VOLUME 79, NUMBER 15 PHYSICAL REVIEW LETTERS 13 ©TOBER 1997

Pinning Control of Spatiotemporal Chaos
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Linear control theory is used to develop an improved localized control scheme for spatially extended
chaotic systems, which is applied to a coupled map lattice as an example. The optimal arrangement
of the control sites is shown to depend on the symmetry properties of the system, while their minimal
density depends on the strength of noise in the system. The method is shown to work in any region
of parameter space and requires a significantly smaller number of controllers compared to the method
proposed earlier by Hu and Qu [Phys. Rev. L&, 68 (1994)]. A nonlinear generalization of the
method for a 1D lattice is also presented. [S0031-9007(97)04237-3]

PACS numbers: 05.45.+b, 02.30.wd

Controlling chaos in high-dimensional systems [1]geneous state by controlling an array Mf periodically
and spatiotemporal chaos especially is a very importarplaced pinning sitegiy, - - -, iy} with appropriately cho-
problem with numerous applications to turbulence [2],sen controk:,
instabilities in plasma [3], multimode lasers [4], and M
reaction-diffusion systems [5]. A = F(l .2l + Z 8Gi — imu', . (3)

The present Letter represents an effort to develop a gen- m=1
eral control algorithm for spatiotemporally chaotic system

using the methodology of linear control theory, which al-p .+ een controllers.. = L/M =3 in the ;
. . y = = physically
ready proved to be fruitful [6]. Clarifying a number of_ interesting interval of Iparamete3§7 < a < 40.

issues will have direct bearing on this. For instance, itis tha reason for this is the spatial periodicity of the pin-
not clear how many parameters are required for successfH‘ngs_ Since the system is spatially uniform, its eigen-

control. If the control is applied locally, what is the mini- gOdes are just Fourier modes and the control does not

SThis however required a very dense array with distance

mal de_nsity c_)f controliers and how should they_be_z arrang€Qstect the modes whose nodes happen to lie at the pinnings,
to obtain optimal performance? What are the limitations of e., modes with periods equal2d.,, 2L, /2, 2L, /3, etc
b ]71 ]) ) [7 1 bl

i o .
the linear control scheme and how can they be OVErcoOMe&yyqyided those are integer. The control scheme worked

Consider the coupled map lattice (CML), originally only whenall such modes werstable
introduced by Kaneko [7], in an alternative form: It is however not necessary to destroy the periodicity

L R AT 1t completely to achieve control: that would complicate the
Z; (Zz—prZzH) ; ; inni
. , , analysis unnecessarily. Instead agd one more pinning
= f((0 = 2€)z; + e(ziy + zi141)), (1) site between each of the existing ones. Not all positions

with i = 1,2,---,L and periodic boundary conditions are good, but some do solve the problem—previously
(BC), z/+, = z! imposed. We also assume that the localuncontrollable modes become controllable.

that f(z*, a) = z*. placed and see whether we achieve improved performance
To be specific, we choose by introducing additional controllers, we have to use a few
results of the linear control theory [9]. We will start with
f(z) = az(l — 2), (2)  linearizing Eq. (3) about the homogeneous steady state

t * EAN
but emphasize that all the major results hold independerft — (z7,---,27) in both the state vector and control to

of this choice. This CML has a homogeneous steady stat%bta'n the following standard equation
z* =1 — 1/a, which is unstable for > 3.0. Our goal x'Tl = Ax' + Bu', (4)
is to stabilize it using a minimal number of controllers. _ .

The first attempt in this direction was undertaken byhere we denoted the displacemant= z — 2. If we
Hu and Qu [8]. The authors tried to stabilize the homo-d&finea = df(x*,a)/dx, then theL X L JacobianA is

| given by
1 — 2e € 0 €
€ 1 — 2e € 0
A=a 0 € 1 -2 --- 0 (5)
€ 0 0 e 1 — 2e
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and the L X M control matrix B;; =Y, 8(j — sites differently. Doing so will enable us to control the
m)é(i — i,) depends on how we place the pinning sites. systemanywherein the parameter space at the same time

If we use synchronous linear feedbaak = —Kx’,  using asmallerdensity of controllers.
Eq. (4) becomes First one has to determine the dimensionality of the
X1 = (A — BK)X', (6) matrix B, in other words determine the minimal number

of parameters required to control the CML (1) of an
arbitrary length. It can be shown [10] that the minimal
number of parameters required to control a system with
degenerate Jacobian is equal to the greatest multiplicity of
its eigenvalues.

C=(BAB---A""'B). (7) Since the system considered has parity symmetry, the

One can easily verify that the matri calculated for e€igenvalues (8) of its Jacobian are in fact doubly degener-
a periodic array of pinning sites does not satisfy theate, so the minimal number of control parameters yielding
controllability condition and therefore the homogeneous controllable system in our case is two, meaning at least
steady state is not controllable. It can be stabilized ifwo pinning sites are required. One can easily verify that
the weakerstabilizability condition is satisfied, i.e., all the controllability condition for ar. X 2 matrix
uncontrollable modes are stable. However this imposes g, — 5(; — 1)8(i — i) + 8(j — 2)8(i — i) (10)

excessive restrictions on the pinning density. o o .
The condition for stabilizability can be obtained from IS indeed satisfied for a number of arrangemefitsi}.
the spectrum of eigenvalues of the matrix (5) The restrictions on the mutual arrangement of the con-

trollers are again given by the condition of controllability:

and the solutiorx = 0 can be made stable by a suitable
choice of the feedback gain matik, if the controllability
condition rank(C) = L is satisfied. The controllability
matrix C is defined via

vi = a[l — 2e(1 — cogk)], (8) I should not be a multiple df, — i,|; otherwise the mode
wherek; = 0, k; = k;+; = mi/Lfori = 2,4,6,...and,  with the period2|i, — i;| becomes uncontrollable.
for L even,K; = 7= anda =2 — a. Specifically, we The next step in the algorithm is to determine the

need [(a — 2)[1 — 2e(1 — codwj/L,))]l <1 for all  feedback gaink. Pole placement techniques based on
j=1,....,L — 2, such thatL,/; is integer. Using this Ackermann’s method [11] are inapplicable to the problem
criterion one can obtain the relation between the minimunof controlling spatially extended systems because they are
coupling, the distance between controllers and paramet@umerically unstablg12] and break down rapidly for

a of the local chaotic map for a stabilizable system. Forproblems of order greater than 10.

instance,j = 1 yields Instead we use the method of the linear-quadratic (LQ)
a—23 control theory [9], applicable to the unstable periodic
€T 2@ -2 - codw/L,)]’ (®)  trajectories as well as fixed points. This method is not

only numerically stable, but also allows one dptimize

the control algorithm to increase convergence speed, and
at the same time minimize the strength of control. As

we will see below, decreasing control enlarges the basin
of attraction, which has very important consequences for
the time to achieve control (capture the chaotic trajectory).
The optimal solution is obtained by minimizing the cost

The numerically obtained results of Hu and Qu (Fig. 1)
are seen to lie exactly on the curves, given by Eq. (9).

It is possible however to extend the limits of the control
scheme quite substantially by making the systamtrol-
lable as opposed tatabilizable This is easily achieved
by choosing a different matrig, i.e., placing the pinning

functional
05 / E ! -7 o
L,=5 ,r“'/ e vx%) = > x'Tox' + u'tRu’), (1)
0.4 1 P //' d Lp=4 7 - ] ZZ(:)
o0 /,F’ s L 3 whereQ andR are the weight matrices that can be chosen
£ 031 I ’ T as any positive-definite square matrices.
= & 7 ] The minimum of (11) is reached when
g o2 /o — .
SR L= K = (R + B'PB)"'BtPA, (12)
014 >=/ / - where P is the solution to the discrete-time algebraic
i Ricatti equation
0.0 K . P = (0 + AtPA) — ATPTB(R + B'PB)"'BtPA.
3.0 3.5 4.0 (13)
a

FIG. 1. Periodic array of single pinning sites: Critical cou- . dNurgeglcaI smyla}jlogs Sl?.OV\lI. that the CMlL (1h)’ (2) can
pling €., as a function of parameter. The data points repre- indeed be stabilized by this linear control scheme in a

sent the numerical results from Fig. 2 of [8], withrescaled by ~ Wide range of parametetsande. The solution fork is
a factor of 2 to make it compatible with our definition. presented in Fig. 2 fat = 4.0, ¢ = 0.33, andL = 8 with
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6 T T T T T . Ref. [13]]. The tightest bounds are given Ay= 0:
Lo = IN@ s oy )
/\max
andA = L/2:
=
o= 2In(o)
s @ = __—_ 77 < e <05.
A L2 e — A" 0<e<05 (16)

The maximal length of the system that can actually be
stabilized by the LQ method with two pinning sites, placed
next to each other, is obtained numerically by choosing

0 : . : the fixed point as the initial condition and monitoring the
left 2 3 4 5 6 7 right evolution of the system in the presence of noise under
site control (12), calculated fap = I;x; andR = Lx,. This
FIG. 2. Feedback matrix: Feedback gain vecttrsand K., Iengt'h is quite large for the moderate level of noise (Fig. 3)
for left and right controllers placed at the sides of the lattice@nd is rather close to the values (15) and (16) where the
(it = 1,i, = 8) as functions of the lattice site far = 4.0 and  controllability breaks down.
€ = 0.33. The problem of controlling a large one-dimensional
system with the length > L,,,« (o) can be easily reduced
to the problem of independently controlling a number
Q = Isxs andR = Dxp. The steady homogeneous stateof smaller systems with the length, < Lmx (). We
z* = 0.75 has three unstable and five stable directions an@artition the entire lattice(z!,...,z.} into M = L/L,
we use two pinning sites to control it. subdomaingz(,, 1)z, +1. - - -» mz, }, and control it with an

Th_e cpntrlpqthn—Kmixi from the Slt?l _far away from array of pinning sites,; = (m — 1)L, + 1,i,, = mL,,
the pinning site,, is larger, as expected: since the feedback, _ 1,..., M, positioned periodically at the boundaries of
is applied indirectly through coupling to the neighbors,inese subdomains.
the perturbation introduced by the controllers decays with e stabilization can be achieved by choosing
increasing distance to the pinning sites. , C . L,

Noise limits our ability to locally control arbitrarily large ~ %i,, = F(zi,,» 2,0 20,41 = F, 12,0 2,,41)
systems with local interactions. We estimate the largest Ly L,
length of the system using the controllability condition, + l_[0(6x,» - |xfm—1)L,,+i|)ZKux(tm_l)LpH
which in our case determines whether there exists control i=1

i=1 (17)
u’,...,u"*L71 bringing an arbitrary initial state’ to an ' t tt ' rt
T . . w = F(z; 1,2 .2 ) = F(z 1,2 5%
arbitrary final statex’*~. Without noise b2 ( S 1 Zip Zi) @, IL i Ziet1)
14 P
L-1 2 t t
- + 0(6x; — |x(,_ : Kyix, _ .
XH—L :Akxt + Z ZAL 1 H" ufn+T9 (14) ,l:ll ( i | (m l)Lerll); 2iXM(m—1)L,+i
7=0 m=1

wheref(x) is a step function.
whereb” is themth column ofB.

However, if there is noise of relative magnitudeat
time ¢, it will be amplified by a factor ofy per iteration,
where |y| = exp(Amax) iS the largest eigenvalue (8) of
the Jacobian. Attime + L its magnitude will beo|y|~.
For the control to work, all termd“~!="bi4!"" should
be of the same order as or exceed the amplified noise.

Indeed, the perturbatiodx;, introduced by the con-
troller i,, affects the dynamics of the remote sjteonly
after propagating a distanee= |i,, — jlintimeT = A,
decaying by a factor ot € per iteration. Consequently the 104 °
dynamics of sitg at timer + L will be affected by control
appliedonly attimes, ..., + L — T — 1. Thisdictates
0(x;, " " Hae)) = alyl". 0 0.5 05 075 1

Because of the periodic BO = A = L/2. On the coupling
other hand,|6x/| < 6x ~ 1, where 6x determines the ) )
range, where the linear approximation (4) is valid. As af!G:3. The largest length of the lattice which can be

. . N controlled with two pinning sites: Theoretical estimates (solid
result we obtaln the estimates on t'he size of the Cor‘tr()ll'mes) and numerical results (dots) obtained with the uniformly
lable system, similar to those obtained by Aranstral.  istributed noise of amplituder = 104 as functions of
for the lattice with asymmetric coupling [cf. Eq. (15) of couplinge for a = 4.0.
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This arrangement effectively carries two functions. Wetained for the linear control scheme [obtained by lineariz-
use control (17) to (nonlinearly) decouple the subdomainsng (17)], which requires only the Jacobian to be known.
simultaneously imposing periodic boundary condition forin fact our computational resources were insufficient to
each subdomain (the first two terms) to make the systerobserve even a single capture fbr> 40 with the lin-
controllable. Then we stabilize each subdomain asynchraearized control. Generalizing this nonlinear approach to
nously by applying a linear (in deviatiof = z; — z*)  higher-dimensional systems remains a challenge.
feedback (the last term), inside the neighborhood of the To summarize, we have shown that the restrictions on
fixed point determined byx;. Since the linear approxi- the minimal density of periodically placed single pinning
mation (4) is valid only if sites obtained by Qu and Hu [8] as a result of numerical

Sx; < 1K, L, m=1,.... M, (18) simulations can in fact be obtained analytically from the

N ) stabilizability condition.
strong feedback significantly decreases the size of the cap- 1o efficiency of the control scheme can be improved

ture region, which makes the capture time large. ReduGsignificantly if one uses double pinnings instead of single

tion of the capture time can be achieved by minimizingynes The homogeneous steady state becomes controllable
the feedback strength using the LQ method (12), (13). o any values of the control parameters and the minimal

We demonstrate this approach by stabilizing the homogensity of pinning sites is reduced substantially. It is
geneous stationary state of the CML defined by Eqs. (14hown that the maximal distance between the pinnings

and (2) witha = 4.0, e = 0.33. L = 128 sites were di-  gepends on the strength of noise in the system and can
vided into M = 16 subdomains of lengtlL, = 8, each be estimated analytically.
C(_)ntrolled by two pinning sites. The results presentt_at_j iN" The appropriately chosen (using the LQ technique) feed-
Fig. 4 show the evolution of the system from the initial hack can decrease the capture time for the chaotic trajec-
condmon chosen to be a collection of random numbers Rory by enlarging the capture region. The introduction of
the interval[0, 1]. _ . _nonlinearity into the control scheme can decrease this time
Equations (15) and (16) now give the minimal densityeen more significantly by effectively decoupling the large
of pinning sites that yields the controllable fixed point|atice into a number of smaller subdomains.
solution. It is indeed seen to be much lower than that The authors thank J. C. Doyle for many fruitful discus-
given by (9), e.9.2/L, = 1/20(2/37 from the numerics;  gjons and J. Socolar and D. Egolf for valuable comments
see Fig. 3) as opposed tgL, = 1/2 for the choices = nat |ed to improvements to the derivation of Egs. (15)
4.0, € :,3'4 and the precision of calculations given by 54 (16). This work was partially supported by the
o =10"". . NSF through Grant No. DMR-9013984. H.G.S. thanks
_ Although the resulting control scheme becomes nont koch for the kind hospitality extended to him at Cal-
linear (and therefore requires full knowledge of the evo+acp and the Volkswagen Foundation for financial support.
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