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Parisi Phase in a Neuron
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Pattern storage by a single neuron is revisited. Generalizing Parisi's framework for spin glasses,
we obtain a variational free energy functional for the neuron. The solution is demonstrated at high
temperature and large relative number of examples, where several phases are identified by thermo-
dynamical stability analysis, two of them exhibiting spontaneous full replica symmetry breaking. We
give analytically the curved segments of the order parameter function and, in representative cases,
compute the free energy, the storage error, and the entropy. [S0031-9007(97)04199-9]
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Statistical physical modeling of neural networks Hamiltonian, is the sum of errors committed on the pat-
achieved much success in the description of neural phderns. The error on thgth pattern is measured by a po-
nomena, ranging from storage and retrieval in memoryential V(A#), taken here to be zero for arguments larger
networks to learning and generalization in feed-forwardhan a givenk and decreasing elsewhere [4]. Storage
networks to unsupervised learning [1]. Whereas somas defined above corresponds«o= 0, while ax > 0
models for a single neuron are admittedly oversimplifiedmeans a stricter requirement on the local stabiityand
from the biological viewpoint, when networked they ensures a finite basin of attraction for a memorized pattern
exhibit a variety of neural functions, performed by during retrieval. The Hamiltonian defines through gradi-
living systems and demanded from artificial designs. Inent descent a dynamics in coupling space. Specifically,
this Letter we study a single perceptron-type neuron's/(y) = (k — y)?6(x — y) corresponds to the percep-
memorization ability, crucial for the understanding of tron and adatron rules fa¥ = 1,2, respectively. There
networked systems. When the number of synaptiés no such dynamics in the cage= 0, but because of
couplings of a neuron becomes large the storage probleits prominent static meaning—the Hamiltonian counts the
can be described via the statistical mechanical frameworkcorrectly stored patterns—we will consider that in con-
introduced by Gardner and Derrida [2,3]. Since thengcrete calculations.
the neuron is well understood below capacity; the region The Hamiltonian introduced above gives rise to a
beyond it, however, remained the subject of continuoustatistical mechanical system [2] resembling models of
research and debate [4—-9]. We claim that the frameworkpin glasses with infinite-range interactions [10]. The
presented here carries the exact statistical mechanicalicrostates are configurations of synaptic couplings,
solution, which we illustrate on a partly analytically quenched disorder is due to the randomly generated
treatable limiting case. Networks beyond saturation argatterns, and the temperatufe= 8~ ! represents the
long known to have complex features; here we show thatolerance to error of storage. The partition function is
even a single neuron can exhibit extreme complexity. % M

We consider the McCulloch-Pitts model neuron [1], Z = [ dVJ8(VN - |J|)exp<—,8 Z V(A“)). (2)

w =

v _
= = N1/2 Q.
¢ = sgn(h), h=N ;J’S’ ’ (1) For largeN the replica method [10] yields the mean free
where] is the vector of synaptic couplings, the input, energy per coupling [2,4,6],
and ¢ the response. The normalization was chosen s _ (nZ) . 1 —-4(Z") . 1 .
that # is typically of O(1) when N — . Patterns to ? B NgB N ,'ﬂ% nN B le) n QOf(Q)’ (3)

be stored are prescribed as paﬁSS‘,f“}ff:l such that
the neuron is required to generaé in response t&#.  Where() stands for the average over patterns and

Given the ensemble of patterns, the local stability pa-  £(Q) = £,(Q) + af.(Q), (4a)
rameterA* = h* &+ obeys some distributiop (A) (see
[4]). The uth pattern is stored by the neuron if the ac-  7.(Q) = —(28) 'IndetQ, (4b)

tual response signal from Eq. (1) equals the desired output

&*, i.e., A* > 0. The number of patternsf is generi- _ o .
cally of orderN, soa — M/N is an intensive parameter. /¢(Q) = =8 Hin fffood xd"y(2m)
For the sake of simplicity, we generate t&’s inde- "
pendently from a normal distribution, considgt = *1 % exp(—,B Z V(ya) + ixy — 1 xQx).
equally likely, and choose the spherical prior constraint a=1 2

|J| = VN. The cost function to be minimized, i.e., the (4c)
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Then X n matrix Q is symmetric and positive semidefi-  f, = £(0,0), (7¢)
nite, with elementsg,, =1 and -1 =< ¢,, = 1. The 0 1 %
entropic termf; is specific to the spherical model, while j. = ] dCI] dyP(q.y)
the energy terny, is independent of the prior constraint 0 o . |
on the synapses. The mean error per pattern is > [ Lo _ 1 / 2}
L ags ) fla.y) + 5 q.y) = 5 Bx(@)f (q.9)" |,
= — 25 = | aApVE), () (7d)
2) _ —_
while the entropy per synapsis, fa' = f_x dyP(1L,y)[V(y) = f(L,y)]. (7e)
s = Blae — f), (6) The minimization in (3) turned to maximization due to

has the usual thermodynamic meaning in coupling spaceltS interchange with the: — 0 limit [10] and extr de-
The extremization problem [Egs. (3) and (4a)_(4c)]r)otes an extremum of unspecified type.. Herg and later,
was first solved with the assumption of replica symmetry? = 9h/dq and h’ = ah/dy. The x(q) is the inverse
(RS) [2,3]. Beyond capacity at zero temperature, howof ParI_S.I’S order parameter function, i.e., it gives the
ever, Bouten [5] showed by rectifying [2,3] that, when- probability that the overlap of the synaptic vlectors from
ever the local stability distribution function(A) exhibits ~ two replicas is smaller thag, and D(¢) = [, dgx(q)
a gap, there is an eigenvalue in negative infinity of thes the continuation of the spectrum of the matQx for
Hessiana?f(Q)/dqu»9q.q at the RS solution, so this is » — 0. The rangel = ¢ = 0 is now included in the
not a minimum in (3). Such is the case for the poten-ansatz that should be verified later. The auxiliary func-
tial V(y) = 6(y — k). The one-step replica symmetry tionalsfc(,l’Z) carry the Lagrange multiplier field(q,y)
breaking (1-RSB) ansatz was consideredffor 0, yield- and thus vanish at stationarity. Variation (g, y)
ing ap(A) different from the RS result, and, as demandednakes the fieldf(g,y) satisfy the PPDE, which can be
from an improved solution, a larger energy [6—8]. Inread off from (7d), and that by (1,y) fixes the initial
the ground state beyond capacity, wheregall — 1, an  condition through (7e). S¢(q, y) evolves fromg = 1 to
eigenvalue of negative infinity has been found recentlyy = 0, and its final value gives the energy term in (7c).
for any R-step RSB R-RSB), and for illustration the Stationarity in terms off(g,y) and £(0,y) leads to the
2-RSB solution computed [9]. The results show a slightSPDE,
improvement over 1-RSB in the energy and a significant ; _ 1lpn / /
difference in the scaled elements@f but also the 2-RSB P(g.y) = 3P7(q.y) + Bx(9)[Plg.»)f (¢, )], (8)
ground state turned out to be unstable. Reference [9], ifvolving fromP(0,y) = &(y) until ¢ = 1. Comparison
fact, implied that a gap ip(A) at7 = 0 means the insta- With the SK model [11], itsp-spin generalization [14],
bility of all R-RSB solutions withr finite. and the LH network [12] shows that the respective PDE’s
In order to treat the storage problem of the neuron weénd P(0,y) are the same, but in our case a general
technically generalize Parisi’'s method for the Sherringtoninitial condition f(1,y) = V(y) is taken. Variation of
Kirkpatrick (SK) model of spin glasses (see [10]). By (7a) in terms of explicit occurrences of(q) yields
Parisi's choice ofQ and his continuation rule in the (28)~" [y dqF(q.[x(q)])8x(q), where
n — 0 limit, the SK free energy was expressed in _ 7 dg * , 5
terms of an order parameter function. An elegant andF(¢.[x(@)]) = o D@? 7’[ dyP(q,y)/"(¢,)
useful reformulation was due to [11], whose free energy i o ©)
functional for the SK problem incorporated both Parisi's. . . :
and Sompolinsky’s partial differential equations (PPDE'S_Simultaneously a function of and a functional of
and SPDE, respectively). Its analog was used for thé(@) With v = aB”. So whereveri(q) > 0, station-
Little-Hopfield (LH) memory network in [12]. For the &ty requires thatr" = 0. If x(g) =m, 0 <m <1,
neuron, we adopt Parisi's form fa@, momentarily as in an |nteryaII, then statlonarl_ty in terms ofz leads
an ansatz, but thermodynamical stability analysis reportel Maxwell's rule I qu(q,[);()q)]) = 0. H)‘e R-RSB
below amounts to its consistency check. Our calculationgnsatz involves a sequenqé <.--<gg and has
show that, despite the signifiqant differences between the(g) = Zf=0(m,(fi)1 - m,((R))ﬁ(q - q,((R)), with m(()R) =
SK and the neuron Hamiltonians and those between thg < ,® < ... < ,,%® — 1 |t is naturally incorpo-

“hard” terms in the replica free energies, the variationalateq into the above scheme:F = 0 is required at

free energies are remarkably similar. We obtain [13] each of the points;ék),...,qﬁgk) and so is the Maxwell
f=max extr [fs+ a(f.+ D+ O] (7a) rule in the intervals between them (cf. [15] in a special
x(q) flgy)Plgy) " ¢ ¢ case). Note that the free energy can be written in short
l as maxl fs + af.] with Egs. (7b) and (7c), where
fs = _(25)*1f dglD(¢)"' — (1 — ¢ '], (7b)  f(q.y) satisfies the PPDE with the initial condition as
0

above; that corresponds to Parisi’s original formulation.
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Thermodynamical stability analysis requires the diago+tameter function between two plateaus (such a classic
nalization of the Hessian of (Q) in Eqgs. (4a)—(4c). Parisi phase will be referred to as SG-I), can be for-
Based on the general expression of Ref. [16], we calcumulated by means of (12). We calculated the full set
lated a subset of eigenvalues from the replicon sector aff replicon eigenvalues oR-RSB based on [16]. With
the R-RSB, |nclud|ng/\(R)(R) = F(q;gR),[X(ﬁ)]) that de- r=20,...,R — 1 andk,l =r+1,...,R,we have
rives f_rom states i.n the same _s_mallest cluster. TH&R) AB (e k1) = D(q,((R) ‘lD(qER))‘l — yW(g®), (14)
is typically decisive for stability [14,15], and becomes
negative infinity at7 = 0 for any R-RSB with finite R  and A®)(R) is obtained iquRR) is substituted for all’s in
if p(A) has a gap [5,9]. Concerning the maximizing) (14). We studied the examplé(y) = 6(x — y) when
of (7a)—(7e), ifx(¢) > 0in an intervall then the continu- : . ~1 21—1/2 2
ation of the aforementioned subsetis) = F(g. [x(q)]), Wig) = @m) (1 = ¢ P exd—x?/(1 + g)]. (15)
so A(g) = 0in I, and thus zero modes are present. Thid~our distinct phases are found and depicted in Fig. 1. At

is a generic property of a Parisi phase [17]. the boundary of the transition RS—SG-I and, furthermore,
The distribution of the local stabilitA is found to be at the RS—1-RSB line fok < «,, if the border is ap-
of a remarkably simple form [13], proached from the RSB phase, th¢;) function con-
p(A) = P(I,A), (10) Verges for eacld = ¢ = 1 to the RS valugg®. Here

. ) . .. the third derivative of the mean free energy is discontin-
that sheds light on the physical meaning of the auxiliary,,,s  on the other hand. far > K, if the RS—1-RSB

field P(q,y): y is the local stability at an intermediate line is approached from the RSB side, th@(%) )

generation of the ultrametric tree aRrdg, y) its probabil- W o (1) L

ity distribution. The analogy with the local magnetic field PUt 41 7>¢". The plateau value:;” — 1, so the limits

in the SK and LH models [11,12,18] is apparent. of x(¢) from the two phases differ at one poigt= 1.
Classic neural modeling focuses @h= 0. To solve At that transition, the second derivative of the free energy

that problem, however, extensive numerical work ma)js discontinuous. _ _This_ phenomenon is analogous to the
be necessary. On the other hand, in the limiT’ — o RS-1-RSB transition in the random energy model (see

while y is kept finite, we can calculate(q) wherever it [10]), and two similar types of segments of the RS-1-
deviates from the steplike shape; therefore other analyti&>B borderline were identified in the spherigabpin SK
results follow. By resolving the PPDE and the SPDEMOde! by [15]. The RS—SG-I boundary is analogous to
perturbatively we obtaiff(¢, y) andP(g, y) as functionals the Parisi transition in the SK model. .We found a fourth
of x(g) to O(B2), vielding explicit functional forms phase, Where(q) is like an SG-I curve joined with a one-
for the free energy terms (7c)—(7e) as well as for (9)_step funct|or_1. It is of the same type as the phase PG-Il of
Another possibility is first expanding (4c) i and then the Potts spin glass [20], and the low-temperature state of

applying the Parisi ansatz. Either way we arrive at the p-spin SK model [14]. Furthermore, it is analogous
to the phase SG-IV of [21]. The borderling® (0) = 0

20 2
Bf=doth T(S‘)){d’l] +0(8Y), (118)  of |ocal stability of the RS state, i.e., the de Almeida—
Thouless (AT) curve, coincides with the border of the RS
o = yVvW(0), (11b)  phase fork < x, but enters the RSB phases for larger
b1 = Bfs + ﬂyfél), (11c) X s. However, whenever RS and RSB states coexist, we
W 1 1! . 4
Bfe' =5 | dax(@W(q), (11d) ]
2 Jo 3,5
) 1 2 3t a
exp(—x [t
Wi(g) = jj d>*t [i—2||) Ving - t)V(n, - t), 25k
—o0 277'
» 2F
(11e) 15k
where|n;,| = 1 andn; - n, = ¢. The functional (11c) 1k + p
happens to be equivalent with the free energy in Nieuwen- 0.5f
huizen’s generalization of the spherical SK-type spin glass 0 , , ,
model [19]. Formula (9) is in leading order 10 100 1000 10* 10°
Y
q .
—T) — — ()2 )
F(g,[x@)) = jo dqD(q) = — yW(q); (12)  FiG.1. Phase diagram for the potentiely) = 6(x — y)
. L. in the (y, k) plane for highT by numerical maximization of
thus, for a continuous(q) with x(¢) > 0, one has Eq. (11c). The full lines separate phases with different types
x(q) = %y71/2W(q)W(q)73/2, (13)  of global maxima. The RS, 1-RSB, SG-IV, and SG-I phases

. . . . are indicated by, b, ¢, andd, respectively. The AT curve is
cf. Eq. (9) in [19]. Various trial functions(q), such as the RS phase boundary far < x» = 2.38, and to the right of
an R-RSB or Parisi’s ansatz of a continuous order pa-the arrow it analytically continues in the dashed line.
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1 T T

behavior forT — <« should be contrasted with the generic
RS highT phase in SK-type disordered magnets.
; 1 In conclusion, we have put forth an exact description
P ‘ of storage by a single neuron in terms of a variational
3 free energy, the solution of which we demonstrated in the
high-T' limit with the error counting potential. Storage
beyond capacity with other error measures, learning and
1 generalization of unlearnable tasks, storage by networked
neurons, and frustrated phases in general are natural
] directions for future investigations.
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