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A Lattice BGK Model for Viscoelastic Media
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A two- and three-dimensional lattice Bhatnager-Gross-Krook model is proposed to simulate
viscoelastic media. Large-scale equations are derived using the Chapman-Enskog expansion. A simple
linear relationship between the paramefewhich is introduced to characterize the elastic behavior and
the transverse velocity is obtained. Numerical simulations further confirm the analytical predictions.
[S0031-9007(97)04196-3]

PACS numbers: 83.50.Fc, 05.50.+q

We investigate a new lattice-based model for simulatequations is [20,26]
ing viscoelastic media with the Bhatnager-Gross-Krook 25
(BGK) approximation [1]. A decade ago, lattice gas e = tpp[l L Cialla | (ciacCip — C50ap) uauf;},
models for hydrodynamics were introduced by Frisch *' c? 2¢4
et al. [2—-5] and much research effort has led to encourag- (2)
ing progress [6—9]. These models have several appealing
advantages over conventional methods for complex flowwherez, is a lattice weight factor (the index is equal
such as multiphase flows [10,11], flows in porous medigo ¢7) and ¢, a constant. Greek subscripts and 3
[12], and reaction-diffusion systems [13]. The inconve-denote the space directions in Cartesian coordinates. The
niences such as statistical noise [14,15] and non-Galileamydrodynamic quantitiep and# are defined as
invariance [4,5,16] in the original lattice gas models have
been overcome by the use of lattice Boltzmann equations , — o e > - ez
[17-20]. Another difficulty in lattice gas models, the Zi:fl ;f” e Zi:flcl Zi:f’ “
existence of extra conserved quantities [21—24] which are (3)
not physically meaningful, was recently solved by using
a fractional propagation procedure [25]. The introduc- We propose a simple lattice BGK model for viscoelas-
tion of the BGK approximation to lattice-based modelstic materials. Unlike the internal variable needed in [32],
[20,26—-28] simplified the complicated collision pro- a parametett is introduced to characterize the elastic-
cesses, increased computing efficiency, and offered neity. Choosing an equilibrium distribution is much more
flexibility. These models have been quite effective forflexible in lattice BGK models than in the lattice gas
solving fluid problems. However, they have not been paidnodels. In fact, adding a term to the equilibrium (2) to
enough attention to in tackling solid or fluid-solid prob- model the transverse waves is convenient,
lems [29-31]. The study of viscoelastic behavior of ma- (Cracis — 28.ug)
terials done by d’Humiéres and Lallemand [32] based on a fe — tpp[l 4 Gialla | CiaCip — C50ap

lattice gas model successfully produced transverse waves c? 2cf Hellh
and the propagation speed. Their prediction was also con- (ciaCip — ¢28ap) (ualpg + ugly)
firmed nicely by numerical simulations. However, their +E 204 2 }
model requires an internal variable to describe “legal” : )

collisions responsible for propagation of transverse
waves and is clumsy in extension of their model to threerpe |1ast term involvinge' stems from the fact that one

dimensions. . ) ) simple elastic behavior is wavelike propagation, like a
The equation used n lattice. BGK models has theyiprating string. The vector symbdl, appearing in the
following form [20,26-28]: above equilibrium is defined as
fiR + éit + 1) = filx,0) + o[ f{ (X, 1) — fix,1)], =1 VYa=nxyz.
()

The Chapman-Enskog expansion [16,20,33] is used to

where f; is the particle distribution density witipre-  derive the large-scale dynamical equations up to second
defineddiscrete velocity; andw the relaxation parameter order of the Knudsen number,

(0 = w = 2) andi runs over the discrete velocity set.
A suitable equilibriumf; leading to the Navier-Stokes dp + 0a(puy) =0, (5)
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0 (pua) + dg(puaug) = —daP + v[0gs(pua) + duplpup)] — = [0,(pua) + 95(pug)l]

2
LY v + 0p5(0)a] = 2 o)l — S (o) ©®)
— — L9sap plal — ——5 dsp(pu — — 5 9ss(pua),
2 sa BB a 4C% sB BHa 4C% ss a
whered; is defined through,, | These results are in lattice units. In order to compare

with real world systems, we need to keep the same
similarity laws, i.e., the same values dlach number
As expected, the usual Navier-Stokes equations are recoMa (= uo/c; in lattice units) andReynolds number
ered wherE = 0. The shear viscosity and the pressure R. (= uoL/v in lattice units) for both lattice-based

0y =104 = 0x + 9, + 0;.

P are models and real systems. For elastic media discussed
5 here, a dimensionless material parametes E/(2cy)

I (3 - 1) P=:cp. (7)  @&lso appears in the following dimensionless momentum

2 \w ' ' equation after rescaling in time, space, and velocity

The models considered here are thus isothermal modejs (d€nsity p is linear in every term and thus is rescalable
by any constant),

1

1 e
d(pua) + dglpuqug) = — —dap + —[pp(pua) + daplpug)] — — [05(pua) + dp(pug)la]
M? R v
a e a
e 3@2 82
B M,R, [9sap * a‘B'B(p)Ia] h R, asﬁ(puﬁ)la - R_e 3ss(Pua). (8)

In what follows, the small-amplitude wave propagationsThe viscous media act as a spring in both transverse
in transverse and longitudinal directions are consideredand longitudinal directions, and the paramekeacts as
If there is only the shear mode,(x) = Uy cod27x)  Young’'s modulus. Since the viscous stress and elastic
initially with density p = 1.0 and vanishing longitudinal stress discussed here compound for the total stress, our
componentv,(x) = 0.0, the shear wave propagates at apresent model is good only for the Kelvin-Voigt-like
speedVy, with decay ratey, materials.
Compared with the models of Navier-Stokes-like equa-
E 2 ) tions for viscoelastic media, this model has five features:
Van = 5 ¥ = <1 - @) v=>0=¢e)r. (9) (i) New for studying viscoelastic properties of materials,
* (i) complementary to existing approaches particularly

For the longitudinal waves, there exist two modes whichfor systems of small scales that the hydrodynamical de-

. , . X . ..~ scription breaks down, (iii) bridging the microscopic
are the solution of the following dispersion relation (with ; PN : . ;
perturbation of the forng (@1—%0); and macroscopic descriptions of physics, (iv) flexible for

analyzing different media [different choices of the equi-
librium (4)], and (v) easy for numerical simulations.

2
0z - [Ek + i<2 - E_2>,,k2}9 - The above results are valid for any spatial dimension.
5 We performed tests by the following two-dimensional
2k* + ivEK® = 0; model which was found recently to have six order isotropy

of velocity tensors [34] and no extra spurious invariants
[25]. This model has 13 discrete particles’ velocities (in
lattice units): (0,0), (=1,0), (0, =1), (=1, %1), (£2,0),
and (0, =2); the four weight factors are) = 2/5, t; =
O ==t i(l - _>,,k2 8/75, t = 1/25, and 4 = 1/300. The constani; is
equal toy/10/5 in lattice units.
\/ I E2\2 E3 As in all lattice BGK simulations, we solve Egs. (1),
* k42 + — — (1 - —> v2k? — i— vk. (3), and (4) by time splitting. A time step consists of two
2¢5 substeps: collision and propagation. The collision substep
(10)  is purely local and it involves only the relaxation term in
Eq. (1). While during the propagation substep, particles
The physics behind the choice of equilibrium Eq. (4)hop from one sitex at time to anotherx + ¢; at time
leading to the viscoelastic behavior is easy to understand.+ 1 according to thejivendiscrete velocity;.

the solution is
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e . T ' sured and compared with/2 andy = (1 — E2?/4c2)v.

oot | The square and triangular points in Fig. 2 are the numeri-

cal measurements while the curves are the predictions. A

good agreement is achieved. Figure 3 plots the longitudi-
- nal wave speed and decay rate; the curves are the solution

0.005 7 of Eg. (10). We again see a satisfactory confirmation be-

r l tween theory and simulations.

In summary, we have studied a simple lattice BGK
model for viscoelastic materials. A paramet&rchar-
acterizing the elasticity is introduced in the equilibrium
distribution (4). Large-scale dynamical equations are
derived by the Chapman-Enskog expansion. Our model
accurately describes transverse wave propagations. All
predictions made by the model are confirmed by numeri-
cal simulations. Compared with the lattice gas model
[32], this new model is flexible and straightforward for
a three-dimensional extension.
L Various potential applications of this model may in-

0 2000 voration 28— 00, B 8000 clude theP waves andS waves in seismology, polymer
fluids [35], turbulence modeling [36], and magnetic sen-
FIG. 1. Oscillation decay of transverse shear mode with timesjtjyve transport coefficients of some materials [37]. A
(@ = 1.00, E = 0.50). concrete three-dimensional model with consideration of
thermal effect is in progress.

In Fig. 1 we show the oscillation of a shear mode with One of the authors (Y.H. Q.) is very grateful to Dr. D.
time. The initial condition is uniform density and zero d’Humiéres and Dr. Y. Pomeau for useful discussions
longitudinal velocity; the transverse velocity i§(x) =  during their visits at Columbia University. He also
Uy co927x). Instead of a pure decay, the transversehanks Professor C.K. Chu for constant encouragement
wave propagates along the longitudinal direction. Fromand helpful conversations. The work of Y.F.D. was
Fig. 1, the propagating speed and the decay rate are mesupported in part by NSF through DMS-9201581.
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FIG. 2. Transverse shear spe®€g as function of parameter
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