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Parisi Phase in a Neuron
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Pattern storage by a single neuron is revisited. Generalizing Parisi’s framework for spin gla
we obtain a variational free energy functional for the neuron. The solution is demonstrated at
temperature and large relative number of examples, where several phases are identified by th
dynamical stability analysis, two of them exhibiting spontaneous full replica symmetry breaking.
give analytically the curved segments of the order parameter function and, in representative
compute the free energy, the storage error, and the entropy. [S0031-9007(97)04199-9]
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Statistical physical modeling of neural network
achieved much success in the description of neural ph
nomena, ranging from storage and retrieval in memo
networks to learning and generalization in feed-forwa
networks to unsupervised learning [1]. Whereas som
models for a single neuron are admittedly oversimplifie
from the biological viewpoint, when networked they
exhibit a variety of neural functions, performed by
living systems and demanded from artificial designs.
this Letter we study a single perceptron-type neuron
memorization ability, crucial for the understanding o
networked systems. When the number of synap
couplings of a neuron becomes large the storage probl
can be described via the statistical mechanical framewo
introduced by Gardner and Derrida [2,3]. Since the
the neuron is well understood below capacity; the regio
beyond it, however, remained the subject of continuo
research and debate [4–9]. We claim that the framewo
presented here carries the exact statistical mechan
solution, which we illustrate on a partly analytically
treatable limiting case. Networks beyond saturation a
long known to have complex features; here we show th
even a single neuron can exhibit extreme complexity.

We consider the McCulloch-Pitts model neuron [1],

j  sgnshd, h  N21y2
NX

i1

JiSi , (1)

whereJ is the vector of synaptic couplings,S the input,
and j the response. The normalization was chosen
that h is typically of Os1d when N ! `. Patterns to
be stored are prescribed as pairshSm, jmjM

m1 such that
the neuron is required to generatejm in response toSm.
Given the ensemble of patterns, the local stability p
rameterDm  hmjm obeys some distributionrsDd (see
[4]). The mth pattern is stored by the neuron if the ac
tual response signal from Eq. (1) equals the desired out
jm, i.e., Dm . 0. The number of patternsM is generi-
cally of orderN , soa  MyN is an intensive parameter.
For the sake of simplicity, we generate theS

m
i ’s inde-

pendently from a normal distribution, considerjm  61
equally likely, and choose the spherical prior constrai
jJj 

p
N . The cost function to be minimized, i.e., the
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Hamiltonian, is the sum of errors committed on the pat
terns. The error on themth pattern is measured by a po-
tential V sDmd, taken here to be zero for arguments large
than a givenk and decreasing elsewhere [4]. Storage
as defined above corresponds tok  0, while a k . 0
means a stricter requirement on the local stabilityD and
ensures a finite basin of attraction for a memorized patter
during retrieval. The Hamiltonian defines through gradi
ent descent a dynamics in coupling space. Specificall
V s yd  sk 2 ydbusk 2 yd corresponds to the percep-
tron and adatron rules forb  1, 2, respectively. There
is no such dynamics in the caseb  0, but because of
its prominent static meaning—the Hamiltonian counts th
incorrectly stored patterns—we will consider that in con
crete calculations.

The Hamiltonian introduced above gives rise to a
statistical mechanical system [2] resembling models o
spin glasses with infinite-range interactions [10]. The
microstates are configurations of synaptic couplings
quenched disorder is due to the randomly generate
patterns, and the temperatureT  b21 represents the
tolerance to error of storage. The partition function is

Z 
Z `

2`

dN Jds
p

N 2 jJjd exp

√
2b

MX
m1

V sDmd

!
. (2)

For largeN the replica method [10] yields the mean free
energy per coupling [2,4,6],

f  2
kln Zl
Nb

 lim
n!0

1 2 kZnl
nNb

 lim
n!0

1
n

min
Q

fsQd , (3)

wherek l stands for the average over patterns and

fsQd  fssQd 1 afesQd , (4a)

fssQd  2s2bd21 ln detQ , (4b)

fesQd  2b21 ln
ZZ `

2`

dnxdnys2pd2n

3 exp

√
2b

nX
a1

V s yad 1 ixy 2
1
2

xQx

!
.

(4c)
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The n 3 n matrix Q is symmetric and positive semidefi
nite, with elementsqaa  1 and 21 # qab # 1. The
entropic termfs is specific to the spherical model, whil
the energy termfe is independent of the prior constrain
on the synapses. The mean error per pattern is

´ 
1
a

≠bf
≠b


Z `

2`
dDrsDdV sDd , (5)

while the entropy per synapsis,

s  bsa´ 2 fd , (6)

has the usual thermodynamic meaning in coupling spa
The extremization problem [Eqs. (3) and (4a)–(4c

was first solved with the assumption of replica symme
(RS) [2,3]. Beyond capacity at zero temperature, ho
ever, Bouten [5] showed by rectifying [2,3] that, whe
ever the local stability distribution functionrsDd exhibits
a gap, there is an eigenvalue in negative infinity of t
Hessian≠2fsQdy≠qab≠qcd at the RS solution, so this is
not a minimum in (3). Such is the case for the pote
tial V s yd  us y 2 kd. The one-step replica symmetr
breaking (1-RSB) ansatz was considered forT  0, yield-
ing arsDd different from the RS result, and, as demand
from an improved solution, a larger energy [6–8].
the ground state beyond capacity, where allqab ! 1, an
eigenvalue of negative infinity has been found recen
for any R-step RSB (R-RSB), and for illustration the
2-RSB solution computed [9]. The results show a slig
improvement over 1-RSB in the energy and a significa
difference in the scaled elements ofQ, but also the 2-RSB
ground state turned out to be unstable. Reference [9]
fact, implied that a gap inrsDd at T  0 means the insta-
bility of all R-RSB solutions withR finite.

In order to treat the storage problem of the neuron
technically generalize Parisi’s method for the Sherringto
Kirkpatrick (SK) model of spin glasses (see [10]). B
Parisi’s choice ofQ and his continuation rule in the
n ! 0 limit, the SK free energy was expressed
terms of an order parameter function. An elegant a
useful reformulation was due to [11], whose free ener
functional for the SK problem incorporated both Paris
and Sompolinsky’s partial differential equations (PPD
and SPDE, respectively). Its analog was used for
Little-Hopfield (LH) memory network in [12]. For the
neuron, we adopt Parisi’s form forQ, momentarily as
an ansatz, but thermodynamical stability analysis repor
below amounts to its consistency check. Our calculatio
show that, despite the significant differences between
SK and the neuron Hamiltonians and those between
“hard” terms in the replica free energies, the variation
free energies are remarkably similar. We obtain [13]

f  max
xsqd

extr
fsq,yd,Psq,yd

f fs 1 as fe 1 fs1d
a 1 fs2d

a dg , (7a)

fs  2s2bd21
Z 1

0
dqfDsqd21 2 s1 2 qd21g , (7b)
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fe  fs0, 0d , (7c)

fs1d
a 

Z 1

0
dq

Z `

2`
dyPsq, yd

3

∑
Ùfsq, yd 1

1
2

f 00sq, yd 2
1
2

bxsqdf 0sq, yd2

∏
,

(7d)

fs2d
a 

Z `

2`
dyPs1, yd fV s yd 2 fs1, ydg . (7e)

The minimization in (3) turned to maximization due t
its interchange with then ! 0 limit [10] and extr de-
notes an extremum of unspecified type. Here and la
Ùh  ≠hy≠q and h0  ≠hy≠y. The xsqd is the inverse
of Parisi’s order parameter function, i.e., it gives th
probability that the overlap of the synaptic vectors fro
two replicas is smaller thanq, and Dsqd 

R1
q dqxsqd

is the continuation of the spectrum of the matrixQ for
n ! 0. The range1 $ q $ 0 is now included in the
ansatz that should be verified later. The auxiliary fun
tionals f

s1,2d
a carry the Lagrange multiplier fieldPsq, yd

and thus vanish at stationarity. Variation byPsq, yd
makes the fieldfsq, yd satisfy the PPDE, which can b
read off from (7d), and that byPs1, yd fixes the initial
condition through (7e). Sofsq, yd evolves fromq  1 to
q  0, and its final value gives the energy term in (7c
Stationarity in terms offsq, yd and fs0, yd leads to the
SPDE,

ÙPsq, yd 
1
2 P00sq, yd 1 bxsqd fPsq, ydf 0sq, ydg0, (8)

evolving from Ps0, yd  ds yd until q  1. Comparison
with the SK model [11], itsp-spin generalization [14],
and the LH network [12] shows that the respective PDE
and Ps0, yd are the same, but in our case a gene
initial condition fs1, yd  V s yd is taken. Variation of
(7a) in terms of explicit occurrences ofxsqd yields
s2bd21

R1
0 dqFsssq, fxsqdgddddxsqd, where

Fsssq, fxsqdgddd 
Z q

0

dq̃
Dsq̃d2 2 g

Z `

2`
dyPsq, ydf 0sq, yd2

(9)
is simultaneously a function ofq and a functional of
xsqd, with g  ab2. So whereverÙxsqd . 0, station-
arity requires thatF  0. If xsqd ; m, 0 , m , 1,
in an interval I , then stationarity in terms ofm leads
to Maxwell’s rule

R
I dqFsssq, fxsqdgddd  0. The R-RSB

ansatz involves a sequenceq
sRd
0 , · · · , q

sRd
R and has

xsqd 
PR

k0smsRd
k11 2 m

sRd
k dusq 2 q

sRd
k d, with m

sRd
0 

0 # m
sRd
1 # · · · # m

sRd
R11  1. It is naturally incorpo-

rated into the above scheme:F  0 is required at
each of the pointsq

sRd
0 , . . . , q

sRd
R and so is the Maxwell

rule in the intervals between them (cf. [15] in a spec
case). Note that the free energy can be written in sh
as maxxsqdf fs 1 afeg with Eqs. (7b) and (7c), where
fsq, yd satisfies the PPDE with the initial condition a
above; that corresponds to Parisi’s original formulation
2747
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Thermodynamical stability analysis requires the diag
nalization of the Hessian offsQd in Eqs. (4a)–(4c).
Based on the general expression of Ref. [16], we calc
lated a subset of eigenvalues from the replicon sector
the R-RSB, includinglsRdsRd  ÙFsssqsRd

R , fxsqdgddd that de-
rives from states in the same smallest cluster. ThelsRdsRd
is typically decisive for stability [14,15], and become
negative infinity atT  0 for any R-RSB with finite R
if rsDd has a gap [5,9]. Concerning the maximizingxsqd
of (7a)–(7e), ifÙxsqd . 0 in an intervalI then the continu-
ation of the aforementioned subset islsqd  ÙFsssq, fxsqdgddd,
so lsqd ; 0 in I, and thus zero modes are present. Th
is a generic property of a Parisi phase [17].

The distribution of the local stabilityD is found to be
of a remarkably simple form [13],

rsDd  Ps1, Dd , (10)

that sheds light on the physical meaning of the auxilia
field Psq, yd: y is the local stability at an intermediate
generation of the ultrametric tree andPsq, yd its probabil-
ity distribution. The analogy with the local magnetic fiel
in the SK and LH models [11,12,18] is apparent.

Classic neural modeling focuses onT  0. To solve
that problem, however, extensive numerical work ma
be necessary. On the other hand, in the limita, T ! `

while g is kept finite, we can calculatexsqd wherever it
deviates from the steplike shape; therefore other analy
results follow. By resolving the PPDE and the SPD
perturbatively we obtainfsq, yd andPsq, yd as functionals
of xsqd to Osb2d, yielding explicit functional forms
for the free energy terms (7c)–(7e) as well as for (9
Another possibility is first expanding (4c) inb and then
applying the Parisi ansatz. Either way we arrive at

b2f  f0 1 b max
xsqd

ff1g 1 Osb2d , (11a)

f0  g
p

Ws0d , (11b)

f1  bfs 1 bgfs1d
e , (11c)

bfs1d
e 

1
2

Z 1

0
dqxsqd ÙW sqd , (11d)

W sqd 
ZZ `

2`
d2t

exps2 1
2 jtj2d

2p
V sn1 ? tdV sn2 ? td ,

(11e)

wherejn1,2j  1 andn1 ? n2  q. The functional (11c)
happens to be equivalent with the free energy in Nieuwe
huizen’s generalization of the spherical SK-type spin gla
model [19]. Formula (9) is in leading order

Fsssq, fxsqdgddd 
Z q

0
dqDsqd22 2 g ÙW sqd ; (12)

thus, for a continuousxsqd with Ùxsqd . 0, one has

xsqd 
1
2 g21y2 ...

WsqdẄsqd23y2, (13)

cf. Eq. (9) in [19]. Various trial functionsxsqd, such as
an R-RSB or Parisi’s ansatz of a continuous order p
2748
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rameter function between two plateaus (such a clas
Parisi phase will be referred to as SG-I), can be fo
mulated by means of (12). We calculated the full se
of replicon eigenvalues ofR-RSB based on [16]. With
r  0, . . . , R 2 1 andk, l  r 1 1, . . . , R, we have

lsRdsr; k, ld  DsqsRd
k d21DsqsRd

l d21 2 gẄ sqsRd
r d , (14)

andlsRdsRd is obtained ifq
sRd
R is substituted for allq’s in

(14). We studied the exampleV s yd  usk 2 yd when

ÙWsqd  s2pd21s1 2 q2d21y2 expf2k2ys1 1 qdg . (15)

Four distinct phases are found and depicted in Fig. 1.
the boundary of the transition RS–SG-I and, furthermor
at the RS–1-RSB line fork , k2, if the border is ap-
proached from the RSB phase, thexsqd function con-
verges for each0 # q # 1 to the RS valueqs0d. Here
the third derivative of the mean free energy is discontin
uous. On the other hand, fork . k2, if the RS–1-RSB
line is approached from the RSB side, thenq

s1d
0 ! qs0d

but q
s1d
1 !y qs0d. The plateau valuem

s1d
1 ! 1, so the limits

of xsqd from the two phases differ at one pointq  1.
At that transition, the second derivative of the free energ
is discontinuous. This phenomenon is analogous to t
RS–1-RSB transition in the random energy model (se
[10]), and two similar types of segments of the RS–1
RSB borderline were identified in the sphericalp-spin SK
model by [15]. The RS–SG-I boundary is analogous t
the Parisi transition in the SK model. We found a fourt
phase, wherexsqd is like an SG-I curve joined with a one-
step function. It is of the same type as the phase PG-II
the Potts spin glass [20], and the low-temperature state
the p-spin SK model [14]. Furthermore, it is analogou
to the phase SG-IV of [21]. The borderlinels0ds0d  0
of local stability of the RS state, i.e., the de Almeida
Thouless (AT) curve, coincides with the border of the R
phase fork , k2 but enters the RSB phases for large
k’s. However, whenever RS and RSB states coexist, w

FIG. 1. Phase diagram for the potentialV s yd  usk 2 yd
in the sg, kd plane for highT by numerical maximization of
Eq. (11c). The full lines separate phases with different type
of global maxima. The RS, 1-RSB, SG-IV, and SG-I phase
are indicated bya, b, c, andd, respectively. The AT curve is
the RS phase boundary fork , k2 . 2.38, and to the right of
the arrow it analytically continues in the dashed line.
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FIG. 2. Thexsqd function at representative points as marke
on Fig. 1 by crosses.

find that the RSB state maximizes the free energy fun
tional (7a)–(7e). No coexistence between different typ
of RSB phases was observed. One characteristicxsqd
function from each phase is shown in Fig. 2. Note th
if xsqd has a curved segment, this is explicitly given b
Eqs. (13) and (15). For illustration, thermodynamic qua
tities are plotted along thek  0 line in Fig. 3. We
expect that for some finite temperatures similar phas
exist; nevertheless, in the ground state the phase d
gram simplifies to the single borderline RS–SG-I, i.e., th
known limit of capacity curve. The richness of the neur

FIG. 3. The entropys from Eq. (6), the free energy termf1

from Eq. (11c), and the enlarged correctioń1  T s 1
2 2 ´d

for the energy (5) in the high-T limit. The RS–SG-I transi-
tion is marked by an arrow. The dashed lines correspond
the thermodynamically unstable RS state beyond this tran
tion point. Inset showsf1 on an enlarged scale and demon
strates the smoothness of the transition.
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behavior forT ! ` should be contrasted with the generic
RS high-T phase in SK-type disordered magnets.

In conclusion, we have put forth an exact descriptio
of storage by a single neuron in terms of a variation
free energy, the solution of which we demonstrated in th
high-T limit with the error counting potential. Storage
beyond capacity with other error measures, learning a
generalization of unlearnable tasks, storage by network
neurons, and frustrated phases in general are natu
directions for future investigations.
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gratefully acknowledged. This work was supported b
HSRF Grant No. T017272 and the Holderbank foundatio
(Switzerland).

*Present address: Universität Augsburg, Memminge
Str. 6, 86135 Augsburg, Germany.

[1] J. Hertz, A. Krogh, and R. G. Palmer,Introduction to
the Theory of Neural Computation(Addison-Wesley,
Reading, MA, 1991).

[2] E. Gardner, J. Phys. A22, 1969 (1989);21, 257 (1988).
[3] E. Gardner and B. Derrida, J. Phys. A21, 271 (1988).
[4] M. Griniasty and H. Gutfreund, J. Phys. A24, 715 (1991).
[5] M. Bouten, J. Phys. A27, 6021 (1994).
[6] P. Majer, A. Engel, and A. Zippelius, J. Phys. A26, 7405

(1993).
[7] R. Erichsen and W. K. Theumann, J. Phys. A26, L61

(1993).
[8] A. H. L. West and D. Saad, J. Phys. A30, 3471 (1997).
[9] W. Whyte and D. Sherrington, J. Phys. A29, 3063 (1996).

[10] M. Mézard, G. Parisi, and M. Virasoro,Spin Glass
Theory and Beyond(World Scientific, Singapore, 1987);
K. H. Fischer and J. A. Hertz,Spin Glasses(Cambridge
University Press, Cambridge, U.K., 1991).

[11] H.-J. Sommers and W. Dupont, J. Phys. C17, 5785
(1984).

[12] K. Tokita, J. Phys. A27, 4413 (1994).
[13] Details of the calculation will be presented elsewhere.
[14] E. Gardner, Nucl. Phys.B257, 747 (1985).
[15] A. Crisanti and H.-J. Sommers, Z. Phys. B87, 341 (1991).
[16] T. Temesvári, C. De Dominicis, and I. Kondor, J. Phys. A

27, 7569 (1994).
[17] C. De Dominicis (private communication).
[18] J. R. L. de Almeida and E. J. S. Lage, J. Phys. C16, 939

(1983).
[19] Th. M. Nieuwenhuizen, Phys. Rev. Lett.74, 4289 (1995).
[20] D. J. Gross, I. Kanter, and H. Sompolinsky, Phys. Rev

Lett. 55, 304 (1985).
[21] Th. M. Nieuwenhuizen, J. Phys. A30, L55 (1997).
2749


