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Pattern Selection in Faraday Waves
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We present a systematic nonlinear theory of pattern selection for parametric surface waves (Faraday
waves), not restricted to fluids of low viscosity. A standing wave amplitude equation is derived from
the Navier-Stokes equation that is of gradient form. The associated Lyapunov function is calculated
for different regular patterns to determine the selected pattern near threshold as a function of a damping
parametery. For y ~ 1, we show that a single wave (or stripe) pattern is selected. e« 1,
we predict patterns of square symmetry in the capillary regime, a sequence of sixfold (hexagonal),
eightfold,. .. in the mixed gravity-capillary regime, and stripe patterns in the gravity dominated regime.
[S0031-9007(97)04216-6]

PACS numbers: 47.20.Ky, 47.35.+i, 47.54.+r

Parametrically driven surface waves (also known asstence of two small parameters that are not independent:
Faraday waves) can be excited on the free surface of a fluithe reduced distance away from thresheldandy. For
layer when periodically vibrated in the direction normal tofinite y and smalle, viscous dissipation is the dominant
the surface at rest. Above a critical value of the drivingsource of nonlinear wave saturation. In the inviscid limit,
amplitude, the planar surface becomes unstable to a patteon the other hand, cubic terms are prohibited in the am-
of standing waves [1]. Patterns of various symmetrieplitude equation, and other mechanisms for saturation of
have been observed in large aspect ratio systems (largee wave have to be invoked [1]. Early work on Fara-
lateral size of the fluid layer compared to the wavelengttday waves was based on a Hamiltonian description for the
of the waves) depending on the driving frequency and fluiddeal (inviscid) fluid, and treated viscous effects as a regu-
properties (viscosity, surface tension and density). Thelar perturbation in which damping was assumed to result
include single standing waves (parallel stripe patterns)solely from irrotational bulk flow [6,7]. At linear order in
two waves at @0° angle (square patterns), and morethe surface variables, the dominant viscous contribution
recently hexagonal, eightfold and tenfold patterns [2—5]is of ordery, and results entirely from viscous damping
We present a weakly nonlinear analysis of the equationef the irrotational flow. The rotational contribution is of
governing fluid motion that predicts standing wave patterngigher order(y>/2) [8]. At the nonlinear level, however,
with these symmetries in regions of parameters that are ithe contribution from rotational flow to cubic terms in the

quantitative agreement with experiments [4,5]. amplitude equation given below is of the same order as
We consider an incompressible and viscous fluid layethat of irrotational flow (ordery).
that extends tg = —oo, is unbounded in the-y direction, Another important qualitative feature of Faraday waves
and that at rest has a free surface at 0. The equation concerns three wave (or triad) resonant interactions.
governing fluid motion under periodic vibration is Three wave interactions are generically permitted when
1 the dispersion relation satisfies’w/dk> =0, as is
du+ (u-Vu=- ;Vp + vV?u + g.(1)é,, (1) the case in the capillary regime. For gravity waves,

0’w/ok* < 0 and only four wave interactions are pos-

with u the velocity field,p the pressurep and» the den-  sible. Although sign invariance of the standing wave
sity and kinematic viscosity of the fluid, respectively, andamplitude equation prohibits quadratic nonlinear terms,
g.(t) = —g — fcoswt the effective gravity. Foyf be- triad resonant interactions are possible through linearly
low the threshold of instability, the base stateuis= 0  stable modes [3,9]. The resonant angle is largest for
andp = pg.(t)z. Although we use mostly dimensional 3 = | (capillary limit), and goes to zero a = 1/3
variables in the analysis below, the natural dimensionlesgl0]. If the stable modes are only weakly damped
variables involvew, = w/2 as the inverse time scale, (y < 1), triad resonant interactions become dominant
ko deflned from the linear dispersion relation of surfaceand effectively determine the symmetry of the selected
waves wj = gko + oky/p as the inverse length scale, pattern. In particular, they lead to a sequence of high-
and include a dampmg parameter= 2vkj/wo, the grav-  symmetry patterns in the vicinity & = 1/3 [10].

ity waveG = gko/wj and capillary wave, = ki /pwi Both issues were partially addressed recently in [10].
contributions to the dispersion relation, and the dimensionThe governing equations and boundary conditions were
less amplitude of the driving acceleratidn= fko/4w§. expanded in powers of and further simplified (in an

Progress in deriving suitable amplitude equations foruuncontrolled way) by neglecting all terms proportional to
Faraday waves has proved difficult, in part due to the exy which were nonlinear in the surface variables. The
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approximate equations predict bifurcations to square antérm 2rV%d.wo, when acting on the irrotational flow
higher-symmetry patterns, but because of the underlyingomponent(e*?), yields a contribution at low viscosity
uncontrolled approximation, their region of validity is that scales as, whereas the rotational contribution (from
difficult to assess. In addition, they fail to yield the ¢%7) scales ag*/2. The remaining terno, — »V?)a,wy
observed stripe patterns at moderate valuesyof We is simply equal to—w?. Explicitly, we find the following
present here a general calculation that overcomes thesgerarchy for each harmonig®’/2:

difficulties, and that leads to the experimentally observed H\A; — fAT — fA3 =0,

regular (periodic or quasiperiodic) standing wave patterns

above onset. H3A3 — fAy — fAs =0, 2)
We first eliminate the explicit dependence on the pres- HsAs — fAs — fA7 =0,...,

sure in Eq. (1) by taking-V X VX to obtain with H, =202[4q;k? — %(q,z' + K] - 20 — 20K/ p.

9,V2u — »VV2u =V X V X (u - V)u By truncating Eq. (2) at somd,, the system can be
! ' solved numerically as an eigenvalue problem. This is
Here the continuity equatio - u = 0 has also been indeed what was done by Kumar and Tuckerman [12].

used. The position of the free surface is denotedioWwever, we observe that after tr}tcjzncationfal; Ap =
by ¢{(x,y), the unit normal ish = (—d.¢,—a,¢,1)/  fAn-2/HnAp—2 = fAn-s/(Hy—2 — g;)..... Therefore
l(—a.¢.—a,¢. DI, and the two tangential unit vectors the entire set of equations can be rewritten as

100, 1,0,)ll. Besides the null conditions at = —o, H S — T i Hi(k, f)Ar — fA)
there are four boundary conditions to be satisfied at the > e

free surface, . =0,
B so that for a given wave numbek, the threshold of
9¢ + (- V)l = wl—, instability f, is given implicitly by fo = |H,(k, fo)|. The
t, - T - .-, =0, m=1,2, complex amplitudeA; can be recursively obtained from

R R Eqg. (2) up to a real factor. For an infinite system the

- T-hl.-, =2Ho, critical wave numberk,,c is the wave number that
with Vg = €,9, + &,9,, T the stress tensor with compo- c_orresponds to the lowest value £f. In the limit of low
nents T,'j = [—p - pgz(t)z]Sij + pV(ajui + aiuj), o VISCous dampmg'y < 1, andk nearkonset, Aonser CaN be
the surface tension, ard the mean curvature of the free given explicitly as

surface [11]. Ay Losp W26 5
In order to study the linear stability of a subharmonic onset — ¥ 27 83 — 2G) Y e
standing wave we introduce [12] with 0 = G =1 by definition. While previous low

damping calculations [6,10] only used the linear term to
determine the location of the threshold, the first correction
—3¥¥? can be a sizable contribution (e.g., a 15%
wherew is thez component of the velocity field, and a difference aty = 0.1). A small viscosity approximation
similar expansion fogy. Substitution into the linearized of the threshold given by Miilleet al. [8] also obtained
equation of motion,(9,V* — »V?V*)wy = 0, and into  the 3/2 correction for an infinite depth fluid. Finally,
the linearized kinematic and tangential stress boundarye note that a similar calculation for the damped Mathieu
conditions,d,{y — wo = 0 and(V — 92wy = Oyields  equation leads to a threshold + 372/64 + O(y%), in
j | -~ - which the first correction term is of a different order and
wo(z) = (zjiw + 2vk")e™ — 2vk e®, has a different sign.
. 20, i To derive the amplitude equation we use the multiple
with gj = k* + jiw/2v. The first and second terms g.q1e approach. The solvability condition in this case
in the right-hand side arise from the irrotational andgyises from the boundary conditions, not from the equa-

rotational flow components, respectively. _ tion of motion as in most other cases. The velocity
The critical amplitudef, is determined by the lin- fie|q is expanded as = €'/2uy + eu; + €2us + ...

earized normal stress boundary condition, which is, aftef;in ¢ = (f — fo)/fo, and similarly forp and¢. Near
using the momentum equation to elimingig threshold, i.e., foe < 1, we separate fast and slow time

wo = codkx) Z eji‘”’/zw(j)(z)Aj + c.c.,
j=135...

20V — (3, — vVH)]o.wo + scalesT = er; 9, — 9, + €dr. Spatial slow scales are
o not included because only regular patterns are considered
<g - — Vi + fcosw)V%,go =0. here. At ordere'/?> we recover the linear solution dis-
o

cussed above. Because we are interested in standing wave
Note that we do not use sinr to avoid the complication patterns with different symmetries, the solution at this or-
due to its odd parity under time reversal. By substitutingder is written as a linear combination of waves with wave
wo and ¢, into the above equation, we note that thevectorsk,, of magnitudek,,s. in different directions on
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thex-y plane, HereB,,(T) are thereal wave amplitudes, functions only
" » of the slow time scalel’, and e; is denoted byA; in
wo = ZCOikm : r)Bm(T) ejlwt/2W(j)(Z)€j Eq (2) € y /
m j=135,... . ’

At order € the equation of motion and boundary

+ c.c. | conditions become

0,V = vV’ V2w = [V X V X (ug - Vug]: ,
a:{1 — wi = Gi(ug,{p) atz =0,
(V%i - 6§)W1 = Ga(up, {p) at z =0,

(BvVs — 9, + V@?)(‘)ZWO + <g — %V%_, + fCOSwt) V340 = Gi(ug, &) atz =0.

Here G, G,, and G; are complicated functions af | wip can be obtained by integration. The homogeneous
and . Note that the left-hand sides are identical tosolution, (9,V> — »V?V?)w;, = 0, must be chosen to
the equations at zeroth order withy and {, replaced satisfy the boundary conditions. Because all these equa-
by w; and ;. Since[V X V X (ug - V)ug], is of the tions are very complicated, we have developed a symbolic
form cog(k,, + k,) - rle/®’Q(z), with Q(z) consisting manipulation program specific to this case, and found

of various exponential functions, the particular solutionon a computer.

At order €/ the equation of motion becomes

(atVz — DV2V2)W2 = —8TV2w0 + {V X V X [(ll() - Vu; + (ug - V)llo]}z. (3)

I
The boundary conditions are similar to those at first ordeform, and can be derived from a Lyapunov function,
with w, and ¢/, on the left-hand sides and even more

complicated functions ofug, ui, &, ¢;) on the right-hand F=- % ad B + % > ¢(0)BLB:,  (5)
sides. Fortunately, only terms proportional to @os- r) m mon
need to be considered in the solution for and/, which may be used to find the preferred pattern near
threshold [1]. For regular patterns &f standing waves,
wy = cogk; ‘1) Z k,, form a regular polygon, and th#, are constant.
) J=135... We plot in Fig. 1g(6)/go for three different values of
X e/O2E; + (a;e" + bjedi?)C], y andX = 1 (capillary limit). For lowy, we observe that
B triad resonance leads to a peak at the resonant angle (see
{H = codk; - r) Z e"”‘”/ij. [10] for a more detailed discussion) that disappeary as
J=135.. is increased. The figure shows thdt)/g, at cost = 0

HereE (Z) comes from the direct |ntegrat|0n of Eq (3) increases with |ncreaS|ng, so that the value at which the
andaje* + b;e?? is the homogeneous solution that hasratio crosses one delimits the region of stability of stripe
the same form as the linear solution, afilare constants  Patterns over square patterns.
to be determined later.

We first find (again with the symbolic manipulation '
program)a; andb; by using the kinematic and tangential 2
stress boundary conditions at this order. The solution
wy is finally inserted into the normal stress boundary
condition at ordere’/? to yield a system of equations
for C; which has the same left-hand side as Eq. (2) but
with nonzero right-hand side. Solving f@r; just as in
Eg. (2), we obtaind,C; — f,C; = F, with F a function
of the amplitudeB,,. Since f, = |H;|, by requiring
a nontrivial solution forC; we obtain the solvability
condition FH} + F*fy = 0, which yields a standing
wave amplitude equation, o ,

dB, X R 0.0 05 1.0
==L =aB; — gB} — > g6,1)B3Bi, (4) cos(6)

dTr
. . FIG. 1. Nonlinear coefficient of the standing wave amplitude
with 6,,1 the angle betweek,, andk;, and explicit ex-  equationg(8)/g, for y = 0.05, 0.5, and 1.0, in the capillary
pressions for the coefficients. Equation (4) is of gradientimit 3 = 1.
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We next turn to a comparison between the selected paand low frequency, and not observing a quasiperiodic
terns predicted by Eq. (5) and two recent sets of systematjgattern forr = 0.04 cn?/s and f = 27 Hz. As noted
experimental surveys involving large aspect ratio systemabove, the experiments by Binks and van de Water [5] did
both of which aim at addressing the issue of pattern selegrobe this latter region in a deep fluid layer, with their re-
tion over a wide range of experimental parameters [4,5]sults agreeing with our predictions.

Binks and van de Water [5] have focused on a low viscosity Our calculations for parameter ranges outside those
fluid [13], a large aspect ratio cell, and a layer depth muchdisplayed in the figure indicate that the transition from
larger than the wavelength. When the driving frequencysquare to stripe patterns upon increasingxtends over

is decreased from 45 Hz, a transition frorlva= 2 square the entire capillary wave range (high frequency limit in
pattern to aV = 3 hexagonal pattern was observed at apthe experiment). However, stripe patterns are always
proximately 35 Hz, and to a quasiperiodic= 4 eightfold  preferred in the pure gravity wave limit (low frequency).
pattern at approximately 29 Hz [14]. Our prediction for We further point out that the logarithmic scale used in
these transitions based on Eqg. (5) are 35.4 and 28.7 Hz, r&ig. 2, as well as the small range of frequency probed
spectively. These results are also in good agreement withiccount for the fact that stripe patterns seem to appear at
the earlier weak damping calculation [10] that predictedroughly constant viscosity. The transition line separating
the same transitions at frequencies of 32.8 and 27.9 Hxzquare and hexagonal patterns is also close to a straight line
respectively. because it is determined mainly by the valueGfwhich

A large aspect ratio experiment involving fluids of vari- depends on the driving frequency but not on the viscosity.
ous viscosities has been carried out by Kudrolli and Gol- This research has been supported by the U.S. Depart-
lub [4]. Although the fluid depth (0.3 cm) is smaller than ment of Energy, Contract No. DE-FG05-95ER 14566, and
the wavelength in the experiment (1-3 cm), the comparialso in part by the Supercomputer Computations Research
son is still illuminating. Figure 2 shows the symmetry of Institute, which is partially funded by the U.S. Department
the preferred patterns predicted by our calculations in thef Energy, Contract No. DE-FC05-85ER25000.
parameter space defined by the viscosity of the fluid and
the driving frequency (withp = 0.95 g/cm?® and o =
20.6 dyne/cm), and the experimentally observed patterns.
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FIG. 2. Selected patterns as a function of the viscosity of thd14] In the experiment, patterns witN' = 5 are observed at
fluid and the angular frequency of the driving acceleration. The ~ about 27 Hz. As it is also argued by the authors of the

symbols represent experimental results: = stripe pattern, experiment, this could be attributed to finite size effects
O = square pattern, and = hexagonal pattern. Alternat- since F for N =5 is larger but very close tqgf for
ing X and indicate mixed-stripe-square patterns. N = 4. The difference at about 26 Hz is less than 0.2%.
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