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Scaling Laws for Unstable Interfaces Driven by Strong Shocks in Cylindrical Geometry
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The Richtmyer-Meshkov (RM) instability is an interfacial interface between two fluids of different
densities driven by shock waves and plays an important role in the studies of inertial confinement
fusion and of supernovas. So far, most of the studies are for RM unstable interfaces driven by weak
or intermediate shocks in planar geometry. For experiments conducted at the Nova laser, the unstable
material interface is accelerated by very strong shocks. In this Letter, we present scaling laws for the
RM unstable interface driven by strong imploding and exploding shocks. [S0031-9007(97)04092-1]

PACS numbers: 47.40.Nm, 47.11.+j, 47.20.Ma

The study of Richtmyer-Meshkov (RM) instabilities physical quantities on each side of the interface. See [23]
has attracted many researchers in recent years, due fiar further details of the front tracking method and its
the fact that this instability plays an important role in implementation.
inertial confinement fusion and supernovas. Experimental The presence of geometric curvature complicates the
studies of the RM unstable interface driven by strongsystems considerably. There are four different classes of
shocks (Mach number 20) have been achieved [1]. RM unstable systems in a curved geometry: class 1, a
With the rapid advances in computing technology, direcshock wave exploding from a light fluid to a heavy fluid;
numerical simulation has become popular. It provides uglass 2, a shock wave imploding from a light fluid to a
with a new way to study RM unstable systems. Mostheavy fluid; class 3, a shock wave exploding from a heavy
of the numerical studies of the RM unstable systenfluid to a light fluid; and class 4, a shock wave imploding
have been and are being performed in planar geometifyom a heavy fluid to a light fluid. The classification given
and for incident shocks with small or intermediate Machhere is also applicable to the RM instability in spherical
number. In this Letter, we consider the RM unstablegeometry. Because of the symmetry along thand y
interface driven by strong shocks in cylindrical geometryaxes, Neumann boundary conditions are chosen-=at0
and establish an important scaling law. This scaling lawand y = 0, allowing the solution to be computed in the
will allow researchers to significantly reduce the numbeffirst quadrant. Note that in planar geometry, there are two
of experiments and numerical simulations required in thelasses of RM unstable systems: A shock wave collides
study of RM unstable interfaces driven by strong shocks.with the material interface from the light fluid phase to

The instability of a material interface under an accel-the heavy fluid phase, and a shock wave collides with the
eration of an incident shock was predicted theoretically bynaterial interface from the heavy phase fluid to the light
Richtmyer [2] and confirmed experimentally by Meshkov phase fluid.

[3]. Several theories have been developed by different ap- The general features of the development of the RM
proaches [4—12]; various experiments have been designédterface in cylindrical geometry are the following. As

to study the RM instability [3,13—16], and numerical an incident shock collides with the material interface,
simulations have been conducted [5,17-22]. it bifurcates into a transmitted shock and a reflected

The method of front tracking [23] has been used inwave. This stage is known as a wave bifurcation stage,
our numerical simulations. Front tracking is an adaptiveor a shock-contact interaction stage. Depending on the
computational method where a low dimensional, movingmaterial properties of the fluids across the material
grid is embedded in a high dimensional fixed grid. Theinterface and the incident shock strength, the reflected
low dimensional, moving grid is fitted to and moves shock can be either a shock or a rarefaction wave. For
dynamically with the discontinuity fronts in the flow— the majority of real gases, the criterion is that when the
such as the material interface, where the density ishock collides with the material interface from the light
discontinuous, or the shock interface, where the pressuftuid phase to the heavy fluid phase, the reflected wave is
is discontinuous. In these studies, a front can also be the@ shock; otherwise, it is a rarefaction wave. Here heavy
leading or trailing edges of a rarefaction wave. The frontand light are measured in terms of acoustic impedance,
tracking method uses the exact mathematical propertyrc, wherep is the density of a fluid, and is the speed of
known as the Riemann problem solution, to advance theound. Therefore, in classes 1 and 2 both the transmitted
position of the discontinuity interface and to update thewave and the reflected wave are shocks. In classes 3 and
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4 the transmitted wave is a shock while the reflected wave Growth Rate i Growth Rate
is rarefaction wave. A general theory on the reflected ¢gylst 100 M=15
wave type can be found in Ref. [6]. L Mzd
At the end of the bifurcation stage, both the transmitted  o.of !
shock and the reflected wave detach from the material
interface. One wave propagates toward the origin, and -0-02
the other wave propagates away from the origin. For
an open space, this outgoing wave will not interact with ~%04
the material interface again. Accelerated by the incident
shock, the material interface becomes unstable and fingers
grow to form bubbles of light fluid and spikes of heavy
fluid. The wave which moves toward the origin bounces ~ 0.sErexhRate

(a) Class 1 (b) Class 2

0 Growth Rate

back from the origin. As the bounced wave propagates ¢4 0. M“:I_o(l)s
outward, it interacts with the material interface again, odk M=40
which is known as reshock. Wave bifurcation occurs “1 M=10 A
again, and so on. Therefore, the occurrence of reshock *0': 0.1 Nl
is unavoidable in curved geometry. 0,034 0.0 | S

How will the incident shock strength affect the de- 4| {0t M=12 _
velopment of RM instability? In general, the stronger S S e S v R o
the incident shock is, the faster the material interface (¢) Class 3 (d) Class 4

will be accelerated, and the faster the transmitted shock ) )
and reflected rarefaction wave travel. The phenomena d¢fiG: 1. Comparison of the scaled perturbation growth rate

. L ersus scaled time for various Mach numbers—namiéys=
reshock will occur at earlier time for systems accelerate 2. 10, 15, 40, and 100. The dashed curves areMor 1.2.

by strong shocks. T_herefore, dimensional_ units are Nothe preshocked Atwood number of the airsSiterface is
appropriate for studying the scaling behavior of an RMA = 0.67213.

unstable system driven by the strong shocks. In order to
reveal the scaling behavior of RM unstable systems, wecaled time. The numerical simulations are conducted
introduce the following scaled dimensionless quantities: at a dimensionless grid spacingt = Ay = Ax/Ry =
0.0042. At this resolution, the numerical solution is no
longer sensitive to the grid size. The initial (preshocked)
HereR, is the mean radius of the initial material interface dimensionless perturbation amplitude dgRy = 0.033.

ats = 0, andW; is the speed of the incident shock. In In Fig. 2 we show the corresponding scaled dimensionless
these scaled dimensionless units, the initial location of the

material interface is given by = 1 + do codm¢). Here Amplitude Amplitude
ay = ap/Ro is a dimensionless perturbation amplitude, o.07f 1.1 " T ™

7’=r/Ro, ﬁ=v/W,~, ;ZW,‘Z‘/R().

anday is a dimensional perturbation amplitude. 0.09

The size of the mixing zone between the light and ¢.04 0.07

heavy fluids, i.e., the radial distance of the peaks and 0.05

valleys along the material interface is a very important g4 0.03

quantity for the RM unstable system. We define the 001
. |Time

overall growth rate and the amplitude of the RM unstable 4,
interface in cylindrical geometry as 0

. . (a)Class 1 (b) Class 2
v = (Fmax — ”min)/z and a = (rmax — rmin)/2,

Amplitude Amplitude

respectively. Then the scaled dimensionless overall T 0.05

growth rate and amplitude are given by 0.04

v = ("”max - i’min)/ZWi and a = (rmax - rmin)/ZR()s 0.03

respectively. 0.02

Figure 1 shows the perturbation growth rate for all four
classes. For all simulations the light fluid is air and the
heavy fluid is Sk. The results for the growth rate of
the RM interface driven by an incident shock of Mach (¢) Class 3 (@) Class 4

numberM = 1.2, 10, 15, 40, and 100 are superimposedr|G. 2. Comparison of the perturbation amplitude versus time
in Fig. 1 and are shown in terms of scaled velocity andor various Mach numbers—namely] = 10, 15, 40, and 100.
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perturbation amplitude as a function of the scaled timeshowed that it indeed does. In Fig. 3, we superimpose
Figures 1 and 2 showed that in the imploding (exploding}the shapes of the class 2 RM unstable interfaces driven
case, once the Mach number of the incident shock is largdsy strong shocks of Mach numbe¥, = 10, 15, 40, and
than 15 (40), the scaled quantities are no longer sensitive00. The inner and outer curves in Fig. 3 are transmitted
to the incident shock strength. Therefore, RM unstableand reflected shock waves, respectively, and the curves
systems driven by strong shocks satisfy a nice scaling lavbetween them are the material interfaces. The snapshots
Let vy, (7) be the growth rate of a RM unstable interfaceof the interfaces at four different times= 0.57, 0.83,
driven by a strong shock of Mach numbéf,, where 1.0, and 1.3 are shown in Fig. 3. Itis obvious from Fig. 3
bothv and: are dimensional quantities. Then the overallthat the following scaling law holds for the shape of the
growth ratey,y, (t), for a RM unstable interface driven by unstable interface:

a strong shock of Mach numbaf, can be obtained from
vy, (1) by the scaling relation, Ry, = Ry (_1 ,) A3)
1 :
M M
v, (1) = —* vy, <—1t : 1) - : -
M, M, Here R represents the location for the material interface,

_— . . . the shock waves, or rarefaction wave. For comparison,
Similarly, the following scaling relation holds for the o shape of the unstable material interface driven by a
amplitudes: weak shock of Mach number 1.2 is shown in Fig. 4 at

M, the same scaled times. By comparing Fig. 3 with Fig. 4,

am,(t) = au, Et : (2)  we conclude that the shape of RM unstable interface

driven by strong shocks and that driven by weak shocks

The results shown in Figs. 2 and 3 are for the overalbre quite different. Therefore, the scaling law presented

growth rate and amplitude of the RM unstable interfaceabove does not hold for RM unstable interfaces driven by
which are global features. Will the shape of the interfaceweak shocks.

also satisfy a scaling law? Our numerical simulations The critical Mach number above which the scaling laws

hold is a function of Atwood number, adiabatic exponents

of the two fluids, and geometry. The preshocked Atwood

Il

<
00
(98]

(a) £ = 0.57 (b) ¢

() f=1.0 (d)f=13 \

FIG. 3. Evolution of the interfaces for class 2 (light- — -
imploding-heavy), where Mach numbers 10, 15, 40, and 100 (c)t=1.0 (d)t=1.3

are superimposed at various dimensionless times. The incident

shock has bifurcated into a transmitted shock moving radiallyFIG. 4. Evolution of the interface for class 2 (light-imploding-
toward the origin and a reflected shock moving radially awayheavy) for Mach number 1.2. The frames shown in this figure
from the origin. In terms of scaled time, the interfaces drivenare at the same dimensionless time as in Fig. 3. Note that the
by different Mach numbe(M = 10) coincide and demonstrate shape of the interface is quite different from those in Fig. 3.
a scaling law. Therefore, the scaling law does not hold for weak shocks.
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