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Vortices, shocks, domains of tilted waves, and cross-roll patterns are typical patterns of the com
Swift-Hohenberg equation, which describes spatiotemporal dynamics in nonlinear optical system
large Fresnel number, such as lasers, optical parametric oscillators, and photorefractive oscilla
We show the occurrence of such “essentially nonlinear” patterns experimentally on a photorefrac
oscillator and compare it with numerical solutions of the complex Swift-Hohenberg equatio
[S0031-9007(97)04128-8]
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Lasers are generally known to emit radiation fields wit
simple spatial structure such as transverse resonator mo
of low order. This simplicity is a consequence of the usu
small Fresnel number of laser resonators. (The Fresn
number in optical systems corresponds to the aspect ra
of a conventional spatially extended nonlinear system.) O
the other hand, it is known that lasers, or more genera
resonators containing active or passive nonlinear med
are potentially capable of emitting fields with complicate
structures of high spatial information content. This is see
from reduced laser equations in the form of the comple
Ginzburg-Landau equation (CGLE) [1] or complex Swift
Hohenberg equation (CSHE) [2,3], which are the equatio
types at the basis of most pattern forming systems in Natu
or physics.

Although complicated light field structures appeared i
recent experiments with nonlinear optical systems [4,5
the patterns observed so far could be interpreted as
simultaneous excitation of transverse resonator mod
This implies that the patterns were dominated by bounda
effects, rather than by the nonlinearity of the medium
“Essentially nonlinear” pattern formation of lasers, as
is described by the CSHE and CGLE, requires primarily
large Fresnel number of the resonator and, simultaneous
a high level of degeneracy of transverse mode families.

More complex patterns were reported in [6], where th
Fresnel number was raised to hundreds—closer to the
quirements for essentially nonlinear patterns. Howeve
the complicated excitation geometry did not permit rela
tion to a general nonlinear physics model in [6].

We show here experimentally that use of large Fre
nel number resonators (few thousands) allow indeed e
sentially nonlinear pattern formation. We illustrate thi
by several structures typical for the CSHE, emitted by
photorefractive oscillator (PRO) which is equivalent to
class A laser [7]. Thus we conclude that nonlinear optic
is, in reality and not only conceptually, capable of formin
the full variety of complex structures typical for genera
pattern forming systems.

The CSHE is a universal order parameter equation d
scribing pattern formation in the mean field approximatio
0031-9007y97y79(14)y2658(4)$10.00
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in nonlinear optical systems, such as large Fresnel num
class A lasers [2,3], PROs [7], and optical parametric o
cillators [8]. It describes spatiotemporal dynamics of th
order parameterAs$r, td, which is proportional to the optical
field envelope:

≠tA ­ pA 1 idsD 1 $=2dA 2
sD 1 $=2d2

Dv2 A 2 AjAj2.

(1)

For the case of a laser,p is the net gain parameter,D is
resonator detuning,d ­ LlQys2pd is the diffraction coef-
ficient,L is the total resonator length,l is the wavelength,
Q is the resonator finesse (photon lifetime in units of res
nator round-trip time), andDv is the width of the gain
line (or, equivalently, the mode linewidth for PROs). Th
transverse coordinates are scaled to the diameter of la
aperture, and the timet is scaled to the response time of th
photorefractive medium (of order of seconds). For the
scalings the diffraction coefficient is related to the Fresn
number of the resonator:d ­ 1yF. The CSHE (1) be-
comes the well-known CGLE for negative detunings; fo
positive detunings the CSHE displays patterns qualitative
different from the CGLE.

In the limit of zero (or negative) resonator detuningD

in (1), the waves with zero transverse wave-number co
ponents are most strongly amplified: The Poynting ve
tors of radiation emitted are directed parallel to the optic
axis of the resonator. For positive detuning, the Turin
structures with nonzero transverse wave-number com
nents are most favored. These correspond to a reson
ring in the spatial Fourier domain (the far field plane) with
radius dependent on detuning:jk'j2 ­ D, and a width pro-
portional to the gain line widthDv. The Poynting vectors
are correspondingly tilted with respect to the optical axi

One of the characteristic patterns of (1) for zero o
negative detuning are vortices or spiral waves separa
by “shocks.” Such patterns were studied numerica
for the CGLE [1,9], and were observed experimental
in chemical and biological pattern-forming systems [10
The shocks result from counterpropagating energy flow
which are generated by neighboring vortices [9]. Th
© 1997 The American Physical Society
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energy flow in lasers originates from the variation o
saturation along the radial direction inside a vortex.

For positive detuning, the most characteristic patterns
(1) are tilted waves, if no lateral boundaries are present.
this case, only one transverse wave number from the re
nant ring wins in the nonlinear competition, and determin
the pattern. In reality, the tilted waves can be influenc
by lateral boundaries, which leads to domains of differen
oriented tilted waves. Such tilted wave domains have be
observed, among others, in two-component fluid syste
[11]. They have also been theoretically predicted in cla
A lasers with sufficiently broad aperture [3].

The other characteristic pattern of the CSHE is the s
called “cross-roll pattern” [12]. This pattern (in the form
of a square or rhombic “vortex lattice”) has been predicte
for broad aperture lasers [3,13]. This cross-roll patte
appears as a superposition of two pairs of countertilt
waves. As shown in Ref. [3], the square or rhombic vorte
lattice is a pattern corresponding to a local minimum of th
potential of the system, while the tilted wave correspon
to the global, deeper minimum.

Since class A lasers (and PROs) are described by
they should display the patterns discussed above. Ho
ever, to our knowledge, experimental observations of su
essentially nonlinear patterns in optical systems have
been reported. There are two main requirements for
laser to emit these patterns: (1) high level degenera
of transverse (Gauss-Laguerre or Gauss-Hermite) mod
(2) a sufficiently large Fresnel number of the resonato
The Fresnel number determines the smallest spatial sc
of the pattern:xmin ­ F21y2 if the transverse coordinate
is normalized to the width of the aperture. Our numer
cal calculations show that Fresnel number values su
cient for observation of the essentially nonlinear structur
areF . 103 sd , 1023d. (For smaller Fresnel numbers
boundaries play a significant role, and the essentially no
linear structures such as domains of tilted waves, shoc
etc., are not sufficiently pronounced.) Typical resonat
parameterssL ­ 1 m, l ­ 0.5 3 1026 m, Q ­ 5d and
the requirement of a large Fresnel numbersF . 103d lead
to a diameter of aperturexaper . 20 mm. This shows that
to observe essentially nonlinear patterns the aperture o
plane resonator must be quite large, which probably e
plains the lack of corresponding observations so far.

In the experiments we exploited the fact that confo
cal resonators lead to the degeneracy of transverse mo
(transverse mode continuum) and, apart from their cent
symmetry properties, correspond to plane resonators w
an infinitely large Fresnel number. In other words, an e
actly confocal resonator is completely diffractionless [d ­
0 for (1)]. The importance of confocal resonators (an
more generally, of self-imaging ones) has been pointed
in [14] for (linear) image processing. Here we exploit th
diffractionless confocal resonators in order to obtain a su
ficiently large Fresnel number in our nonlinear system.

The analysis of near-confocal resonators (based, e
on a propagation matrix approach) yields the fact th
f
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if the displacement from the confocal resonator lengt
l is small compared with the full resonator lengthL,
then the order parameter equation (1), derived for a plan
resonator, is also valid for a near-confocal one, but with
diffraction coefficient:d ­ llQys2pd. The pattern nearly
reproduces itself in two resonator round-trips for near
confocal resonators. This imposes the central symmet
of the patterns. (For perfectly confocal resonatorsl ­ 0,
and the dispersion and diffraction of the resonator vanish

We took these symmetry restrictions into account by in
tegrating numerically in one-half of the integration region
and setting the order parameter in the other half of the r
gion according to the symmetry conditions in every inte
gration step. We used the split-step scheme on a spat
grid of s128 3 128d, with time stepDt ­ 0.02. For more
details of the numerical scheme, see, e.g., Ref. [7]. Th
initial condition for the numerical integration was a ran-
domly distributed field (Gaussian,d correlated in space,
noise). The equation was integrated in a unit size squa
region limited by zero boundaries corresponding to th
cross section of the photorefractive crystal.

For experiments we used a photorefractive oscillato
with BaTiO3 as the active medium. The linear confoca
resonator consisted of two highly reflecting mirrors with
a radius of curvature of 350 mm. The crystal of4.3 3

4.3 3 4.6 mm dimensions was located close to one mirro
and homogeneously illuminated by a single frequenc
Ar1 laser at 514 nm wavelength. The typical pump
intensity was20 mWycm2. We used the reflection from a
crystal surface to outcouple radiation from the resonato
The differencel from the confocal length was about
5 mm, which corresponds to the Fresnel number of a
equivalent plane resonator5 3 103.

Two characteristic planes were chosen for observatio
of the patterns within the cavity: (1) the crystal plane a
the focus, which corresponds to the near field, and (2) th
far mirror plane, which corresponds to the far field. The
patterns were controlled by an intracavity circular apertur
in the far field plane. Both planes were simultaneousl
imaged onto a charge-coupled device camera for recordin

For a totally open aperture, we observe in the near fie
a random small scale structure, as it is typically observe

FIG. 1. Transverse pattern (near field, left; far field, right)
as recorded experimentally on a PRO with a nearly confoc
resonator. The intracavity aperture is completely open.
2659
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FIG. 2. Vortices separated by shocks. Numerically [(a)–(c)] and experimentally [(d)–(e)] obtained field distribution fo
detuning: near field amplitude (a), phase (b), far field amplitude (c). (d) and (e) are experimental images of the near field
field plane. In the experiment, the resonator length is tuned so that the ring in the far field (e) contracts to a spot. The
order rings (from Fig. 1) were removed by an intracavity aperture. The parameters for numerical integration arep ­ 2.75, D ­ 0,
d ­ 1023, g ­ 5 3 1025. Pump field intensity in the experiment was two times above threshold.
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in large Fresnel number photorefractive oscillators, and
set of concentric rings in the far field (Fig. 1). The rings i
the far field indicate the slight deviation from confocality
and are comparable with the rings observed in plane Fab
Perot resonators (e.g., as shown in [6]). Different ring
correspond to different longitudinal orders of the resona
spatial wave vectors (or different longitudinal modes).
change of the resonator length leads to a change of the
angles of resonant wave vectors and the change of r
diameters in the far field.

To realize the single-longitudinal (but multitransver
sal) mode case described by CSHE, the emission was
stricted to a single ring in the far field by the aperture i
the far field plane. Under these conditions, the PRO d
played the typical patterns, predicted by (1), dependent
the resonator tuning.
ined
merical
rtices
FIG. 3. Domains of tilted waves separated by a row of vortices. Numerically [(a)–(c)] and experimentally [(d)–(g)] obta
patterns for positive detuning. The resonator length was tuned to maintain the ring in the far field. The parameters for nu
integration arep ­ 2.5, D ­ 6; other parameters in numerics and experiment are the same as in Fig. 2. Note the row of vo
separating the two domains of tilt in (d). Four domains of different tilts are visible in (f).
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Figures 2(a)–2(c) show a pattern calculated by th
numerical integration of (1) for zero detuning and the ex
perimentally recorded pattern (d) obtained by tuning th
resonator length so that the ring in the far field contracte
to a central spot (e). Optical vortices separated by shoc
are seen in the near field patterns, both experimenta
and numerically. The orientation of the shock boundarie
and location of vortices was freely evolving in time and
was not imposed by the boundaries of the system. T
patterns display central symmetry, which is imposed b
the confocality of the resonator.

Figure 3 shows domains of tilted waves obtained nu
merically from (1) for positive detuning [Figs. 3(a)–3(c)]
and also experimentally [3(d)], with the resonator lengt
tuned so that tilted components appear in the far fie
[3(e)]. The direction of the waves traveling inside the
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tions
FIG. 4. The cross-roll pattern or square vortex lattice: numerically [(a)–(c)] and experimentally [(d) and (e)] obtained distribu
for positive detuning. Everything is the same as Fig. 3, except for pump values. Numerically:p ­ 1.5; pump intensity in
experiment was about 50% above threshold. Far field components in (e) are marked by arrows.
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domains corresponds to the direction of the phase grad
ents, which can be seen from the phase picture in 3(b
The domains are separated by vortex rows as expected
domains of different flow. Experimentally, multiple do-
mains were also recorded [3(f)]. The direction of the tilted
waves in the domains can also be seen from the spot o
entations on the far field ring (e.g., the orientation of the
spots was freely changing in time, indicating that the ori
entation of the domains is independent of the boundarie
both in experiment and numerics).

The special case of four pairwise countertilted wave
resulting in the cross-roll pattern is shown in Fig. 4. Nu-
merically [Figs. 4(a)–4(c)] and experimentally [Figs. 4(d)
and 4(e)] the cross-roll patterns appear at smaller pum
parameters than the domains of tilted waves. Althoug
the formation of the cross-roll pattern is intrinsic to the
nonlinear system [3], the orientation of the counterpropa
gating tilted waves is influenced by boundaries. We per
formed numerical calculations using periodic boundar
conditions (other parameters identical to those used fo
obtaining Fig. 4), where arbitrarily oriented cross-roll pat-
terns were equally probable, which proves that the nonlin
earity, and not the boundaries, is the primary mechanis
for the formation of this pattern.

All experimentally and numerically observed patterns
are dynamic. The temporal evolution occurs on a tim
scale given by the response time of the photorefractive m
terial. Small resonator length drifts were, however, presen
in experiments, which could perhaps destabilize pattern
Consequently, from experimental observations alone, w
cannot be completely sure of the intrinsic character of th
dynamics of the patterns. However, the correspondin
perturbation-free numerical calculations clearly showe
self-sustained dynamics persisting longer than transients

In conclusion, we have demonstrated for the first time
an essentially nonlinear transverse pattern formation in a
active nonlinear optical system (photorefractive oscillator
operating on a single longitudinal mode. These patterns,
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also obtained numerically from the order parameter eq
tion (1) are (i) isolated vortices separated by shocks,
domains of differently directed tilted waves, and (iii) cros
roll patterns. The requirement of high transverse mode
generacy and a large Fresnel number was fulfilled usin
confocal resonator, which, apart from its symmetry co
straints, is equivalent to a plane resonator of a very h
Fresnel number.
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