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Pinning Control of Spatiotemporal Chaos
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Linear control theory is used to develop an improved localized control scheme for spatially extend
chaotic systems, which is applied to a coupled map lattice as an example. The optimal arrangem
of the control sites is shown to depend on the symmetry properties of the system, while their minim
density depends on the strength of noise in the system. The method is shown to work in any reg
of parameter space and requires a significantly smaller number of controllers compared to the meth
proposed earlier by Hu and Qu [Phys. Rev. Lett.72, 68 (1994)]. A nonlinear generalization of the
method for a 1D lattice is also presented. [S0031-9007(97)04237-3]
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Controlling chaos in high-dimensional systems [1
and spatiotemporal chaos especially is a very import
problem with numerous applications to turbulence [2
instabilities in plasma [3], multimode lasers [4], an
reaction-diffusion systems [5].

The present Letter represents an effort to develop a g
eral control algorithm for spatiotemporally chaotic system
using the methodology of linear control theory, which a
ready proved to be fruitful [6]. Clarifying a number o
issues will have direct bearing on this. For instance, it
not clear how many parameters are required for succes
control. If the control is applied locally, what is the mini
mal density of controllers and how should they be arrang
to obtain optimal performance? What are the limitations
the linear control scheme and how can they be overcom

Consider the coupled map lattice (CML), originall
introduced by Kaneko [7], in an alternative form:

zt11
i ­ Fszt

i21, zt
i , zt

i11d

­ fssss1 2 2edzt
i 1 eszt

i21 1 zt
i11dddd , (1)

with i ­ 1, 2, · · · , L and periodic boundary conditions
(BC), zt

i1L ­ zt
i imposed. We also assume that the loc

mapfsz, ad is a nonlinear function with parametera, such
thatfszp, ad ­ zp.

To be specific, we choose

fszd ­ azs1 2 zd , (2)

but emphasize that all the major results hold independ
of this choice. This CML has a homogeneous steady st
zp ­ 1 2 1ya, which is unstable fora . 3.0. Our goal
is to stabilize it using a minimal number of controllers.

The first attempt in this direction was undertaken b
Hu and Qu [8]. The authors tried to stabilize the hom
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geneous state by controlling an array ofM periodically
placed pinning siteshi1, · · · , iMj with appropriately cho-
sen controlut

m

zt11
i ­ Fszt

i21, zt
i , zt

i11d 1

MX
m­1

dsi 2 imdut
m . (3)

This however required a very dense array with distanc
between controllersLp ­ LyM # 3 in the physically
interesting interval of parameters3.57 , a , 4.0.

The reason for this is the spatial periodicity of the pin-
nings. Since the system is spatially uniform, its eigen
modes are just Fourier modes and the control does n
affect the modes whose nodes happen to lie at the pinning
i.e., modes with periods equal to2Lp, 2Lpy2, 2Lpy3, etc.,
provided those are integer. The control scheme worke
only whenall such modes werestable.

It is however not necessary to destroy the periodicit
completely to achieve control: that would complicate the
analysis unnecessarily. Instead weaddone more pinning
site between each of the existing ones. Not all position
are good, but some do solve the problem—previousl
uncontrollable modes become controllable.

In order to understand how the pinnings should b
placed and see whether we achieve improved performan
by introducing additional controllers, we have to use a few
results of the linear control theory [9]. We will start with
linearizing Eq. (3) about the homogeneous steady sta
zt ­ szp, · · · , zpd in both the state vector and control to
obtain the following standard equation

xt11 ­ Axt 1 But , (4)

where we denoted the displacementx ­ z 2 zp. If we
definea ­ ≠fsxp, ady≠x, then theL 3 L JacobianA is
given by
A ­ a
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and the L 3 M control matrix Bij ­
P

m ds j 2

mddsi 2 imd depends on how we place the pinning site
If we use synchronous linear feedbackut ­ 2Kxt ,

Eq. (4) becomes

xt11 ­ sA 2 BKdxt , (6)

and the solutionx ­ 0 can be made stable by a suitab
choice of the feedback gain matrixK , if the controllability
condition ranksCd ­ L is satisfied. The controllability
matrix C is defined via

C ­ sB AB · · · AL21Bd . (7)

One can easily verify that the matrixB calculated for
a periodic array of pinning sites does not satisfy t
controllability condition and therefore the homogeneo
steady state is not controllable. It can be stabilized
the weakerstabilizability condition is satisfied, i.e., al
uncontrollable modes are stable. However this impo
excessive restrictions on the pinning density.

The condition for stabilizability can be obtained fro
the spectrum of eigenvalues of the matrix (5)

gi ­ af1 2 2es1 2 cosskidg , (8)

wherek1 ­ 0, ki ­ ki11 ­ piyL for i ­ 2, 4, 6, . . . and,
for L even,KL ­ p and a ­ 2 2 a. Specifically, we
need jsa 2 2d f1 2 2esss1 2 cosspjyLpddddgj , 1 for all
j ­ 1, . . . , L 2 2, such thatLpyj is integer. Using this
criterion one can obtain the relation between the minim
coupling, the distance between controllers and param
a of the local chaotic map for a stabilizable system. F
instance,j ­ 1 yields

e ­
a 2 3

2sa 2 2d f1 2 cosspyLpdg
. (9)

The numerically obtained results of Hu and Qu (Fig.
are seen to lie exactly on the curves, given by Eq. (9).

It is possible however to extend the limits of the cont
scheme quite substantially by making the systemcontrol-
lable as opposed tostabilizable. This is easily achieved
by choosing a different matrixB, i.e., placing the pinning

FIG. 1. Periodic array of single pinning sites: Critical co
pling ecr as a function of parametera. The data points repre
sent the numerical results from Fig. 2 of [8], withe rescaled by
a factor of 2 to make it compatible with our definition.
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sites differently. Doing so will enable us to control th
systemanywherein the parameter space at the same tim
using asmallerdensity of controllers.

First one has to determine the dimensionality of th
matrix B, in other words determine the minimal numbe
of parameters required to control the CML (1) of a
arbitrary length. It can be shown [10] that the minima
number of parameters required to control a system w
degenerate Jacobian is equal to the greatest multiplicity
its eigenvalues.

Since the system considered has parity symmetry,
eigenvalues (8) of its Jacobian are in fact doubly degen
ate, so the minimal number of control parameters yieldi
a controllable system in our case is two, meaning at le
two pinning sites are required. One can easily verify th
the controllability condition for anL 3 2 matrix

Bij ­ ds j 2 1ddsi 2 i1d 1 ds j 2 2ddsi 2 i2d (10)

is indeed satisfied for a number of arrangementshi1, i2j.
The restrictions on the mutual arrangement of the co
trollers are again given by the condition of controllability
L should not be a multiple ofji2 2 i1j; otherwise the mode
with the period2ji2 2 i1j becomes uncontrollable.

The next step in the algorithm is to determine th
feedback gainK. Pole placement techniques based o
Ackermann’s method [11] are inapplicable to the proble
of controlling spatially extended systems because they
numerically unstable[12] and break down rapidly for
problems of order greater than 10.

Instead we use the method of the linear-quadratic (L
control theory [9], applicable to the unstable period
trajectories as well as fixed points. This method is n
only numerically stable, but also allows one tooptimize
the control algorithm to increase convergence speed,
at the same time minimize the strength of control. A
we will see below, decreasing control enlarges the ba
of attraction, which has very important consequences
the time to achieve control (capture the chaotic trajector
The optimal solution is obtained by minimizing the co
functional

V sx0d ­
X̀
t­0

sxtyQxt 1 utyRutd , (11)

whereQ andR are the weight matrices that can be chos
as any positive-definite square matrices.

The minimum of (11) is reached when

K ­ sR 1 ByPBd21ByPA , (12)

where P is the solution to the discrete-time algebra
Ricatti equation

P ­ sQ 1 AyPAd 2 AyPyBsR 1 ByPBd21ByPA .
(13)

Numerical simulations show that the CML (1), (2) ca
indeed be stabilized by this linear control scheme in
wide range of parametersa ande. The solution forK is
presented in Fig. 2 fora ­ 4.0, e ­ 0.33, andL ­ 8 with
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FIG. 2. Feedback matrix: Feedback gain vectorsK1j andK2j
for left and right controllers placed at the sides of the lattic
(i1 ­ 1, i2 ­ 8) as functions of the lattice site fora ­ 4.0 and
e ­ 0.33.

Q ­ I838 andR ­ I232. The steady homogeneous state
zp ­ 0.75 has three unstable and five stable directions an
we use two pinning sites to control it.

The contribution2Kmix
t
i from the sitei far away from

the pinning siteim is larger, as expected: since the feedbac
is applied indirectly through coupling to the neighbors
the perturbation introduced by the controllers decays wi
increasing distance to the pinning sites.

Noise limits our ability to locally control arbitrarily large
systems with local interactions. We estimate the large
length of the system using the controllability condition
which in our case determines whether there exists contr
ut , . . . , ut1L21, bringing an arbitrary initial statext to an
arbitrary final statext1L. Without noise

xt1L ­ Akxt 1

L21X
t­0

2X
m­1

AL212tbm ut1t
m , (14)

wherebm is themth column ofB.
However, if there is noise of relative magnitudes at

time t, it will be amplified by a factor ofg per iteration,
where jgj ­ expslmaxd is the largest eigenvalue (8) of
the Jacobian. At timet 1 L its magnitude will besjgjL.
For the control to work, all termsAL212tbiut1t

i should
be of the same order as or exceed the amplified noise.

Indeed, the perturbationdxt
im

introduced by the con-
troller im affects the dynamics of the remote sitej only
after propagating a distanceD ­ jim 2 jj in timeT ­ D,
decaying by a factor ofae per iteration. Consequently the
dynamics of sitej at timet 1 L will be affected by control
applied only at timest, . . . , t 1 L 2 T 2 1. This dictates
Osssdxt1L2T21

im
saedT ddd * sjgjL.

Because of the periodic BC0 # D # Ly2. On the
other hand,jdxt

i j , dx , 1, where dx determines the
range, where the linear approximation (4) is valid. As
result we obtain the estimates on the size of the contro
lable system, similar to those obtained by Aransonet al.
for the lattice with asymmetric coupling [cf. Eq. (15) of
e

d

k
,
th

st
,
ol

a
l-

Ref. [13] ]. The tightest bounds are given byD ­ 0:

Ls1d
max ­ 2

lnssd
lmax

, 0.5 , e , 1 , (15)

andD ­ Ly2:

Ls2d
max ­

2 lnssd
lnsed 2 lmax

, 0 , e , 0.5 . (16)

The maximal length of the system that can actually
stabilized by the LQ method with two pinning sites, place
next to each other, is obtained numerically by choosi
the fixed point as the initial condition and monitoring th
evolution of the system in the presence of noise un
control (12), calculated forQ ­ IL3L andR ­ I232. This
length is quite large for the moderate level of noise (Fig.
and is rather close to the values (15) and (16) where
controllability breaks down.

The problem of controlling a large one-dimension
system with the lengthL . Lmaxssd can be easily reduced
to the problem of independently controlling a numb
of smaller systems with the lengthLp , Lmaxssd. We
partition the entire latticehzt

1, . . . , zt
Lj into M ­ LyLp

subdomainshzt
sm21dLp11, . . . , zt

mLp
j, and control it with an

array of pinning sitesim1 ­ sm 2 1dLp 1 1, im2 ­ mLp ,
m ­ 1, . . . , M, positioned periodically at the boundaries o
these subdomains.

The stabilization can be achieved by choosing

ut
im1

­ Fszt
im2

, zt
im1

, zt
im111d 2 Fszt

im121, zt
im1

, zt
im111d

1

LpY
i­1

usdxi 2 jxt
sm21dLp1ijd

LpX
i­1

K1ix
t
sm21dLp1i

ut
im2

­ Fszt
im221, zt

im2
, zt

im1
d 2 Fszt

im221, zt
im2

, zt
im211d

(17)

1

LpY
i­1

usdxi 2 jxt
sm21dLp1ijd

LpX
i­1

K2ix
t
sm21dLp1i ,

whereusxd is a step function.

FIG. 3. The largest length of the lattice which can b
controlled with two pinning sites: Theoretical estimates (so
lines) and numerical results (dots) obtained with the uniform
distributed noise of amplitudes ­ 10214 as functions of
couplinge for a ­ 4.0.
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This arrangement effectively carries two functions. W
use control (17) to (nonlinearly) decouple the subdomain
simultaneously imposing periodic boundary condition fo
each subdomain (the first two terms) to make the syst
controllable. Then we stabilize each subdomain asynch
nously by applying a linear (in deviationxt

i ­ zt
i 2 zp)

feedback (the last term), inside the neighborhood of t
fixed point determined bydxi. Since the linear approxi-
mation (4) is valid only if

dxi ø jKmij
21, m ­ 1, . . . , M , (18)

strong feedback significantly decreases the size of the c
ture region, which makes the capture time large. Redu
tion of the capture time can be achieved by minimizin
the feedback strength using the LQ method (12), (13).

We demonstrate this approach by stabilizing the hom
geneous stationary state of the CML defined by Eqs.
and (2) witha ­ 4.0, e ­ 0.33. L ­ 128 sites were di-
vided into M ­ 16 subdomains of lengthLp ­ 8, each
controlled by two pinning sites. The results presented
Fig. 4 show the evolution of the system from the initia
condition chosen to be a collection of random numbers
the intervalf0, 1g.

Equations (15) and (16) now give the minimal densi
of pinning sites that yields the controllable fixed poin
solution. It is indeed seen to be much lower than th
given by (9), e.g.,2yLp ­ 1y20 (2y37 from the numerics;
see Fig. 3) as opposed to1yLp ­ 1y2 for the choicea ­
4.0, e ­ 0.4 and the precision of calculations given b
s ­ 10214.

Although the resulting control scheme becomes no
linear (and therefore requires full knowledge of the ev
lution equations), it has the additional benefit, that th
capture time is determined by the lengthLp ø L and is
typically many orders of magnitude smaller than that o

FIG. 4. Stabilizing uniform steady state: A large lattic
(L ­ 128) is controlled by an array of double pinning sites
placed at the boundaries of subdomains with lengthLp ­ 8.
The state of the system was plotted at each 10 000th step.
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tained for the linear control scheme [obtained by lineariz
ing (17)], which requires only the Jacobian to be known
In fact our computational resources were insufficient t
observe even a single capture forL . 40 with the lin-
earized control. Generalizing this nonlinear approach t
higher-dimensional systems remains a challenge.

To summarize, we have shown that the restrictions o
the minimal density of periodically placed single pinning
sites obtained by Qu and Hu [8] as a result of numerica
simulations can in fact be obtained analytically from the
stabilizability condition.

The efficiency of the control scheme can be improve
significantly if one uses double pinnings instead of singl
ones. The homogeneous steady state becomes controlla
for any values of the control parameters and the minima
density of pinning sites is reduced substantially. It is
shown that the maximal distance between the pinning
depends on the strength of noise in the system and c
be estimated analytically.

The appropriately chosen (using the LQ technique) feed
back can decrease the capture time for the chaotic traje
tory by enlarging the capture region. The introduction o
nonlinearity into the control scheme can decrease this tim
even more significantly by effectively decoupling the large
lattice into a number of smaller subdomains.
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