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A simple two-dimensional (2D) model of a phase growing on a substrate is introduced. The mod
is characterized by an adsorption rateq, and a desorption ratep. It exhibits a wetting transition
which may be viewed as an unbinding transition of an interface from a wall. Forp ­ 1, the model
may be mapped onto an exactly soluble equilibrium model exhibiting complete wetting with critica
exponentsg ­ 1y3 for the diverging interface width andx0 ­ 1 for the zero-level occupation. For
0 , p fi 1 a crossover to different exponents is observed which is related to a Kardar-Parisi-Zhan
type nonlinearity. [S0031-9007(97)04214-2]
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The interaction of a bulk phasesad of a system with a
wall or a substrate may result in very interesting wettin
phenomena. In particular a layer of a second phasesbd,
which is preferentially attracted to the wall may be forme
in its vicinity. As some of the parameters controlling
the system, say temperature or chemical potential,
varied, the thickness of theb layer may diverge, leading
to a wetting transition. Such transitions have bee
theoretically studied and experimentally observed in
variety of systems and models in thermal equilibrium
(for a review, see Ref. [1]). Wetting transitions ma
be viewed as the unbinding of an interface from
wall. Within this approach one considers the interfac
configurationhsrd which gives the height of the interface
above the wall at pointr . One then introduces an
effective Hamiltonian of the form [2]

H ­
Z

dd21r

Ω
s

2
s=hd2 1 V fhsrdg

æ
, (1)

where s is the surface tension of thea-b interface,
V fhsrdg yields the effective interaction between the wa
and the interface, andd 2 1 is the interface dimension.
The potentialV which contains an attractive componen
may bind the interface to the wall. However, as the tem
perature or other parameters describing the system
varied, the attractive component of the potential may b
come weaker and it is no longer able to bind the interfac
leading to a wetting transition. Ind ­ 2 dimensions one
usually distinguishes between critical wetting and com
plete wetting. Critical wetting is marked by the diver
gence of the interface width when the temperatureT is
increased towards the transition temperatureTW moving
along the coexistence curve of thea and b phases. On
the other hand complete wetting is characterized by the
vergence of the interface width when the chemical pote
tial difference between the two phases is varied, movi
towards the coexistence curve atT . TW . These types of
transitions are associated with two different sets of critic
exponents.
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A very interesting question which has not been stud
in detail so far is that of wetting transitions unde
nonequilibriumconditions. Here theb phase is adsorbed
to the wall via a growth process whose dynamics, unli
that of equilibrium processes, does not obey detai
balance. This problem may be studied by considering
behavior of a moving interface interacting with a wa
Such transitions have been reported in recent studies
the dynamics of certain models of coupled maps [3].

In this Letter we introduce a class of nonequilibriu
growth models of a one-dimensional interface interacti
with a substrate. The interface evolves by both adsorpt
and desorption processes which in general do not sat
detailed balance. By varying the relative rates of the
processes, a transition from a binding to a nonbindi
phase is found. For a particular value of the desorpt
rate, for which the dynamics happens to have detailed b
ance, the model may be mapped onto an exactly solu
equilibrium model which exhibits a complete wetting un
binding transition. The associated critical exponents
g ­ 1y3 for the interface width andx0 ­ 1 for the base
level occupation. For generic values of the desorpti
rate, however, detailed balance is violated and a crosso
to different exponents is observed.

Definition of the model.—The model is defined in terms
of growth of a 1D interface, in which both adsorption an
desorption processes take place. We consider arestricted
solid-on-solid (RSOS) growth process, where the heig
differences between neighboring sites are restricted to t
values0, 61. The model is defined on a 1D lattice ofN
sites with associated height variableshi ­ 0, 1, . . . , ` and
periodic boundary conditions. We use random sequen
dynamics which are defined through the following alg
rithm: at each update choose a sitei at random and attemp
to carry out one of the processes:

(i) Adsorption of an adatom with probabilityqysq 1

p 1 1d:
hi ! hi 1 1 . (2)
© 1997 The American Physical Society
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(ii) Desorption of an adatom from the edge of an islan
with probability1ysq 1 p 1 1d:

hi ! minshi21, hi , hi11d . (3)

(iii) Desorption of an adatom from the interior of an
island with probabilitypysq 1 p 1 1d:

hi ! hi 2 1 if hi21 ­ hi ­ hi11 . (4)

If the selected process would result in a violation of th
RSOS constraintjhi 2 hi11j # 1, the attempted move is
abandoned and a new sitei is selected. In addition, a
hard-core wall at zero height is introduced, i.e., a proce
is carried out only if the resulting interface heights a
non-negative. One can prove that these processes
general do not satisfy detailed balance.

The presence of a hard-core wall ath ­ 0 leads to a
phase transition that takes place even in finite system
This can be seen as follows: Without the wall th
interface in a finite system has a finite width. For fixe
p . 0 the parameterq controls the mean growth velocity
of the interface, i.e., for largeq the interface grows while
for small q it moves downward. These two regimes a
separated by a critical growth rateq ­ qc for which the
mean velocity is zero. Therefore, on large time scales
lower wall will affect only the interface dynamics if the
interface does not move away from the wall, i.e.,q # qc,
resulting in a smooth interface. In the growing pha
q . qc, however, the interface does not feel the wall.
is rough and propagates with a constant mean veloc
The phase transition line for an infinite system is show
in Fig. 1.

Throughout this paper we are particularly interested
the the mean growth velocityy in the growing phase,
the occupationr0 of the zero-height layer in the smooth
phase, and the interface width in the smooth phase wh

FIG. 1. Phase diagram for an infinite system. The wetti
transition takes place along the solid line. Along the dash
line the growth velocity in the model without a wall doe
not depend on a global tilt of the interface, indicating th
the effective Kardar-Parisi-Zhang (KPZ) nonlinearity vanishe
Both lines intersect in the pointq ­ p ­ 1, where the
microscopic processes obey detailed balance.
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is defined by

w2 ­
1
N

NX
i­1

√
hi 2

1
N

NX
j­1

hj

!2

. (5)

Consider now the thermodynamic limitN ! `. Near
criticality in the growing phaseq . qc, we expect the
interface velocity to scale like

y , sq 2 qcdy , (6)

whereas in the smooth phase,q , qc, the expected scaling
for bottom layer occupation and width is

r0 , sqc 2 qdx0 , w , sqc 2 qd2g . (7)

It would be interesting to find out how the critical expo
nentsy, x0, andg depend onp. We note that the casep ­
0 is special: In this case atoms cannot be desorbed fr
a completed layer, and the interface cannot move be
its actual minimum height. This means that the hard-co
wall becomes irrelevant. Therefore, the phase transit
(which still exists forp ­ 0) relies on a completely dif-
ferent mechanism. Thep ­ 0 transition is expected to
belong to the universality class of a closely related mo
previously considered in Ref. [4]. It has been shown th
in this case some of the critical exponents can be relate
the universality class of directed percolation (DP). In pa
ticular one expectsx0 ­ b andy ­ n', whereb ­ 0.276
andn' ­ 1.73 are the density and correlation length e
ponents, respectively, of DP. Here completed layers p
the role of absorbing states from where the system can
escape. Forp . 0, however, the system is ergodic an
one expects different critical exponents. Another spec
case isp ­ 1: here the system does satisfy detailed b
ance and can be solved exactly. In the following, w
present our analysis of the wetting transition forp ­ 1.
We then consider the general case for which the mo
does not have detailed balance.

Exactly soluble case,p ­ 1.—We first show that in
this case the steady state satisfies detailed balance
that for q , 1 the probability of finding the interface in
a particular configurationsH ­ hh1, . . . , hN j is given by
the distribution

Psh1, . . . , hN d ­ PssHd ­ Z21
N qHsh1,...,hN d, (8)

where

H ­ Hsh1, . . . , hN d ­
NX

i­1

hi (9)

is the sum of all heights. Here, the partition sumZN ­P
h1,...,hN

qH runs over all interface configurations whic
respect the RSOS and the hard-core wall constraints.

In order to prove Eq. (8), notice that the process
(2)–(4) subjected to the RSOS constraint correspond
a change ofH by one unit. Therefore, if the distribution
of Eq. (8) is to hold in the steady state, the probabiliti
of finding the interface in states with total heightH and
H 1 1 have to satisfy

PssH11dyPssH d ­ q . (10)
2711



VOLUME 79, NUMBER 14 P H Y S I C A L R E V I E W L E T T E R S 6 OCTOBER1997

o

n

l

t

f
e

e

e

n

)
it
As one can read off from the processes (2)–(4), a
allowed transitionsH ! sH11 occurs with ratewssH !

sH11d ­ q. Moreover, for each such processsH !

sH11, there is a reverse processsH11 ! sH which takes
place with a nonzero rate. Forp ­ 1, this rate is given by
wssH11 ! sH d ­ 1 so that

wssH ! sH11dywssH11 ! sHd ­ q sp ­ 1d .

(11)

Together with Eq. (10) this implies that the processes (2
(4) satisfy detailed balance. Notice that the above cons
eration is consistent with the hard wall constrainthi $ 0.
Equation (8) yields the steady state distribution only f
q , 1. The unbinding transition takes place atq ­ 1
and the height distribution becomes time dependent
q . 1. Forp fi 1, detailed balance is violated. This ca
be proven by construction of explicit cycles of configura
tions in small systems for which the rates of moving cloc
wise and counterclockwise are unequal.

We now apply the transfer matrix formalism [5,6] to
study the distribution (8). Let us define a transfer matr
T acting in spatial direction by

Th,h0 ­

Ω
qh if jh 2 h0j # 1 ,
0 otherwise,

(12)

whereh, h0 $ 0. Steady state properties can be derive
from the eigenvectorf that corresponds to the larges
eigenvaluem of the transfer matrix

P`
h0­0 Th,h0fh0 ­

m fh. From the squares of the eigenvector compone
one can derive various steady state quantities. F
example, the probabilityrh of finding the interface at
height h is given by rh ­ f

2
hy

P
h0 f

2
h0 . Here we are

particularly interested in the scaling behavior of botto
layer occupationr0 and the widthw2 ­

P
hsh 2 h d2rh,

whereh ­
P

h hrh denotes the mean height.
Close to criticality, wheree ­ 1 2 q is small, one

can carry out the continuum limitfh ! fsh̃d, replacing
FIG. 2. Results obtained from Monte Carlo simulation of the growth model with 1500 sites. The widthw and the bottom layer
occupationr0 are measured for (?) p ­ 0, sed p ­ 0.05, (d) p ­ 1, andssd p ­ 2.0. For p ­ 1 we fitted straight lines. The
curvature forp fi 1 indicates a crossover to KPZ exponents.
2712
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the discrete heightsh by real-valued heights̃h. Then,
the above eigenvalue problem turns into a differentia
equation [5] which, to leading order ine, is given byµ

≠2

≠h̃2
1 s3 2 md 2 3eh̃

∂
fsh̃d ­ 0 . (13)

This equation, together with the boundary conditions
fs0d ­ fs`d ­ 0, has a unique physical solution.
Simple dimensional analysis indicates that the heigh
variables scale ash , e21y3 and thus the width diverges
as w2 , e22y3. The occupation of the bottom layer in
the continuum limit is given byr0 ­ N 21sssf0s0dddd2,
whereN ­

R
dh̃f2sh̃d is a normalization factor. Since

f0s0d , e1y3 andN , e21y3 one obtains a linear scaling
law r0 , e. The critical exponents forp ­ 1 are thus
given by

x0 ­ 1, g ­ 1y3 . (14)

Numerical results.—In order to determine the critical
exponents for other values of the growth ratep, we
perform Monte Carlo simulations. The widthw and the
occupation of the bottom layerr0 are measured in the
smooth phaseq , qc. Depending one ­ qc 2 q, we
first equilibrate a system of size1500 over a time interval
up to 4 3 106 time steps. Then the thermal averages o
w and r0 are measured over a time interval of the sam
size. Similarly, the interface velocityy is measured in the
growing phaseq . qc.

The numerical data measured in the smooth phas
are shown in Fig. 2. From the slopes in the double
logarithmic plots we estimate the critical exponents (se
Table I). Forp ­ 1, the numerical results we obtain are
consistent with the exact values derived above. In additio
the velocity exponent is found to bey ­ 1.01s3d. For
0 , p , 1 we observe acrossoverto different critical
exponents. Since the values differ from those in Eq. (14
by less than 30% and the crossover is extremely slow,
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TABLE I. Estimates for the critical exponents.

p ­ 0 p ­ 0.05 p ­ 1.0 p ­ 2.0

qc 0.3991(5) 0.5564(2) 0.9999(2) 1.2329(5)
x0 0.27(1) 1.51(6) 0.96(5) 1.02(5)
g 0 (log.) 0.41(3) 0.32(3) 0.37(3)
y 1.69(5) 0.98(3) 1.01(3) 1.00(3)

is difficult to determine these exponents precisely. Ou
estimates arey ­ 1.00s3d, x0 ­ 1.5s1d, andg ­ 0.41s3d.
Similar results are obtained forp . 1 except forx0 which
is close to one in this case. Finally, forp ! 0, we ob-
serve another crossover. This is consistent with the resu
of Ref. [4] which indicate that the interface width diverges
logarithmically at thep ­ 0 transition.

General considerations.—Equilibrium wetting of a 2D
Ising system has been studied in Refs. [5,7]. It was show
that a column of weak bonds (which acts as an attractiv
potential for the domain wall separating the up and dow
states) located at the boundary induces a wetting transitio
at some finite temperatureTW . At the critical wetting
transition the interface width diverges withg ­ 1.

The transition found forp ­ 1 is of a different
nature. In this case,s1 2 qd acts as a chemical potential
difference between the two coexisting phases. Forq ,

1 the chemical potential difference drives the interface
towards the wall, resulting in a smooth interface. On the
other hand, forq . 1 the interface is driven away from
the wall, resulting in a KPZ-like rough moving interface
[8]. The critical behavior associated with the transition is
thus that ofcompletewetting.

For p fi 1, the mapping to equilibrium is impossible
since detailed balance is violated. Here a KPZ-type non
linearity is expected to be responsible for the different ex
ponents we observe. Within this approach, one describ
the system by the Langevin equation

≠hsr , td
≠t

­ y0 1 s=2hsr, td 2
≠V fhsr , tdg

≠hsr , td

1 lf=hsr , tdg2 1 z sr , td , (15)

where z sr , td is a zero-average Gaussian noise field
with variance kz sr , tdz sr 0, t0dl ­ 2Ddd21sr 2 r 0ddst 2

t0d and V is the effective interaction between the wall
and the interface. This equation has been studied recen
[9,10] in the context of nonlinear diffusion with multi-
plicative noise. A simple scaling argument suggests tha
the width exponent corresponding to the wetting transitio
described by this equation is given by

g ­ s2 2 zdys2z 2 2d , (16)

wherez is the dynamic exponent. For a 1D interfacez ­
3y2, yielding g ­ 1y2. Our numerical results indicate
that the width exponentg is larger forp fi 1 as compared
with its 1y3 value at p ­ 1, although it seems to
be smaller than1y2. However, in view of the very
slow crossover expected in this problem (see below)
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is possible thatg is indeed 1y2, but more extensive
simulations close toqc would be needed to observe it.

The bottom layer occupationr0 may be related toj21,
wherej is the correlation length. Thus, we expectx0 to
be equal to the correlation length exponentn, which for
the KPZ equation is given byn ­ 1ys2z 2 2d, yielding
x0 ­ 1 in 1D. However, the numerical results suggest tha
this scaling argument is valid only forp . 1, whereas for
0 , p , 1 much larger values forx0 are obtained. This
may be related to the existence ofdifferent universality
classes in both cases, corresponding to the distinctio
between an “upper” and a “lower” wall in Ref. [10].

In order to verify this picture we made a numerical es
timate of the effective nonlinear KPZ term corresponding
to the RSOS model considered in this work. This is don
by comparing the growth velocities of a flat and a tilted
interface in absence of a wall. We find that the nonlinear
ity is indeed nonvanishing in thesp, qd plane, except on
a particular line (the dashed line in Fig. 1). As expected
this line and the phase transition line are different and in
tersect in the pointq ­ p ­ 1. At all other points on the
transition line the nonlinear term isnot vanishing, and the
KPZ-like exponents are expected to be valid. Sincel is
small in the vicinity of theq ­ p ­ 1 point, very slow
crossover phenomena occur, making it difficult to observ
the true exponents in this region. Moreover, the interac
tion between the wall and the interface strongly depend
on the sign ofl. This may lead to different exponents
x0 for the bottom layer occupation on the two sides of the
special point.
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Germany.

[1] S. Dietrich, inPhase Transitions and Critical Phenomena,
edited by C. Domb and J. L. Lebowitz (Academic Press
London, Orlando, 1988), Vol. 12, p. 1.

[2] D. S. Fisher and D. A. Huse, Phys. Rev. B32, 247 (1985);
D. M. Kroll and R. Lipowsky, Phys. Rev. B26, 5289
(1982); E. Brézin, B. I. Halperin, and A. Leibler, Phys.
Rev. Lett.50, 1387 (1983).

[3] R. Kapral, R. Livi, R. Oppo, and A. Politi, Phys. Rev.
E 49, 2009 (1994); A. Politi, R. Livi, R. Oppo, and
R. Kapral, Europhys. Lett.22, 571 (1993).

[4] U. Alon, M. R. Evans, H. Hinrichsen, and D. Mukamel,
Phys. Rev. Lett.76, 2746 (1996).

[5] J. M. J. van Leeuwen and H. J. Hilhorst, Physica (Amster
dam)107A, 318 (1981).

[6] T. W. Burkhardt, J. Phys. A14, L63 (1981).
[7] D. B. Abraham, Phys. Rev. Lett.44, 1165 (1980).
[8] M. Kardar, G. Parisi, and Y. C. Zhang, Phys. Rev. Lett.

56, 889 (1986).
[9] Y. Tu, G. Grinstein, and M. A. Muñoz, Phys. Rev. Lett.

78, 274 (1997).
[10] M. A. Muñoz and T. Hwa (unpublished).
2713


