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Colliding Waves in a Model Excitable Medium: Preservation, Annihilation, and Bifurcation

M. Argentina and P. Coullet

Institut Non Lineaire de Nice, UMR Centre National de la Recherche Scientifique 129,
1361 Route des Lucioles, 06560 Valbonne, France

L. Mahadevan

Division of Mechanics and Materials, 1-310, Massachusetts Institute of Technology,
77 Massachusetts Avenue, Cambridge, Massachusetts 02139
(Received 8 September 1995

We analyze the transition from annihilation to preservation of colliding waves. The analysis exploits
the similarity between the local and global phase portraits of the system. The transition is shown to be
the infinite-dimensional analog of the creation and annihilation of limit cycles in the plane via a homo-
clinic Andronov bifurcation, and has parallels to the nucleation theory of first-order phase transitions.
[S0031-9007(97)04203-8]

PACS numbers: 47.20.Ky, 02.30.Jr, 64.60.Qb, 82.40.Bj

Waves in physical, chemical, and biological systemdion from dispersive to diffusive behavior. The numerical
are broadly classified into two categories: classical andnethod consisted of a central-difference scheme in space
excitable. Some distinguishing qualitative features thaand a Runge-Kutta method in time with either periodic or
characterize excitable waves include their mutual annihiNeumann (zero flux) boundary conditions. The size of the
lation following a collision and their inability to reflect integration domain was large compared to the width of the
from boundaries [1]. However, recent experimental andronts, which is proportional tor~'/2, The initial con-
numerical work in different excitable systems [2] showditions corresponded to two fronts that are far apart and
the existence of a transition between the annihilation andhoving towards each other. Foilarge enough, the fronts
preservation of pairwise colliding waves as a function ofcollide and annihilate each other. For< 1, the fronts
the governing parameters in the problem. In this Lettergo through each other following the collision. In this limit,
we examine this transition for a model problem and showwhich corresponds to the nearly integrable case, our com-
that it is an infinite-dimensional analog of a homoclinic putations agree with analytical and numerical results for
Andronov bifurcation [3]. The geometric arguments usedhe perturbed sine-Gordon equation [5]; in the excitable
imply that this transition is generic to many other excitablecase considered here, we are far from integrability. In the
systems. case with periodic boundary conditions the fronts collide

To illustrate the main ideas, we focus on a simple dy-+twice every period. When Neumann boundary conditions
namical system associated with a continuum descriptioare used, the fronts are reflected at the boundaries and col-
of a chain of pendula coupled by torsional springs, sublide periodically in the center of the domain. For fix@d
jected to a constant scaled torgeand a dimensionless asv ~ v, the critical value of damping where this transi-
viscous damping’. The equation of motion for this sys- tion between annihilation and preservation occurs, the two

tem is given by fronts coalesce into a near stationary solution.vAs v,
_ the time spent close to this limiting solution diverges. This
O + v0, +sinf = O + 6. (1) points to the importance of understanding the stationary so-

lution of (1) and its temporal stability.
9 Before going further, we first consider the simpler
dynamical system corresponding to the spatially homoge-

reduces to the sine-Gordon equation which is completel¥]e0us counterpart of (1), which shares many of the proper-

integrable and exhibits solitons that interact elastically. 'r}ies of the extended system. Dropping the coupling term

the overdamped limit, the inertial term is dominated by theIn (1) yields the equation of motion for a damped forced

Here the scaling assumes that the inertial and couplin
terms appear at leading order. Whénh= v =0, (1)

viscous damping term. Then (1) reduces to the reaCtiorBendulum
diffusion equation
0+ sing = O + O, ) 0 + v6, + sind = Q. ©)

which is a prototype of a dynamical system which exhibitsFor large v, the inertial terms are unimportant and the
excitable waves [4]. If one considers the variablé®jin-  only stable solution (moduld) is 6, = sin~! Q; the
stead off itself, these waves are pulses, not fronts; we willother fixed pointd, = 7 — sin”! Q is unstable. A

call them fronts from now on. We carried out a numberis increased, the stable (node) and the unstable (saddle)
of numerical experiments on (1) to understand this transifixed points coalesce through a saddle-node bifurcation [3]

0031-900797/79(15)/2803(4)$10.00 © 1997 The American Physical Society 2803



VOLUME 79, NUMBER 15 PHYSICAL REVIEW LETTERS 13 ©TOBER 1997

when Q) = 1. Close to this bifurcation, the period di- and the period of rotation diverges algebraically. The ver-
verges algebraically a®((1 — Q)~!). ForQ > 1 and tical lineQ = 1 below point/ corresponds to a first-order
arbitrary v, the only solution is a (rotating) periodic solu- transition since the bifurcation leads to a limit cycle with a
tion (limit cycle). ForQ <« 1 and for sufficiently large finite period. The poinf is a codimension-2 point where
v, the only stable solution i = sin"! Q. This global two Andronov bifurcations occur simultaneously and is a
attractor (modul@sr) is excitable, since a finite excita- tricritical pointin the jargon of phase transitions. A similar
tion can lead to a large excursion in the phase space corrgeenario occurs in the transition to chaos through intermit-
sponding to a rotation. However, ass decreased below tency [7] which changes from second order to first order
a critical value|v,(Q)|, both the periodic solution and the [8] in a two-parameter family of dynamical systems.
stationary solution can coexist. This can be understood in Returning to the extended system (1), we consider
terms of the potential/(¢) = —cosf — 6 associated the stationary solution for = v, that characterizes the
with (3). In the presence of large damping, all initial con-transition from annihilation to preservation. We will
ditions lead to trajectories that end up at the bottom of anterpret this stationary solution as a nucleation bubble
valley. For the critical value o = v,(Q)), the homo- [9] familiar in the theory of first-order phase transitions.
clinic orbit connecting the top of nearby hills occurs giv- To compute this solution we write the time-independent
ing birth for a slightly smaller value of to a limit cycle  version of (1) as

with a large period [3] which diverges logarithmically in

the variabler — v,. The formation of the homoclinic or- 0. + aw 0 @)
bit corresponds to the transition to hysteretic behavior (3), w do ’

which as we will see corresponds to the region in parameter

space when colliding front solutions to (1) are preservedwhere W = —V = Q6 + cosf represents a fictitious

In Fig. 1 we show the “phase” diagram that illustrates thetilted potential. The separatrix solution of (4) with bound-
various states of (3) along with their stability boundaries.ary conditions,d — sin”' Q, 6, — 0 asx = o, corre-

It is interesting to interpret this phase diagram in the consponds to the nucleation bubble, and must be computed
text of nucleation phase transitions [6]. The order paramerumerically in general. However, it can be computed an-
ter of the transition to rotation is defined as the frequency oélytically in the two limits,{) — 0 andQ — 1. We fo-

the rotating pendulum. In Fig. 1, the vertical liGle= 1  cus on the casé) ~ 1 when (1) has excitable proper-
above the poinf corresponds to a (continuous) second-ties. Substituting{) = 1 — € along with the expansion
order transition; along it one has a saddle-node bifurcatiord(x) = 5 + €20 (e!/*x) + ... in (4), atO(e) we get
0 =1 — ©12/2 whereX = €'/*x. The separatrix
solution of this equation, which we denote 6}5(})()(), can

B be expressed in terms of cnoidal elliptic functions [10]. To
study the stability of this solution we substitutéx, 1) =
T4 20y (eV4x) + - + €2W(ex, €%1) in (1)
and linearize the resulting equation abdut= 0. Atlead-

ing order, we find that the perturbatidn(e'/*x, '/%) sat-

B isfies the following Schrédinger equation:
v v = 0OV (X)T + Wyy, 5)

with T = €'/2s. Since the potential associated wihy’
is compact, it is sufficient to study the discrete spectrum

of the Schrodinger operator with a potentiﬁ,(\}) to

Lo determine the stability of the nucleation soluti@}(\}).
(¢ Because (1) is invariant with respect to spatial translation,
the linearized problem (5) has a zero eigenvalue. The

FIG. 1. Phase diagrams obtained numerically showing th%orresponding eigenfunction i&X@I(\}) and has a single

existence of various solutions for (1) and (3). The line rep- : . .
resentsy, (1) computed by a shoot(in)g metrgo)d for the homé’_node. Therefore the fundamental eigenfunction with no

geneous equation (3), and the dashed line represerif3) node._c, corresponds to the only_positive eigenvalue by the
obtained from numerical simulations of the extended systenordering lemma for the Schrédinger operator [11]. Thus

(1). A: Stable stationary solution.B: Stable periodic so- the stable manifoldW, of the nucleation solution has
lution. C: Both solutions are metastablex: Homoclinic codimension 1

bifurcation. B: Saddle-node bifurcation (second-order phase . N N
transition). y: Saddle-node bifurcation (first-order phase tran- !N the functional “phase portrait” sketched in Figs. 2(a)—

sition). I: Codimension-2 Andronov bifurcation point (weakly 2(C) for the case with periodic boundary conditions, the nu-
first-order phase transition). cleation solution corresponds to the saddle. The variation
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to the critical situationv = v, where W, converges to
the nucleation solution. Sind&, has a codimension one,
this occurs generically for a one-parameter family of dy-
namical systems. This homoclinic Andronov bifurcation
of the nucleation solution is the infinite-dimensional analog
of the planar homoclinic bifurcation for (3) and is respon-
sible for the preservation-annihilation transition of the col-
liding fronts. In Fig. 2(c), the phase portrait corresponds
tothe caser < v. when the fronts are preserved following
the collision (modul® 7). The corresponding limit cycle
describes the periodic process of the successive collisions
of the two fronts in a periodic geometry.

In order to make this qualitative picture more quan-
titative, we have computed the “residence” tirfiethat
the colliding fronts spend close to the nucleation solu-
tion, for v ~ v.. In Fig. 3(a), we plotT’ versusy when
Q) ~ 1, and observe the similarity to thepoint in second-
order phase transitions, in accordance with the switch be-
tween first- and second-order transitions closé€te- 1,

v ~ v, shown in Fig. 1. In Fig. 3(b), we pldf versus
In|z.(Q) — v|. As expected in the case of a homoclinic
bifurcation, we see thal’ ~ —Uillnlvc(ﬂ) — |, with
o1 = 0.249 = 0.004. For a typical value of) = 0.97
(v. = 0.939), corresponding to this numerical experiment
we have also numerically determined the spectrum of the
nucleation solution. The leading eigenvalues atie=
0.250484, o9 = 0.000045, ando-; = —0.279570; we
observe thatr is the eigenvalue of the translational mode
to within numerical error, andr; is in agreement with
L . . the slope of the semilog plot in Fig. 3(b). Sinke | <«
iFSIGtHeZ'nuEIrgzjﬁi((:)thog()c:Lttigi f;ggtlczgaih%h%%?ngggﬁgﬁg (i?gble |o—1], this computation confirms the observed stability of

stationary solution. (a) Before the homoclinic bifurcatien;>  the limit cycle [12] fory = v..

v., the two fronts annihilate each other. (b) At the bifurcation A convenient way of visualizing solutions to (1) is to
point, » = v, the pair forms a stationary solution. Evolution plot the potential surfac&(d,x) = —Q6 — cos# and to
of the pair of fronts along the trajectories is also presented.

(c) Once the threshold is crossed< v, the fronts go through

each other.

(b)

T50

. . y (b) T s (a)
in the damping termv leads to the transition from preser- a5l

vation to annihilation of colliding fronts. The codimen- 40
sion 1 stable manifoldV, acts as a separatrix and locally
separates the infinite-dimensional phase space of the flow 40T
associated with (1) into two distinct regions corresponding 20 0.9385 09405
to initial conditions that lead to either the propagation of 35t v
two fronts or the decay of an excitation. This qualitative
geometrical picture is quite independent of the particular 3¢ ]
model considered but must be modified for systems that
are not periodic in the dependent variaBle In (1), how-
ever, due to this periodicity, the entire collision process
occurs on the manifoldv,” which describes the propaga-
tion of two fronts initiated from the nucleation solution 20 - 1’1 1‘0 ‘9 :8 7 p
0,. Then the transition from annihilation to preservation ) ) ) ) ) ) )
reduces to the relative position 8f,” with respect to the In(lv—=y 1)
stable manifoldW,. In Fig. 2(a), we have depicted the c
casev > v., where the collision leads to the annihilation FIG. 3. Residence tim& spent near the nucleation solution
of the fronts. In this cas®&, converges to the homoge- o (1) for Q = 0.97 (v. = 0.939470), (a) as a function o
neous stable excitable stadg. Figure 2(b) corresponds and (b) as a function of lhw — v.(Q)]).
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observe the evolution of an initial state on this surfaceTakens-Bogdanov normal form [3] corresponding to the
Then the case when the fronts are preserved correspondsfolding of a codimension-2 bifurcation exhibits this be-
to the existence of a rotating trajectory for the homoge-havior [13]. Extensions currently being studied include the
neous system, while the case when the fronts are annihéonnection between first-order phase transition, nucleation
lated corresponds to the existence of a stationary solutiotineory, and global bifurcations, and the use of these ideas
for the homogeneous system. Because of the stabilizinp understand the nature of excitable media in one and two
effect of the torsional coupling in the extended system, thelimensions.

Andronov bifurcation of the nucleation solution occurs for We thank J-M. Gambaudo and V. Krinsky for useful
dampingr.(Q) that is slightly different from the one re- discussions, and the members of INLN for giving us
quired for the homoclinic bifurcation of the homogeneousmany patient hearings. This work was partially supported
statev,(Q)), as shown in Fig. 2. In Figs. 4(a)—4(e), we by EEC Grants No. SC1*CT90 0325 and No. SC1*CT91
show the evolution of two colliding pulses fer~ v. on 0683, and a CNR®oste Rosgrant that made the visit of
this surface. L. M. to INLN possible.
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