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A simple two-dimensional (2D) model of a phase growing on a substrate is introduced. The model
is characterized by an adsorption rate and a desorption ratp. It exhibits a wetting transition
which may be viewed as an unbinding transition of an interface from a wall. pFer 1, the model
may be mapped onto an exactly soluble equilibrium model exhibiting complete wetting with critical
exponentsy = 1/3 for the diverging interface width ang, = 1 for the zero-level occupation. For
0 < p # 1 a crossover to different exponents is observed which is related to a Kardar-Parisi-Zhang-
type nonlinearity. [S0031-9007(97)04214-2]

PACS numbers: 68.45.Gd, 05.40.+j, 05.70.Ln, 68.35.Fx

The interaction of a bulk phager) of a system with a A very interesting question which has not been studied
wall or a substrate may result in very interesting wettingin detail so far is that of wetting transitions under
phenomena. In particular a layer of a second phH@gge  nonequilibriumconditions. Here thg8 phase is adsorbed
which is preferentially attracted to the wall may be formedto the wall via a growth process whose dynamics, unlike
in its vicinity. As some of the parameters controlling that of equilibrium processes, does not obey detailed
the system, say temperature or chemical potential, arfgalance. This problem may be studied by considering the
varied, the thickness of thg layer may diverge, leading behavior of a moving interface interacting with a wall.
to a wetting transition. Such transitions have beerSuch transitions have been reported in recent studies of
theoretically studied and experimentally observed in ahe dynamics of certain models of coupled maps [3].
variety of systems and models in thermal equilibrium In this Letter we introduce a class of nonequilibrium
(for a review, see Ref. [1]). Wetting transitions may growth models of a one-dimensional interface interacting
be viewed as the unbinding of an interface from awith a substrate. The interface evolves by both adsorption
wall. Within this approach one considers the interfaceand desorption processes which in general do not satisfy
configurationi(r) which gives the height of the interface detailed balance. By varying the relative rates of these
above the wall at pointr. One then introduces an processes, a transition from a binding to a nonbinding

effective Hamiltonian of the form [2] phase is found. For a particular value of the desorption
i o s rate, for which the dynamics happens to have detailed bal-
H = [ d 7{7 (Vh)* + V[h(r)]}, (1)  ance, the model may be mapped onto an exactly soluble

where o is the surface tension of the-8 interface equilibrium model which exhibits a complete wetting un-
V[h(r)] yields the effective interaction between the wall binding transmorj. The asspuated critical exponents are
and the interface, and — 1 is the interface dimension. ¥ = 1/3 for the interface width and, = 1 for the base
The potentialv which contains an attractive componentleveI occupation. For generic values of the desorption
may bind the interface to the wall. However, as the tem_ratel, however, detalled_ balance is violated and a crossover
perature or other parameters describing the system af@ different exponents is observed. o

varied, the attractive component of the potential may be- Definition of the modet—The model is defined in terms
come weaker and it is no longer able to bind the interfacef 9rowth of a 1D interface, in which both adsorption and
leading to a wetting transition. ld — 2 dimensions one JeSOrption processes take place. \We considesgicted
usually distinguishes between critical wetting and com-Solid-on-solid (RSOS) growth process, where the height
plete wetting. Critical wetting is marked by the diver- differences between ne|ghbor|n'g sites are restrlc_ted to take
gence of the interface width when the temperatiirgs ~ ValuesO, =1.. The model is defined ona 1D lattice bf
increased towards the transition temperatfiye moving ~ Sit€S With associated height variablgs= 0, 1,...,cand
along the coexistence curve of taeand 8 phases. On perlodl_c boun_dary cond|t_|ons. We use random _sequentlal
the other hand complete wetting is characterized by the di@!y”af”'cs which are defined through the following algo-
vergence of the interface width when the chemical potenfithm: at each update choose a Sl random and attempt
tial difference between the two phases is varied, movind® C&Ty out one of the processes: -

towards the coexistence curvefat> Ty. These typesof () Adsorption of an adatom with probability/(¢ +
transitions are associated with two different sets of criticaP 1):

exponents. hi — h; + 1. 2
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(ii) Desorption of an adatom from the edge of an islandis defined by

with probability 1 +p + 1) N N 2
p y1/(q L ) w2=th~—l2h». ©
hi — min(h;—1, hi, hi+1) . 3) N&=UON s J
(iii) Desorption of an adatom from the interior of an Consider now the thermodynamic lim¥ — . Near
island with probabilityp /(¢ + p + 1) criticality in the growing phase; > ¢., we expect the
hi— h; — 1 if hy_y = h; = hjiq. (4) interface velocity to scale like
If the selected process would result in a violation of the v~ (g~ qc), (6)

RSOS constraints; — hi+1| = 1, the attempted move is whereas in the smooth phage< ¢., the expected scaling
abandoned and a new siteis selected. In addition, a for bottom layer occupation and width is

hard-core wall at zero height is introduced, i.e., a process N oy
is carried out only if the resulting interface heights are po ~ (gc = )", w~lge—q 7 ()
non-negative. One can prove that these processes itiwould be interesting to find out how the critical expo-
general do not satisfy detailed balance. nentsy, xo, andy depend orp. We note that the cage =

The presence of a hard-core wall/at= 0 leads to a 0 is special: In this case atoms cannot be desorbed from
phase transition that takes place even in finite systems& completed layer, and the interface cannot move below
This can be seen as follows: Without the wall theits actual minimum height. This means that the hard-core
interface in a finite system has a finite width. For fixedwall becomes irrelevant. Therefore, the phase transition
p > 0 the parameteg controls the mean growth velocity (which still exists forp = 0) relies on a completely dif-
of the interface, i.e., for large the interface grows while ferent mechanism. The = 0 transition is expected to
for small ¢ it moves downward. These two regimes arebelong to the universality class of a closely related model
separated by a critical growth rage= ¢, for which the previously considered in Ref. [4]. It has been shown that
mean velocity is zero. Therefore, on large time scales, & this case some of the critical exponents can be related to
lower wall will affect only the interface dynamics if the the universality class of directed percolation (DP). In par-
interface does not move away from the wall, i¢= ¢., ticular one expectgy = 8 andy = v, ,whereg = 0.276
resulting in a smooth interface. In the growing phaseandr»;, = 1.73 are the density and correlation length ex-
q > q., however, the interface does not feel the wall. Itponents, respectively, of DP. Here completed layers play
is rough and propagates with a constant mean velocitythe role of absorbing states from where the system cannot
The phase transition line for an infinite system is showrescape. Fop > 0, however, the system is ergodic and
in Fig. 1. one expects different critical exponents. Another special

Throughout this paper we are particularly interested ircase isp = 1: here the system does satisfy detailed bal-
the the mean growth velocity in the growing phase, ance and can be solved exactly. In the following, we
the occupatiorp, of the zero-height layer in the smooth present our analysis of the wetting transition for= 1.
phase, and the interface width in the smooth phase whicWe then consider the general case for which the model

does not have detailed balance.
15 . . . Exactly soluble casep = 1.—We first show that in

' this case the steady state satisfies detailed balance and
that for ¢ < 1 the probability of finding the interface in
a particular configuratiomry = {h1,..., hy} is given by
the distribution

P(hi,....hy) = P(oy) = Zy' gt (8)
where

N
H=Hhi,....,hy) = > h; (9)
i=1

is the sum of all heights. Here, the partition sum =

,,,,

0.0 0.5 1.0 1.5 2.0 respect the RSOS and the hard-core wall constraints.
p In order to prove Eg. (8), notice that the processes

FIG. 1. Phase diagram for an infinite system. The wetting(z)_(4) subjected to the. RSOS constl_'alnt qurgqund to
transition takes place along the solid line. Along the dashed change off by one unit. Therefore, if the distribution
line the growth velocity in the model without a wall does Of Eq. (8) is to hold in the steady state, the probabilities
not depend on a global tilt of the interface, indicating thatof finding the interface in states with total heigttand
the effective Kardar-Parisi-Zhang (KPZ) nonlinearity vanishes.j + | have to satisfy
Both lines intersect in the poiny = p = 1, where the
microscopic processes obey detailed balance. P(og+1)/Ploy) = q. (20)
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As one can read off from the processes (2)—(4), anyhe discrete heighté by real-valued height&. Then,

allowed transitionry — oy+1 occurs with ratev(cy —  the above eigenvalue problem turns into a differential

og+1) = q. Moreover, for each such processy; —  equation [5] which, to leading order i is given by

og+1, there is a reverse process +; — oy Which takes 92

place with anonz_ero rate. Fpr= 1, this rate is given by <m + (3 —w — 3eh>¢(h) =0. (13)

W(O’H+1 — O'H) = 1 so that

(=1 This equation, together with the boundary conditions

’ ¢(0) = ¢(©) = 0, has a unique physical solution.

(11) Simple dimensional analysis indicates that the height

. - _1/3 . .
Together with Eq. (10) this implies that the processes (2)l"”m""2blfS S_%‘%e a‘?h € a?_d thufst;[]het;/v 'gth dllverge_s
(4) satisfy detailed balance. Notice that the above consi AS W € € occupation of the bottom layer in

i imit is qi - =1(5'(0))2

eration is consistent with the hard wall constraint= 0. wﬁerzojrltfmgu? d}lzlZét(le)sisgglﬁgrrggﬁ;agoﬁvfacgcﬁ (Oé)in’ce

Equation (8) yields the steady state distribution only fo 12 . . : :
quation (8) yields the steady state distribution only r(;’;’(0) ~ e'3andN" ~ €~!/3 one obtains a linear scaling

g < 1. The unbinding transition takes place @t= 1 B Th itical ts fop — 1 "
and the height distribution becomes time dependent folnaw po ~ €. € critical exponents fop = 1 are thus

g > 1. Forp # 1, detailed balance is violated. This can V€N bY

w(oy — og+1)/w(op+1 — on) = q

be proven by construction of explicit cycles of c_onfigura- xo =1, y =1/3. (14)
tions in small systems for which the rates of moving clock- _ _ N
wise and counterclockwise are unequal. Numerical results—In order to determine the critical

We now apply the transfer matrix formalism [5,6] to exponents for other values of the growth rate we
study the distribution (8). Let us define a transfer matrixperform Monte Carlo simulations. The width and the

T acting in spatial direction by occupation of the bottom layes, are measured in the
W , smooth phasey < ¢g.. Depending one = ¢. — ¢, we
Thw = {‘1 if |7 —h =1, (12) first equilibrate a system of siZ&00 over a time interval
’ 0 otherwise

up to4 X 10° time steps. Then the thermal averages of
whereh,h’ = 0. Steady state properties can be derivedw and p, are measured over a time interval of the same
from the eigenvectorp that corresponds to the largest size. Similarly, the interface velocity is measured in the
eigenvalue u of the transfer matrixX ., _, Ty =  growing phase; > ¢..
n ¢, From the squares of the eigenvector components The numerical data measured in the smooth phase
one can derive various steady state quantities. Faire shown in Fig. 2. From the slopes in the double
example, the probabilityp;, of finding the interface at logarithmic plots we estimate the critical exponents (see
height 1 is given by p, = ¢/, ¢7. Here we are Table ). Forp = 1, the numerical results we obtain are
particularly interested in the scaling behavior of bottomconsistent with the exact values derived above. In addition
layer occupatiorp, and the widthw? = Y, (h — h)?>p;,,  the velocity exponent is found to be= 1.01(3). For
whereh = Y, hp, denotes the mean height. 0 < p <1 we observe arossoverto different critical
Close to criticality, wheree = 1 — ¢ is small, one exponents. Since the values differ from those in Eq. (14)
can carry out the continuum limip, — ¢ (h), replacing by less than 30% and the crossover is extremely slow, it

0
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FIG. 2. Results obtained from Monte Carlo simulation of the growth model with 1500 sites. Thewvidild the bottom layer
occupationp, are measured for) p = 0, (¢) p = 0.05, (@) p = 1, and(O) p = 2.0. Forp = 1 we fitted straight lines. The
curvature forp # 1 indicates a crossover to KPZ exponents.
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TABLE |. Estimates for the critical exponents. is possible thaty is indeed1/2, but more extensive

simulations close tg. would be needed to observe it.
p=0 p =005 p=10 p =20 The bottom layer occupatiopy may be related tg !,

qe 0.3991(5) 0.5564(2) 0.9999(2) 1.2329(5) where¢ is the correlation length. Thus, we expagtto

X0 0.27(1) 1.51(6) 0.96(5) 1.02(5)  be equal to the correlation length exponentwhich for
y 0 (log.) 0.41(3) 0.32(3) 0.37(3)  the KPZ equation is given by = 1/(2z — 2), yielding
y  1.69(5) 0.98(3) 1.01(3) 1.00(3)

xo = 1in 1D. However, the numerical results suggest that
this scaling argument is valid only for > 1, whereas for
r() < p < 1 much larger values faor, are obtained. This
may be related to the existence different universality
classes in both cases, corresponding to the distinction

is difficult to determine these exponents precisely. Ou
estimates are = 1.00(3), xo = 1.5(1), andy = 0.41(3).

Similar results are obtained fgr > 1 except forxy which between an “upper” and a *lower” wall in Ref. [10]
is close to one in this case. Finally, for— 0, we ob- ' :

serve another crossover. This is consistent with the resul{ﬁTlln order to verify this picture we made a numerical es-
of Ref. [4] which indicate that the interface width diverges ate of the effective nonlinear KPZ term corresponding

logarithmically at they = 0 transition to the RSOS model considered in this work. This is done
General considerations—Equilibrium wetting of a 2D by comparing the growth velocities of a flat and a tilted

. o interface in absence of a wall. We find that the nonlinear-
Ising system has been studied in F\_’efs. [5,7]. Itwas shoyvny is indeed nonvanishing in they, ¢) plane, except on
that a .column of Weak_ bonds (Wh'Ch.aCtS as an attractivg particular line (the dashed line in Fig. 1). As expected,
potential for the domain wall separating the up and dow

states) located at the boundary induces a wetting transitiortrgiS line and the phase transition line are different and in-
o . ; rsect in th ing = p = 1. Atall other points on th
at some finite temperaturgy. At the critical wetting S€ € poing = p atl other po onthe

N ition the interf idth di = 1 transition line the nonlinear term it vanishing, and the
ransition the Intertace wi Iverges wihh= . KPZ-like exponents are expected to be valid. Since
The transition found forp =1 is of a different

{ In thi dl — g) act hemical botential small in the vicinity of theq = p = 1 point, very slow
nature. 1n this cas q) acts as a cnemical potential ¢ .osqqyer phenomena occur, making it difficult to observe
difference between the two coexisting phases. &6t

) ; . . . the tr xponents in this region. Moreover, the interac-
1 the chemical potential difference drives the interfac € frue exponents S 1€gIo oreover, the Interac

o . Sion between the wall and the interface strongly depends
towards the wall, resultlng in a smqoth !nterface. On theon the sign ofA. This may lead to different exponents
other hand, fory > 1 the interface is driven away from

the wall, resulting in a KPZ-like rough moving interface xo for the bottom layer occupation on the two sides of the

> . . . -~ special point.
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