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Nonlinear Pattern Formation in Active Optical Systems: Shocks, Domains
of Tilted Waves, and Cross-Roll Patterns
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Vortices, shocks, domains of tilted waves, and cross-roll patterns are typical patterns of the complex
Swift-Hohenberg equation, which describes spatiotemporal dynamics in nonlinear optical systems of
large Fresnel number, such as lasers, optical parametric oscillators, and photorefractive oscillators.
We show the occurrence of such “essentially nonlinear” patterns experimentally on a photorefractive
oscillator and compare it with numerical solutions of the complex Swift-Hohenberg equation.
[S0031-9007(97)04128-8]
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Lasers are generally known to emit radiation fields within nonlinear optical systems, such as large Fresnel number
simple spatial structure such as transverse resonator modelass A lasers [2,3], PROs [7], and optical parametric os-
of low order. This simplicity is a consequence of the usuacillators [8]. It describes spatiotemporal dynamics of the
small Fresnel number of laser resonators. (The Fresneirder parametet(F, r), which is proportional to the optical
number in optical systems corresponds to the aspect ratigeld envelope:
of a conventional spatially extended nonlinear system.) On . (A + %2)2
the other hand, it is known that lasers, or more generally 9,A = pA + id(A + V*)A — T Aw?
resonators containing active or passive nonlinear media, @
are potentially capable of emitting fields with complicated (1)
structures of high spatial information content. This is seerior the case of a lasep, is the net gain parameted, is
from reduced laser equations in the form of the complexesonator detuning, = LAQ/(2) is the diffraction coef-
Ginzburg-Landau equation (CGLE) [1] or complex Swift- ficient, L is the total resonator length,is the wavelength,
Hohenberg equation (CSHE) [2,3], which are the equatior is the resonator finesse (photon lifetime in units of reso-
types at the basis of most pattern forming systems in Natuneator round-trip time), and w is the width of the gain
or physics. line (or, equivalently, the mode linewidth for PROs). The

Although complicated light field structures appeared intransverse coordinates are scaled to the diameter of laser
recent experiments with nonlinear optical systems [4,5]aperture, and the timeis scaled to the response time of the
the patterns observed so far could be interpreted as thghotorefractive medium (of order of seconds). For these
simultaneous excitation of transverse resonator modescalings the diffraction coefficient is related to the Fresnel
This implies that the patterns were dominated by boundarpumber of the resonatod = 1/F. The CSHE (1) be-
effects, rather than by the nonlinearity of the medium.comes the well-known CGLE for negative detunings; for
“Essentially nonlinear” pattern formation of lasers, as itpositive detunings the CSHE displays patterns qualitatively
is described by the CSHE and CGLE, requires primarily aifferent from the CGLE.
large Fresnel number of the resonator and, simultaneously, In the limit of zero (or negative) resonator detuniag
a high level of degeneracy of transverse mode families. in (1), the waves with zero transverse wave-number com-

More complex patterns were reported in [6], where theponents are most strongly amplified: The Poynting vec-
Fresnel number was raised to hundreds—closer to the réers of radiation emitted are directed parallel to the optical
quirements for essentially nonlinear patterns. Howeveraxis of the resonator. For positive detuning, the Turing
the complicated excitation geometry did not permit rela-structures with nonzero transverse wave-number compo-
tion to a general nonlinear physics model in [6]. nents are most favored. These correspond to a resonant

We show here experimentally that use of large Fresfinginthe spatial Fourier domain (the far field plane) with a
nel number resonators (few thousands) allow indeed esadius dependent on detuning; |> = A, and a width pro-
sentially nonlinear pattern formation. We illustrate thisportional to the gain line widtAw. The Poynting vectors
by several structures typical for the CSHE, emitted by aare correspondingly tilted with respect to the optical axis.
photorefractive oscillator (PRO) which is equivalent to a One of the characteristic patterns of (1) for zero or
class A laser [7]. Thus we conclude that nonlinear opticsiegative detuning are vortices or spiral waves separated
is, in reality and not only conceptually, capable of formingby “shocks.” Such patterns were studied numerically
the full variety of complex structures typical for general for the CGLE [1,9], and were observed experimentally
pattern forming systems. in chemical and biological pattern-forming systems [10].

The CSHE is a universal order parameter equation defFhe shocks result from counterpropagating energy flows,
scribing pattern formation in the mean field approximationwhich are generated by neighboring vortices [9]. This
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energy flow in lasers originates from the variation ofif the displacement from the confocal resonator length
saturation along the radial direction inside a vortex. [ is small compared with the full resonator lengih

For positive detuning, the most characteristic patterns ofhen the order parameter equation (1), derived for a plane
(1) are tilted waves, if no lateral boundaries are present. Inesonator, is also valid for a near-confocal one, but with a
this case, only one transverse wave number from the resdlffraction coefficientd = [AQ/(27). The pattern nearly
nant ring wins in the nonlinear competition, and determineseproduces itself in two resonator round-trips for near-
the pattern. In reality, the tilted waves can be influencedonfocal resonators. This imposes the central symmetry
by lateral boundaries, which leads to domains of differentlyof the patterns. (For perfectly confocal resonatoes 0,
oriented tilted waves. Such tilted wave domains have beeand the dispersion and diffraction of the resonator vanish.)
observed, among others, in two-component fluid systems We took these symmetry restrictions into account by in-
[11]. They have also been theoretically predicted in classegrating numerically in one-half of the integration region,
A lasers with sufficiently broad aperture [3]. and setting the order parameter in the other half of the re-

The other characteristic pattern of the CSHE is the sogion according to the symmetry conditions in every inte-
called “cross-roll pattern” [12]. This pattern (in the form gration step. We used the split-step scheme on a spatial
of a square or rhombic “vortex lattice”) has been predictedyrid of (128 X 128), with time stepAr = 0.02. For more
for broad aperture lasers [3,13]. This cross-roll patterrdetails of the numerical scheme, see, e.g., Ref. [7]. The
appears as a superposition of two pairs of countertiltedhitial condition for the numerical integration was a ran-
waves. As shown in Ref. [3], the square or rhombic vortexdomly distributed field (Gaussia®, correlated in space,
lattice is a pattern corresponding to a local minimum of thenoise). The equation was integrated in a unit size square
potential of the system, while the tilted wave correspondsegion limited by zero boundaries corresponding to the
to the global, deeper minimum. cross section of the photorefractive crystal.

Since class A lasers (and PROs) are described by (1), For experiments we used a photorefractive oscillator
they should display the patterns discussed above. Howwith BaTiO; as the active medium. The linear confocal
ever, to our knowledge, experimental observations of suchesonator consisted of two highly reflecting mirrors with
essentially nonlinear patterns in optical systems have na radius of curvature of 350 mm. The crystal4$ X
been reported. There are two main requirements for 4.3 X 4.6 mm dimensions was located close to one mirror
laser to emit these patterns: (1) high level degeneracgnd homogeneously illuminated by a single frequency
of transverse (Gauss-Laguerre or Gauss-Hermite) mode8y* laser at 514 nm wavelength. The typical pump
(2) a sufficiently large Fresnel number of the resonatorintensity was20 mwW/cn?. We used the reflection from a
The Fresnel number determines the smallest spatial scateystal surface to outcouple radiation from the resonator.
of the patternxyn = F~!/2 if the transverse coordinate The difference! from the confocal length was about
is normalized to the width of the aperture. Our numeri-5 mm, which corresponds to the Fresnel number of an
cal calculations show that Fresnel number values suffiequivalent plane resonatérx 10°.
cient for observation of the essentially nonlinear structures Two characteristic planes were chosen for observation
areF > 10° (d < 1073). (For smaller Fresnel numbers, of the patterns within the cavity: (1) the crystal plane at
boundaries play a significant role, and the essentially northe focus, which corresponds to the near field, and (2) the
linear structures such as domains of tilted waves, shock$ar mirror plane, which corresponds to the far field. The
etc., are not sufficiently pronounced.) Typical resonatopatterns were controlled by an intracavity circular aperture
parameters(L = 1 m, A = 0.5 X 10°*m, 9 = 5) and in the far field plane. Both planes were simultaneously
the requirement of a large Fresnel numigr> 10%) lead imaged onto a charge-coupled device camera for recording.
to a diameter of aperturg .. > 20 mm. This shows that For a totally open aperture, we observe in the near field
to observe essentially nonlinear patterns the aperture of@arandom small scale structure, as it is typically observed
plane resonator must be quite large, which probably ex-
plains the lack of corresponding observations so far.

In the experiments we exploited the fact that confo-
cal resonators lead to the degeneracy of transverse modes
(transverse mode continuum) and, apart from their central
symmetry properties, correspond to plane resonators with
an infinitely large Fresnel number. In other words, an ex-
actly confocal resonator is completely diffractionlegs+
0 for (1)]. The importance of confocal resonators (and,
more generally, of self-imaging ones) has been pointed out
in [14] for (linear) image processing. Here we exploit the
diffractionless confocal resonators in order to obtain a suf-

ficiently large Fresnel number in our nonlinear system. FIG. 1. Transverse pattern (near field, left; far field, right)

The analysis_ of near'-confocal resonators (based, e.gss recorded experimentally on a PRO with a nearly confocal
on a propagation matrix approach) yields the fact thatresonator. The intracavity aperture is completely open.
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FIG. 2. Vortices separated by shocks. Numerically [(a)—(c)] and experimentally [(d)—(e)] obtained field distribution for zero
detuning: near field amplitude (a), phase (b), far field amplitude (c). (d) and (e) are experimental images of the near field and far
field plane. In the experiment, the resonator length is tuned so that the ring in the far field (e) contracts to a spot. The higher
order rings (from Fig. 1) were removed by an intracavity aperture. The parameters for numerical integrapioa arés, A = 0,

d =103, g =15 X 107°. Pump field intensity in the experiment was two times above threshold.

in large Fresnel number photorefractive oscillators, and a Figures 2(a)-2(c) show a pattern calculated by the
set of concentric rings in the far field (Fig. 1). The rings in numerical integration of (1) for zero detuning and the ex-
the far field indicate the slight deviation from confocality perimentally recorded pattern (d) obtained by tuning the
and are comparable with the rings observed in plane Fabmesonator length so that the ring in the far field contracted
Perot resonators (e.g., as shown in [6]). Different ringgo a central spot (e). Optical vortices separated by shocks
correspond to different longitudinal orders of the resonantaire seen in the near field patterns, both experimentally
spatial wave vectors (or different longitudinal modes). Aand numerically. The orientation of the shock boundaries
change of the resonator length leads to a change of the téind location of vortices was freely evolving in time and
angles of resonant wave vectors and the change of ringgas not imposed by the boundaries of the system. The
diameters in the far field. patterns display central symmetry, which is imposed by
To realize the single-longitudinal (but multitransver- the confocality of the resonator.

sal) mode case described by CSHE, the emission was re- Figure 3 shows domains of tilted waves obtained nu-
stricted to a single ring in the far field by the aperture inmerically from (1) for positive detuning [Figs. 3(a)—3(c)]
the far field plane. Under these conditions, the PRO disand also experimentally [3(d)], with the resonator length
played the typical patterns, predicted by (1), dependent otuned so that tilted components appear in the far field
the resonator tuning. [3(e)]. The direction of the waves traveling inside the

(€]

FIG. 3. Domains of tilted waves separated by a row of vortices. Numerically [(a)—(c)] and experimentally [(d)—(g)] obtained
patterns for positive detuning. The resonator length was tuned to maintain the ring in the far field. The parameters for numerical
integration arep = 2.5, A = 6; other parameters in numerics and experiment are the same as in Fig. 2. Note the row of vortices
separating the two domains of tilt in (d). Four domains of different tilts are visible in (f).
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FIG. 4. The cross-roll pattern or square vortex lattice: numerically [(a)—(c)] and experimentally [(d) and (e)] obtained distributions
for positive detuning. Everything is the same as Fig. 3, except for pump values. Numerjgatyl.5; pump intensity in
experiment was about 50% above threshold. Far field components in (e) are marked by arrows.

domains corresponds to the direction of the phase gradalso obtained numerically from the order parameter equa-
ents, which can be seen from the phase picture in 3(b}ion (1) are (i) isolated vortices separated by shocks, (i)
The domains are separated by vortex rows as expected fdomains of differently directed tilted waves, and (iii) cross-
domains of different flow. Experimentally, multiple do- roll patterns. The requirement of high transverse mode de-
mains were also recorded [3(f)]. The direction of the tiltedgeneracy and a large Fresnel number was fulfilled using a
waves in the domains can also be seen from the spot orgéonfocal resonator, which, apart from its symmetry con-
entations on the far field ring (e.g., the orientation of thestraints, is equivalent to a plane resonator of a very high
spots was freely changing in time, indicating that the ori-Fresnel number.

entation of the domains is independent of the boundaries, This work was supported by Deutsche Forschungsge-
both in experiment and numerics). meinschaft and Volkswagen Stiftung.
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