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Colliding Waves in a Model Excitable Medium: Preservation, Annihilation, and Bifurcation
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We analyze the transition from annihilation to preservation of colliding waves. The analysis exploits
the similarity between the local and global phase portraits of the system. The transition is shown to be
the infinite-dimensional analog of the creation and annihilation of limit cycles in the plane via a homo-
clinic Andronov bifurcation, and has parallels to the nucleation theory of first-order phase transitions.
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Waves in physical, chemical, and biological system
are broadly classified into two categories: classical a
excitable. Some distinguishing qualitative features th
characterize excitable waves include their mutual anni
lation following a collision and their inability to reflect
from boundaries [1]. However, recent experimental a
numerical work in different excitable systems [2] sho
the existence of a transition between the annihilation a
preservation of pairwise colliding waves as a function
the governing parameters in the problem. In this Lett
we examine this transition for a model problem and sho
that it is an infinite-dimensional analog of a homoclin
Andronov bifurcation [3]. The geometric arguments use
imply that this transition is generic to many other excitab
systems.

To illustrate the main ideas, we focus on a simple d
namical system associated with a continuum descript
of a chain of pendula coupled by torsional springs, su
jected to a constant scaled torqueV and a dimensionless
viscous dampingn. The equation of motion for this sys-
tem is given by

utt 1 nut 1 sinu ­ V 1 uxx . (1)

Here the scaling assumes that the inertial and coupl
terms appear at leading order. WhenV ­ n ­ 0, (1)
reduces to the sine-Gordon equation which is complet
integrable and exhibits solitons that interact elastically.
the overdamped limit, the inertial term is dominated by th
viscous damping term. Then (1) reduces to the reactio
diffusion equation

ut 1 sinu ­ V 1 uxx , (2)

which is a prototype of a dynamical system which exhib
excitable waves [4]. If one considers the variable sinsud in-
stead ofu itself, these waves are pulses, not fronts; we w
call them fronts from now on. We carried out a numb
of numerical experiments on (1) to understand this tran
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tion from dispersive to diffusive behavior. The numerical
method consisted of a central-difference scheme in spa
and a Runge-Kutta method in time with either periodic or
Neumann (zero flux) boundary conditions. The size of the
integration domain was large compared to the width of th
fronts, which is proportional ton21y2. The initial con-
ditions corresponded to two fronts that are far apart an
moving towards each other. Forn large enough, the fronts
collide and annihilate each other. Forn ø 1, the fronts
go through each other following the collision. In this limit,
which corresponds to the nearly integrable case, our com
putations agree with analytical and numerical results fo
the perturbed sine-Gordon equation [5]; in the excitable
case considered here, we are far from integrability. In th
case with periodic boundary conditions the fronts collide
twice every period. When Neumann boundary condition
are used, the fronts are reflected at the boundaries and c
lide periodically in the center of the domain. For fixedV,
asn , nc, the critical value of damping where this transi-
tion between annihilation and preservation occurs, the tw
fronts coalesce into a near stationary solution. Asn ! nc,
the time spent close to this limiting solution diverges. This
points to the importance of understanding the stationary so
lution of (1) and its temporal stability.

Before going further, we first consider the simpler
dynamical system corresponding to the spatially homoge
neous counterpart of (1), which shares many of the prope
ties of the extended system. Dropping the coupling term
in (1) yields the equation of motion for a damped forced
pendulum

utt 1 nut 1 sinu ­ V . (3)

For largen, the inertial terms are unimportant and the
only stable solution (modulo2p) is us ­ sin21 V; the
other fixed pointuu ­ p 2 sin21 V is unstable. AsV
is increased, the stable (node) and the unstable (sadd
fixed points coalesce through a saddle-node bifurcation [3
© 1997 The American Physical Society 2803
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when V ­ 1. Close to this bifurcation, the period di
verges algebraically asOssss1 2 Vd21ddd. For V . 1 and
arbitraryn, the only solution is a (rotating) periodic solu
tion (limit cycle). ForV ø 1 and for sufficiently large
n, the only stable solution isu ­ sin21 V. This global
attractor (modulo2p) is excitable, since a finite excita-
tion can lead to a large excursion in the phase space co
sponding to a rotation. However, asn is decreased below
a critical valuejnosVdj, both the periodic solution and the
stationary solution can coexist. This can be understood
terms of the potentialV sud ­ 2cosu 2 Vu associated
with (3). In the presence of large damping, all initial con
ditions lead to trajectories that end up at the bottom o
valley. For the critical value ofn ­ nosVd, the homo-
clinic orbit connecting the top of nearby hills occurs giv
ing birth for a slightly smaller value ofn to a limit cycle
with a large period [3] which diverges logarithmically in
the variablen 2 no . The formation of the homoclinic or-
bit corresponds to the transition to hysteretic behavior (
which as we will see corresponds to the region in parame
space when colliding front solutions to (1) are preserve
In Fig. 1 we show the “phase” diagram that illustrates th
various states of (3) along with their stability boundarie
It is interesting to interpret this phase diagram in the co
text of nucleation phase transitions [6]. The order param
ter of the transition to rotation is defined as the frequency
the rotating pendulum. In Fig. 1, the vertical lineV ­ 1
above the pointI corresponds to a (continuous) secon
order transition; along it one has a saddle-node bifurcati

FIG. 1. Phase diagrams obtained numerically showing t
existence of various solutions for (1) and (3). The line re
resentsnosVd computed by a shooting method for the homo
geneous equation (3), and the dashed line representsncsVd
obtained from numerical simulations of the extended syste
(1). A: Stable stationary solution.B: Stable periodic so-
lution. C: Both solutions are metastable.a: Homoclinic
bifurcation. b: Saddle-node bifurcation (second-order pha
transition). g: Saddle-node bifurcation (first-order phase tra
sition). I: Codimension-2 Andronov bifurcation point (weakly
first-order phase transition).
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and the period of rotation diverges algebraically. The ve
tical lineV ­ 1 below pointI corresponds to a first-order
transition since the bifurcation leads to a limit cycle with
finite period. The pointI is a codimension-2 point where
two Andronov bifurcations occur simultaneously and is
tricritical point in the jargon of phase transitions. A simila
scenario occurs in the transition to chaos through interm
tency [7] which changes from second order to first ord
[8] in a two-parameter family of dynamical systems.

Returning to the extended system (1), we consid
the stationary solution forn ­ nc that characterizes the
transition from annihilation to preservation. We wil
interpret this stationary solution as a nucleation bubb
[9] familiar in the theory of first-order phase transitions
To compute this solution we write the time-independe
version of (1) as

uxx 1
dW
du

­ 0 , (4)

where W ­ 2V ­ Vu 1 cosu represents a fictitious
tilted potential. The separatrix solution of (4) with bound
ary conditions,u ! sin21 V, ux ! 0 as x 6 `, corre-
sponds to the nucleation bubble, and must be compu
numerically in general. However, it can be computed a
alytically in the two limits,V ! 0 andV ! 1. We fo-
cus on the caseV , 1 when (1) has excitable proper-
ties. SubstitutingV ­ 1 2 e along with the expansion
usxd ­

p

2 1 e1y2Qs1dse1y4xd 1 . . . in (4), atOsed we get

Q
s1d
XX ­ 1 2 Qs1d2y2, whereX ­ e1y4x. The separatrix

solution of this equation, which we denote byQ
s1d
N sXd, can

be expressed in terms of cnoidal elliptic functions [10]. T
study the stability of this solution we substituteusx, td ­
p

2 1 e1y2Q
s1d
N se1y4xd 1 · · · 1 e1y2Cse1y4x, e1y2td in (1)

and linearize the resulting equation aboutC ­ 0. At lead-
ing order, we find that the perturbationCse1y4x, e1y2td sat-
isfies the following Schrödinger equation:

nCT ­ 2Q
s1d
N sXdC 1 CXX , (5)

with T ­ e1y2t. Since the potential associated withQ
s1d
N

is compact, it is sufficient to study the discrete spectru
of the Schrödinger operator with a potentialQ

s1d
N to

determine the stability of the nucleation solutionQ
s1d
N .

Because (1) is invariant with respect to spatial translatio
the linearized problem (5) has a zero eigenvalue. T
corresponding eigenfunction is≠XQ

s1d
N and has a single

node. Therefore the fundamental eigenfunction with n
nodes corresponds to the only positive eigenvalue by
ordering lemma for the Schrödinger operator [11]. Thu
the stable manifoldWs of the nucleation solution has
codimension 1.

In the functional “phase portrait” sketched in Figs. 2(a)
2(c) for the case with periodic boundary conditions, the n
cleation solution corresponds to the saddle. The variat
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FIG. 2. Projection of the functional phase portrait of (1).un
is the nucleation solution andus is the homogeneous stable
stationary solution. (a) Before the homoclinic bifurcation,n .
nc, the two fronts annihilate each other. (b) At the bifurcatio
point, n ­ nc, the pair forms a stationary solution. Evolution
of the pair of fronts along the trajectories is also presente
(c) Once the threshold is crossed,n , nc, the fronts go through
each other.

in the damping termn leads to the transition from preser
vation to annihilation of colliding fronts. The codimen
sion 1 stable manifoldWs acts as a separatrix and locally
separates the infinite-dimensional phase space of the fl
associated with (1) into two distinct regions correspondin
to initial conditions that lead to either the propagation o
two fronts or the decay of an excitation. This qualitativ
geometrical picture is quite independent of the particul
model considered but must be modified for systems th
are not periodic in the dependent variableu. In (1), how-
ever, due to this periodicity, the entire collision proces
occurs on the manifoldW1

u which describes the propaga
tion of two fronts initiated from the nucleation solution
un. Then the transition from annihilation to preservatio
reduces to the relative position ofW1

u with respect to the
stable manifoldWs. In Fig. 2(a), we have depicted the
casen . nc, where the collision leads to the annihilatio
of the fronts. In this caseW1

u converges to the homoge-
neous stable excitable stateus. Figure 2(b) corresponds
n
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to the critical situationn ­ nc whereW1
u converges to

the nucleation solution. SinceWu has a codimension one
this occurs generically for a one-parameter family of d
namical systems. This homoclinic Andronov bifurcatio
of the nucleation solution is the infinite-dimensional anal
of the planar homoclinic bifurcation for (3) and is respo
sible for the preservation-annihilation transition of the co
liding fronts. In Fig. 2(c), the phase portrait correspon
to the casen , nc when the fronts are preserved followin
the collision (modulo2p). The corresponding limit cycle
describes the periodic process of the successive collis
of the two fronts in a periodic geometry.

In order to make this qualitative picture more qua
titative, we have computed the “residence” timeT that
the colliding fronts spend close to the nucleation so
tion, for n , nc. In Fig. 3(a), we plotT versusn when
V , 1, and observe the similarity to thel point in second-
order phase transitions, in accordance with the switch
tween first- and second-order transitions close toV , 1,
n , nc, shown in Fig. 1. In Fig. 3(b), we plotT versus
ln jncsVd 2 nj. As expected in the case of a homoclin
bifurcation, we see thatT , 2

1
s1

ln jncsVd 2 nj, with
s1 ­ 0.249 6 0.004. For a typical value ofV ­ 0.97
(nc ­ 0.939), corresponding to this numerical experime
we have also numerically determined the spectrum of
nucleation solution. The leading eigenvalues ares1 ­
0.250 484, s0 ­ 0.000 045, and s21 ­ 20.279 570; we
observe thats0 is the eigenvalue of the translational mod
to within numerical error, ands1 is in agreement with
the slope of the semilog plot in Fig. 3(b). Sincejs1j ø
js21j, this computation confirms the observed stability
the limit cycle [12] forn # nc.

A convenient way of visualizing solutions to (1) is t
plot the potential surfaceV su, xd ­ 2Vu 2 cosu and to

FIG. 3. Residence timeT spent near the nucleation solutio
to (1) for V ­ 0.97 (nc . 0.939 470), (a) as a function ofn
and (b) as a function of lnsjn 2 ncsVdjd.
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observe the evolution of an initial state on this surfac
Then the case when the fronts are preserved correspo
to the existence of a rotating trajectory for the homog
neous system, while the case when the fronts are ann
lated corresponds to the existence of a stationary solut
for the homogeneous system. Because of the stabiliz
effect of the torsional coupling in the extended system, t
Andronov bifurcation of the nucleation solution occurs fo
dampingncsVd that is slightly different from the one re-
quired for the homoclinic bifurcation of the homogeneou
statenosVd, as shown in Fig. 2. In Figs. 4(a)–4(e), we
show the evolution of two colliding pulses forn , nc on
this surface.

In the case of Neumann boundary conditions, with p
rameters that correspond to the preservation of collidin
fronts, we observe that the fronts are reflected from t
boundaries. This feature can be understood by a co
sion involving the front and its “image.” In the case of a
infinite system the preservation-annihilation transition b
comes a codimension-1 bifurcation which corresponds
the coincidence of two manifolds, the stable manifold o
the nucleation solutionWs and the one dimensional mani-
fold corresponding to two fronts, which from far away
move one towards the otherWcoll.

In conclusion, we have shown that the transition from
annihilation to preservation of colliding excitable fronts i
an infinite-dimensional global homoclinic bifurcation à la
Andronov [3]. The simple idea that the preservation o
fronts is associated with a weakly first-order character
the transition from an excitable to oscillatory state, was e
plored in some detail in a model excitable system (1). Th
apparent peculiarities of (1), namely, (a) the topology ass
ciated with the periodicity of the fieldusx, td, and (b) the
existence of an integrable limit of (1) are not restrictive
The geometric nature of the arguments should carry ov
to other systems such as the complex Ginzburg-Land
equation [13]. However, numerical and experimental stu
ies on various systems [2,13] show that the region in p
rameter space where this transition occurs is small. W
have found that a spatially extended system based on

FIG. 4. Snapshots at different times of the collision an
preservation of two fronts forn , nc represented as a flow
on the potential surfaceV su, xd. Time evolves from picture (a)
to (e) the collision occurs at (c).
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Takens-Bogdanov normal form [3] corresponding to th
unfolding of a codimension-2 bifurcation exhibits this be
havior [13]. Extensions currently being studied include th
connection between first-order phase transition, nucleat
theory, and global bifurcations, and the use of these id
to understand the nature of excitable media in one and t
dimensions.
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