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Dynamics of a Ring of Pulse-Coupled Oscillators: Group Theoretic Approach
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We use group-theoretic methods to analyze phase-locking in a ring of identical integrate-and-fire
oscillators with distributed delays. It is shown how certain phase-locked solutions emerge through
symmetry breaking bifurcations as some characteristic delay of the system is varied. The reduction to
a phase-coupled model in the weak coupling regime is discussed. [S0031-9007(97)04283-X]
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The dynamics of coupled oscillator arrays has been th&his set of conditions is invariant under the action of the
subject of much recent experimental and theoretical interspatiotemporal symmetry grouy X S', whereDy is
est. Example systems include Josephson junctions [1,2fhe group of cyclic permutations and reflections in the ring
lasers [3], oscillatory chemical reactions [4], heart paceandS' represents constant phase shifts in the direction of
maker cells [5], central pattern generators [6], and corticathe flow. We classify the symmetries of the periodic so-
neural oscillators [7]. In many applications the oscillatorslutions and indicate how this may be used to construct
are identical, dissipative, and the coupling is symmetricbifurcation diagrams. We also show how our results re-
Under such circumstances one can exploit the symmetrgluce to those of a corresponding phase-coupled model in
of the system to determine generic features of the dynamnthe weak coupling regime.
ics such as the emergence of certain classes of solutionsConsider a circular array a¥ identical pulse-coupled
due to symmetry breaking bifurcations. Group-theoretidntegrate-and-fire oscillators labeled= 1,...,N. Let
methods have been used to study both small amplitude 0%#,(r) denote the state of theth oscillator at timer.
cillators on a ring near a Hopf bifurcation [8], and weakly Suppose thal/, () satisfies the set of coupled equations
coupled oscillators under phase averaging [9]. Symmetry
arguments have also been used to construct central pat-  dU,(t)
tern generators for animal gaits [10] and to establish the dt
existence of periodic orbits in Josephson junction series
arrays [11]. Most work to date on the role of symmetrySupplemented by the reset conditiaig(s ") = 0 when-
in coupled oscillator arrays has assumed that the intera@ver U,(¢) = 1. (All subscriptsn,m are taken modulo
tions between elements of the array are smooth. On th®). The input iSE,,(t) = fo P(7)E,(t — 7)dT, where
other hand, many biological oscillators communicate withE,, (¢) represents the sequence of pulses transmitted from
impulses as exemplified by the so-called integrate-and-firthe mth oscillator at timer and P(r) represents a dis-
model [12]. This latter model has recently sparked in-tribution of delays. Neglecting the shape of an indi-
terest within the physics community due to connectionssidual output pulse, the resulting spike train Ag(r) =
with stick-slip models and self-organized criticality [13]. ZJ,_w 8(t — T}), where T} is the jth firing time of
In Ref. [12], it was rigorously proved that globally cou- the nth oscnlator We shaII assume th#t,, = 0 and
pled integrate-and-fire oscillators always synchronize iW,, = Wy_,, for all m so that the network has symmetric
the presence of excitatory coupling. However, more bio-excitatory connections. It then follows that the underly-
logically realistic models have spatially structured patternsng symmetry of the ring of coupled oscillatorsy,. (In
of excitatory or inhibitory connections, and delayed cou-the special case of global coupling,, independent ofi,
plings. It is an important issue to determine how thethe symmetry is given by the full permutation group).
dynamics of pulse-coupled oscillators depends on the One may interpret Eq. (1) as a simple model of nerve
distribution of delays and the range of interactions. Astissue in which the distributio®(7) incorporates certain
we shall show here, the analysis of such systems is conmportant aspects of neural processing such as axonal
siderably facilitated by exploiting the underlying symme-transmission delays [14], synaptic processing [15], and
tries of the system. dendritic processing [16]. For concreteness, we shall

In this Letter we use group-theoretic methods to anaeonsider only the first two features by takimr) =
lyze the dynamics of a ring a¥ identical integrate-and- g(r — 74)0(r — 74), where g(7) = a’rexp(—ar) is
fire oscillators with delayed interactions. In particular,the so-calleda function representing the shape of a
we derive conditions for the existence of periodic, phasepostsynaptic potential and, is a discrete transmission
locked solutions in which every oscillator fires with the delay. Heref(x) = 1 if x = 0 and is zero otherwise. A
same frequency; the latter is determined self-consistenthysimplifying assumption of the model is that there is no
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correlation between,, and the delays. (An example One can now restrict the search for solutions of Eqgs. (2)
of space-dependent delays is considered elsewhere [16]{p those that are fixed points of a particular isotropy
Suppose that we restrict our attention to periodicsubgroup 3. The isotropy subgroups and fixed-point
solutions of Eq. (1) in which every oscillator fires with spaces ofDy X S! are listed in Table 2 of Ref. [9].
the same fixed period” (phase-locking). The state of It can be shown that the fixed-point spaces consist
each oscillator can then be characterized by a constaof m blocks of k¥ adjacent oscillators whereik = N
phaseg, € R\Z. We shall represent the set@fphases runs through all binary factorizations of. The phases
by the vector® = (¢y,...,dy) € MV, where MV ¢é1,..., ¢ determine the state of the system, and the
denotes theV torus. The firing times of theth oscillator  dimension of the fixed-point space is the number of
areT; = (j — ¢,)T. Generalizing the analysis of two independent phases within this block. If dim &} = d
integrate-and-fire oscillators in Ref. [15], we integratethen the N equations of (2) reduce td independent
Eq. (1) over the intervalr € (-T¢,,T — T¢,) and equations, one of which determines the peribd In
incorporate the reset condition by settitig(—¢,7) = 0  particular, if d = 1 then a solution is guaranteed to
andU,(T — ¢,T) = 1. This leads to the result exist by the underlying symmetry. Examples of these
_r N maximally symmetric solutions are tte-phasesolution,
I=(0—-e ) +e Z WK (bnsm = ¢n)  (2) ¢, = ¢ for all n, andtraveling wavesolutions, ¢, =
m=1 ¢ + nB with B = ny/N, ny =1,...,N — 1, where¢
T is an arbitrary phase. For even intege¥s one also
K(¢) = e*T] '8t + ¢T — 14)dt’ (3) has alternating solutions of the forify, ¢, .6, ...),
0 where ¢ = ¢ + 1/2. Maximally symmetric solutions

forn =1,...,N, where

with 2(r) = 37 g(¢ + jT); that s, typically bifurcate into solutions that have an isotropy
ale ol Te—aT group withd > 1 as some system parameter is varied

g(t) = — ozT|:t + _—aT:| (4) (spontaneous symmetry breaking). Such a parameter

I—e (I —e™h) could be a characteristic length or time scale, for example,

for 0 =t < T; 2(¢r) is extended outside this range by the range of interactions, the discrete time detgy or

taking it to be a periodic function af the inverse rise timex for oscillator response. We shall
The system of Egs. (2) is invariant under the action ofillustrate some of these ideas with a few simple examples;

the groupl’ = Dy X S!. Thatis, if® = (¢1,...,¢y) a more detailed analysis will be presented elsewhere [17].

is a solution of Eqgs. (2) then so is® for all o € T'. First consider the case of two coupled integrate-and-fire

We can take the generators By to be {vyi, v,} with  oscillators [18]; the underlying symmetry group4s X
[y1®], = ¢n+1 and[y,®], = dn—n+2. The additional S'. Equations (2) can be written fa¥ = 2 as the pair
S! symmetry, which corresponds to constant phase shiftsf equations1 = (1 — e 7)I + eK(*¢), where ¢ =
», — ¢, + 8, is a consequence of the fact that Egs. (2)¢; — ¢,. These equations reduce to one independent
depend only on phase differences. It follows that anyequation (that determines the peri@d for the in-phase
solution of Egs. (2) will determin@ (up to an arbitrary solution¢ = 0 (or equivalently$ = 1) and the antiphase
phase shift) and the peridd = T(®) such thal(c®) =  solution¢ = 1/2. Both of these solutions are guaranteed
T(®)foral o el. to exist by the symmetry of the problem. In Fig. 1, we
The existence of an underlying symmetry group allowsshow how an additional pair of solutiofé,1 — ¢} with
one to systematically explore the different classes of so8 < ¢ < 1/2 bifurcates from the antiphase solution as
lutions to Egs. (2) and the bifurcations that can occur ashe parameterr is varied, and for a range of values
some system parameter is varied. In order to develop thisf the couplinge. (The fact thatl — ¢ is a solution
issue further, it is useful to introduce a few simple defini-when ¢ is a solution is again a consequence of the
tions from group theory. [For a general account of sym-underlying symmetry; that is, they lie on the same group
metries in bifurcation theory see [8]. The more specificorbit.) In the case of two integrate-and-fire oscillators one
case of the grouPy X S' within the context of coupled can derive a simple condition for the dynamical stability
(phase) oscillators is discussed in Ref. [9]]. The symmeeof phase-locked solutions [15]: a solutiah” is stable
tries of any particular solutiod® form a subgroup called provided thatdK (¢)/d¢ls—¢ > 0, where K_(¢) =
the isotropy subgroup of® defined by2¢ ={oc € I':  K(¢) — K(—¢).
o® = ®}. More generally, we say thai is an isotropy As a more complicated example, we show in Fig. 2 a
subgroup ofl' if ¥ = 34 for some® € MY, The bifurcation diagram for a ring of four oscillators with uni-
fixed-point subspacef an isotropy subgroufx, denoted form nearest neighbor couplind¥(, = 8,,1 + Smn—1)-
by Fix(2), is the set of pointsb € MY that are invari- Again we find that solutions witld > 1 bifurcate from
ant under the action c, Fix(2) = {® € MV: o® = maximally symmetric solutions as the parameteis var-
® forall 0 € X}. Finally, the group orbit through a ied. ForN = 2 the linear stability of the phase-locked
point ® is I'd = {oc®: o €I'}. If & is a solution to solutions can be determined by considering small pertur-
Egs. (2) then so are all other points of the group orbit. ~ bations of the firing timesT} = (j — 6,)T + &} [17].

2792



VOLUME 79, NUMBER 15 PHYSICAL REVIEW LETTERS 13 ©TOBER 1997

We shall now show how in the weak coupling limit
09 the phase-locked solutions of the pulse-coupled model
08 | converge to corresponding solutions of a phase-coupled
07 | model obtained from the former by an averaging pro-
i cedure. (This feature is illustrated in Fig. 1). As a
06 T slight generalization, we shall assume that in the absence
005 — e 1 unstable of coupling (e = 0) each oscillator evolves according

04 | i to dU,/dt = f(U,) for some smooth functiory, with

03 f the period of oscillations given by, = f(l) du/f(u). If

o2 | f(U)=—-U + I asin Eq. (1), thefy = In[1/(I — 1)]

o1 | with I > 1. Following Ref. [15], we introduce the phase

' variable ¢,(r) according to (mod 1)y, (¢) + t/Ty =

2 4 6 8 10 12 14 16 18 20 W(U,(1) =T, f(’{"(’) du/f(u). Under such a transfor-
o mation Eq. (1) becomes

FIG. 1. Relative phase in the IF model as a function of the din (1)

distributed delay parametet is shown with solid lines for —rn =

e = 0.01,0.05,0.1,0.25 with r; = 0 and/ = 2. In each case dt

the antiphase state undergoes a pitchfork bifurcation at a critical .

value ofa (which increases witlk) where it becomes unstable Where F(z) = 1/[Tof(¥~'(z))] for 0=z <1 and

and two additional stable solutiors,1 — ¢ are created. The F(z + j) = F(z) forall j € Z. Whene = 0, the phase

dashed curves show the bifurcation branches in the limitingyariable ¢, (¢) is constant in time and all oscillators fire

case of the weakly coupled phase-interaction picture. with period Tp. Now suppose that the oscillators are

weakly coupled § small). To a first approximation, each
However, the spectrum of the resulting linear map for the?Scillator sitill fires with period7, but now the phases
8" is infinite dimensional due to the presence of delays¥(t) Slowly drift according to Eq. (). Therefore, the fir-

i il i i [ be approximated I} = (j — ¢,(1))To
Hence, proving stability analytically is generally not fea- N9 times may _ ,
sible and one must rely on numerical simulations. TheUch that the right-hand side of Eq. (5) becomes a peri-

latter shows, for example, that the traveling wave solutiorpdic function ofz with period7,. We can then average
of Fig. 2 is unstable for smalk but is stable beyond the Ed- (3) Over asingle period to obtain the phase equations

bifurcation pointA. dip(t) _
dt

N
eF((t) + /To) D WnEnin(t),  (5)

m=1

N
€ Z W;nH[¢n(t) - ¢n+m(t):|’ (6)
m=1

whereH is the phase interaction function
Oé md /’J CE 1 oo
b 0.6 A - H(p) = —f P(T)Fly + 7/ToldT. @)
04 | B —— ] Ty Jo
0'3 i C quation (6) immediately shows that delays in the propa-
08 | c gation of signals between pulse-coupled neurons reduce
06 ///—6 to phase shifts in the corresponding phase-coupled model.
9304 [ B,B&é Also note that the system of equations is invariant under
0.3 [ C the symmetry grouf’ = Dy X S.
o0s | ' ' ' ' ' ' "] Proceeding along similar lines to our analysis of the
06 L B/,,Qé pulse-coupled model, we consider phase-locked solutions
®2 04 L A/J S c— of the form ¢, (t) = ¢, + Qr, where ¢, is a constant
02 F \ 1 phase and() is an O(e) contribution to the effective
0 ' ' ' : ' : frequency of the oscillators; that is/7T = 1/T, + .
5 10 15 azo % 30 35 Substitution into Eq. (6) leads to the set of equations
N
FIG. 2. Relative phases of a ring of four IF neurons with - —
nearest neighbor (F:)oupling iIIustrat%g bifurcations to isotropy Q= 6’1;1 WinHldn = buim] (8)

groups withd > 1 as « is increased#; = 0.14, I = 2, and
e = 0.05). The phasep, is fixed to be zero. At the poimt

a pair ofd = 2 states of the form0, ¢, 1/2, ¢d1;) bifurcates
from a traveling wave staté, = n/4. At the pointB’ a pair
of d = 2 states of the form(0,0, ¢, ¢) bifurcates from the
state(0,0,1/2,1/2) and similarly at pointB a pair of the form
(0, ¢, ¢,0) bifurcates from(0,1/2,1/2,0). At the pointsC

there are bifurcations fromd = 2 states(0, ¢, ¢,0) to d = 4

States(os ¢2s ¢37 ¢4)

for n =1,...,N. As in the analysis of the analogous
system of Egs. (2), we can exploit the underlying sym-
metry to construct bifurcation diagrams for phase-locked
solutions. Note, however, that these solutions are now
independent of the coupling; the coupling only affects
the value of the frequenc{. In order to make a direct
comparison with the previous pulse-coupled model we
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setf(U) = —U + I. ThenF(z) = e"*/[ITy], H(¢) =  show elsewhere, in the case of an odd number of oscilla-
e Ko(—)/[IT3], whereK, satisfies Eq. (3) witil re-  tors in the ring it is also possible for Hopf bifurcations to
placed byTy,, and Egs. (2) reduce to Egs. (8) to first or- occur leading to quasiperiodic behavior. Establishing the
der in € (see Fig. 1). Thus phase-locked solutions ofexistence of quasiperiodic (and perhaps chaotic) behavior
the pulse-coupled model converge to those of the phaséa the underlying pulse-coupled model is less straightfor-
coupled model in the limie — 0. The following stability  ward and is the subject of future work.
result also holds [17]: for any finit4 and for sufficiently This research was supported by Grant No./GR
small €, if there exists a stable or unstable (hyperbolic)K86220 from the EPSRC (U.K.).
phase-locked solution of the phase-coupled model then
there exists a corresponding solution of the pulse-coupled
model of the same stability type.
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