution consists in two
Ry is the large radius of the design trajectosy, = v/Ry  parts, in prescribing the distributions in terms of the
is the revolution frequency of a particle on this trajectory,constants of motion and in solving Poisson’s equation.
and Aw is the change in the revolution frequency duelt has been introduced in [20] and differs from the
to a change in the particle’s energ&E It holds original BGK method [9] in that instead of also the
Aw = 1 AE  here Eo = moyc® and n =y, trapped particle distribution is prescribed (see below).

22 belnlé tﬁe’ slip factor, which is a property of thF Assuming that the unperturbed distribution is a Gaussian
[21], shifted byAu, we solve (13a) by

1 | expg— 1[0'\/u2 —2¢ + Aul?}, uw>=2¢ >0,

flz,u) = V2 |exp—Au?/2)[1 — L2 - 2¢)], 0= =2¢.

(14)

It is a function of the constants of motios,= 5= — ¢ = well (—¢ < 0). The unperturbed state has no trapped
and o = sgnu for untrapped particles (first I|ne) The particles and is recovered fo$p = 0. Note that g
second line represents particles trapped in the potentigbntrols the state of trapped particles, depletion zones in
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f being represented by negatiyes [22]. Integration of T ' ' T ' ' T
f overu yields the line density [19] 1r

— _i / M _i 3/2
A=1 zzr<ﬁ>¢ 3 DB Au)™” +

(15)

valid for small ¢. Z, is the real part of the plasma
dispersion functlon and stands fo (B, Au) = J—(l -

B — Au?) exp(— *). Note that3 should not be mixed
up with v/c. Expressmg the right-hand side of (13b)
by —V/(¢) we can integrate (13b) once and obtain
the “energy law” ¢’>/2 + V(¢) = 0 with V(¢) given
by V(¢) = lal|[+5Z.$> + %bdﬁ/z]. We assumer = o |
—|la|l <0 and V(0) = 0. V has to be negative in the V
interval 0 < ¢ < ¢ and has to vanish ap = ¢, the : ‘ ' ! — : !
maximum excursion of the bell-shaped potential structure. )

The latter condition yields FIG. 1. The distributionf(«) and its deviation from the
A 16 unperturbed state as functionsioht ¢ = .
——Zr( ”)= Y (16)
2 V2 15

which is thenonlinear dispersion relatioms it yieldsAu Althoudh t h determined th
in terms of 8 and and hence. With the help of (16) ough transverse resonances may have determined the

V2r f(u)

VER [f(u)-expl-u2i2)]
, 1

V() becomes Iocgtlon of notches and may have contributed to their de-
8| Ib pletion in momentum space, as suggested by the authors,
a i i -

—V($) = <\/_ \/‘) (17) there are good reasons to believe that, at least in the satu

rated state, the observed structures are holes as described
V =0 implies b > 0, From what follows that for above. This conclusion is supported by the following ob-
moderateAu < 1, 8 has to be negative. Hence the servations: (i) The excitation of sidebands downward in
distribution function must be depleted in the trappedfrequency with an enhancement, independent of the drive
particle range. From the energy law we obtain by afrequency and whether the machine was above or below
quadrature transition energy, near the notches; (ii) the lack of any
|a|b\/— harmonic coupling; (iii) the measurement of characteris-
(18) tic beam current oscillations, after the drive was switched
off, reminiscent to current oscillations in particle simu-
Equations (16)—(18) represent the solution tO our probtations involving wave overturning and particle trapping;
lem. A numerical example is given by = 400 ,B = and (iv) this behavior was observed at the lowest measur-
—31,Au = 0.2, noting that this triplet solves (16). The able signal levels.
corresponding distribution (14) is plotted in Fig. 1, show- The last observation is especially interesting because it
ing a definite notch ak = Au within the trapped particle can be interpreted as experimental proof of the following
range, i.e., in the interval between the dotted lines. Notheoretical affirmation: independent of their strength, the
tice that such a solution should not exist from a linearpresent wave structures have no connection to linear
point of view due to strong Landau damping in this veloc-wave solutions or their nonlinear descendants. This is
ity range. In phase space the solution (14) is vortexlikeeasily seen from (13a) or (14). At resonanees= 0,
with a depleted zone at resonance. Figure 1 also showse haved,f = 0. Splitting f into f, + fi, we readily
the deviation off from Gaussian which hasfmite veloc-  see tha{d,fi| = |9, fol. This means that a linearization
ity gradient (see below). procedure, which consists in neglecting thgf; term
High intense beams in synchrotrons near their stabilityn the Vlasov equation, is not justified, no matter how
limits represent an “ideal test bed for investigating thesesmall the amplitudey, is. Even at extremely small
coherent phenomena” [1,2]. In order to assess the posmplitudes, nonlinearity will prevail. In addition, as
sible cause of fluctuations that are ubiquitous in any othe extension to periodic waves with finite wavelength
such beams, the authors of Ref. [2] performed beam tran$19] shows, the solution remainsonlinear even in the
fer function measurements in the Fermilab Main Ring ancharmonic limit. In the kinetic regime, the presence
found a decidedly nonlinear beam response. Most reef resonant particles destroys the equivalence between
markable was the observation of “sharp gaps or notcheiearity and harmonicity. Mathematically speaking, the
in the response function which presumably correspond téwo proceduresA := take the small amplitude limit and
depletion zones in the momentum distribution function.”B := solve the equation of motion, do not commute.

¢ (z) = ¢ secht
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