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Scaling Laws for Unstable Interfaces Driven by Strong Shocks in Cylindrical Geometry
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The Richtmyer-Meshkov (RM) instability is an interfacial interface between two fluids of different
densities driven by shock waves and plays an important role in the studies of inertial confinement
fusion and of supernovas. So far, most of the studies are for RM unstable interfaces driven by weak
or intermediate shocks in planar geometry. For experiments conducted at the Nova laser, the unstable
material interface is accelerated by very strong shocks. In this Letter, we present scaling laws for the
RM unstable interface driven by strong imploding and exploding shocks. [S0031-9007(97)04092-1]

PACS numbers: 47.40.Nm, 47.11.+ j, 47.20.Ma
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The study of Richtmyer-Meshkov (RM) instabilities
has attracted many researchers in recent years, due
the fact that this instability plays an important role in
inertial confinement fusion and supernovas. Experimen
studies of the RM unstable interface driven by stron
shocks (Mach number. 20) have been achieved [1].
With the rapid advances in computing technology, dire
numerical simulation has become popular. It provides
with a new way to study RM unstable systems. Mo
of the numerical studies of the RM unstable syste
have been and are being performed in planar geome
and for incident shocks with small or intermediate Mac
number. In this Letter, we consider the RM unstab
interface driven by strong shocks in cylindrical geometr
and establish an important scaling law. This scaling la
will allow researchers to significantly reduce the numbe
of experiments and numerical simulations required in th
study of RM unstable interfaces driven by strong shocks

The instability of a material interface under an acce
eration of an incident shock was predicted theoretically b
Richtmyer [2] and confirmed experimentally by Meshko
[3]. Several theories have been developed by different a
proaches [4–12]; various experiments have been desig
to study the RM instability [3,13–16], and numerica
simulations have been conducted [5,17–22].

The method of front tracking [23] has been used i
our numerical simulations. Front tracking is an adaptiv
computational method where a low dimensional, movin
grid is embedded in a high dimensional fixed grid. Th
low dimensional, moving grid is fitted to and move
dynamically with the discontinuity fronts in the flow—
such as the material interface, where the density
discontinuous, or the shock interface, where the press
is discontinuous. In these studies, a front can also be
leading or trailing edges of a rarefaction wave. The fro
tracking method uses the exact mathematical proper
known as the Riemann problem solution, to advance t
position of the discontinuity interface and to update th
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physical quantities on each side of the interface. See [2
for further details of the front tracking method and it
implementation.

The presence of geometric curvature complicates t
systems considerably. There are four different classes
RM unstable systems in a curved geometry: class 1
shock wave exploding from a light fluid to a heavy fluid
class 2, a shock wave imploding from a light fluid to
heavy fluid; class 3, a shock wave exploding from a hea
fluid to a light fluid; and class 4, a shock wave implodin
from a heavy fluid to a light fluid. The classification give
here is also applicable to the RM instability in spheric
geometry. Because of the symmetry along thex and y
axes, Neumann boundary conditions are chosen atx ­ 0
and y ­ 0, allowing the solution to be computed in the
first quadrant. Note that in planar geometry, there are tw
classes of RM unstable systems: A shock wave collid
with the material interface from the light fluid phase t
the heavy fluid phase, and a shock wave collides with t
material interface from the heavy phase fluid to the lig
phase fluid.

The general features of the development of the R
interface in cylindrical geometry are the following. As
an incident shock collides with the material interfac
it bifurcates into a transmitted shock and a reflecte
wave. This stage is known as a wave bifurcation stag
or a shock-contact interaction stage. Depending on
material properties of the fluids across the mater
interface and the incident shock strength, the reflect
shock can be either a shock or a rarefaction wave. F
the majority of real gases, the criterion is that when th
shock collides with the material interface from the ligh
fluid phase to the heavy fluid phase, the reflected wave
a shock; otherwise, it is a rarefaction wave. Here hea
and light are measured in terms of acoustic impedan
rc, wherer is the density of a fluid, andc is the speed of
sound. Therefore, in classes 1 and 2 both the transmit
wave and the reflected wave are shocks. In classes 3
© 1997 The American Physical Society
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4 the transmitted wave is a shock while the reflected wa
is rarefaction wave. A general theory on the reflecte
wave type can be found in Ref. [6].

At the end of the bifurcation stage, both the transmitte
shock and the reflected wave detach from the mater
interface. One wave propagates toward the origin, a
the other wave propagates away from the origin. F
an open space, this outgoing wave will not interact wit
the material interface again. Accelerated by the incide
shock, the material interface becomes unstable and fing
grow to form bubbles of light fluid and spikes of heavy
fluid. The wave which moves toward the origin bounce
back from the origin. As the bounced wave propagat
outward, it interacts with the material interface again
which is known as reshock. Wave bifurcation occur
again, and so on. Therefore, the occurrence of resho
is unavoidable in curved geometry.

How will the incident shock strength affect the de
velopment of RM instability? In general, the stronge
the incident shock is, the faster the material interfac
will be accelerated, and the faster the transmitted sho
and reflected rarefaction wave travel. The phenomena
reshock will occur at earlier time for systems accelerate
by strong shocks. Therefore, dimensional units are n
appropriate for studying the scaling behavior of an RM
unstable system driven by the strong shocks. In order
reveal the scaling behavior of RM unstable systems, w
introduce the following scaled dimensionless quantities:

r̃ ­ ryR0 , ỹ ­ yyWi , t̃ ­ WityR0 .

HereR0 is the mean radius of the initial material interfac
at t ­ 0, and Wi is the speed of the incident shock. In
these scaled dimensionless units, the initial location of t
material interface is given bỹr ­ 1 1 ã0 cossmfd. Here
ã0 ­ a0yR0 is a dimensionless perturbation amplitude
anda0 is a dimensional perturbation amplitude.

The size of the mixing zone between the light an
heavy fluids, i.e., the radial distance of the peaks a
valleys along the material interface is a very importan
quantity for the RM unstable system. We define th
overall growth rate and the amplitude of the RM unstab
interface in cylindrical geometry as

y ­ sÙrmax 2 Ùrmindy2 and a ­ srmax 2 rmindy2 ,

respectively. Then the scaled dimensionless over
growth rate and amplitude are given by

y ­ sÙrmax 2 Ùrmindy2Wi and a ­ srmax 2 rmindy2R0 ,

respectively.
Figure 1 shows the perturbation growth rate for all fou

classes. For all simulations the light fluid is air and th
heavy fluid is SF6. The results for the growth rate of
the RM interface driven by an incident shock of Mac
numberM ­ 1.2, 10, 15, 40, and 100 are superimpose
in Fig. 1 and are shown in terms of scaled velocity an
ve
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FIG. 1. Comparison of the scaled perturbation growth rat
versus scaled time for various Mach numbers—namely,M ­
1.2, 10, 15, 40, and 100. The dashed curves are forM ­ 1.2.
The preshocked Atwood number of the air-SF6 interface is
A ­ 0.672 13.

scaled time. The numerical simulations are conducte
at a dimensionless grid spacingDx̃ ­ Dỹ ­ DxyR0 ­
0.0042. At this resolution, the numerical solution is no
longer sensitive to the grid size. The initial (preshocked
dimensionless perturbation amplitude isayR0 ­ 0.033.
In Fig. 2 we show the corresponding scaled dimensionle

FIG. 2. Comparison of the perturbation amplitude versus tim
for various Mach numbers—namely,M ­ 10, 15, 40, and 100.
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perturbation amplitude as a function of the scaled tim
Figures 1 and 2 showed that in the imploding (explodin
case, once the Mach number of the incident shock is lar
than 15 (40), the scaled quantities are no longer sensit
to the incident shock strength. Therefore, RM unstab
systems driven by strong shocks satisfy a nice scaling la
Let yM1 std be the growth rate of a RM unstable interfac
driven by a strong shock of Mach numberM1, where
bothy andt are dimensional quantities. Then the overa
growth rate,yM2 std, for a RM unstable interface driven by
a strong shock of Mach numberM2 can be obtained from
yM1 std by the scaling relation,

yM2 std ­
M1

M2
yM1

√
M1

M2
t

!
. (1)

Similarly, the following scaling relation holds for the
amplitudes:

aM2 std ­ aM1

√
M1

M2
t

!
. (2)

The results shown in Figs. 2 and 3 are for the over
growth rate and amplitude of the RM unstable interfac
which are global features. Will the shape of the interfa
also satisfy a scaling law? Our numerical simulation

FIG. 3. Evolution of the interfaces for class 2 (light
imploding-heavy), where Mach numbers 10, 15, 40, and 1
are superimposed at various dimensionless times. The incid
shock has bifurcated into a transmitted shock moving radia
toward the origin and a reflected shock moving radially awa
from the origin. In terms of scaled time, the interfaces drive
by different Mach numbersM $ 10d coincide and demonstrate
a scaling law.
2676
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showed that it indeed does. In Fig. 3, we superimpos
the shapes of the class 2 RM unstable interfaces drive
by strong shocks of Mach number,M ­ 10, 15, 40, and
100. The inner and outer curves in Fig. 3 are transmitte
and reflected shock waves, respectively, and the curv
between them are the material interfaces. The snapsh
of the interfaces at four different times̃t ­ 0.57, 0.83,
1.0, and 1.3 are shown in Fig. 3. It is obvious from Fig. 3
that the following scaling law holds for the shape of the
unstable interface:

$RM2 ­ $RM1

√
M1

M2
t

!
. (3)

Here $R represents the location for the material interface
the shock waves, or rarefaction wave. For compariso
the shape of the unstable material interface driven by
weak shock of Mach number 1.2 is shown in Fig. 4 a
the same scaled times. By comparing Fig. 3 with Fig. 4
we conclude that the shape of RM unstable interfac
driven by strong shocks and that driven by weak shock
are quite different. Therefore, the scaling law presente
above does not hold for RM unstable interfaces driven b
weak shocks.

The critical Mach number above which the scaling law
hold is a function of Atwood number, adiabatic exponent
of the two fluids, and geometry. The preshocked Atwoo

FIG. 4. Evolution of the interface for class 2 (light-imploding-
heavy) for Mach number 1.2. The frames shown in this figur
are at the same dimensionless time as in Fig. 3. Note that t
shape of the interface is quite different from those in Fig. 3
Therefore, the scaling law does not hold for weak shocks.
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FIG. 5. Comparison of the scaled growth rate and the sca
perturbation growth rate versus scaled time for Mach numbe
M ­ 10 and 15. Here the preshocked Atwood number
A ­ 0.333 33.

number between air-SF6 is A ­ 0.672 13. To further
confirm the scaling laws given by (1)–(3), we present th
results for the system in class 2 with preshocked Atwoo
numberA ­ 0.333 33 in Fig. 5. The adiabatic exponents
of the two fluids are the same as those of air and SF6.
Figure 5 shows that the scaling laws are indeed satisfi
once the Mach number is larger than 10.

The scaling relations presented in this Letter are im
portant for studying the RM unstable systems driven b
strong shocks. It allows us to obtain the results for a
strong shocks by conducting only one strong shock e
periment or by performing one strong shock numeric
simulation in that family. We have checked that this sca
ing relation also holds for RM unstable interfaces drive
by strong shock in planar geometry. We believe that th
relation should hold in spherical geometry as well. W
further speculate that this scaling law also holds for mu
timode RM unstable systems driven by strong shocks.
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