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We have computed an estimate of the angular power spectrum of the cosmic microwave background
induced by cosmic strings on angular scates5’, using a numerical simulation of a cosmic string
network and have decomposed this pattern into scalar, vector, and tensor parts. The anisotropies from
vector modes dominate except on very small angular scales, and we find no evidence for strong acoustic
oscillations in the scalar anisotropy. The anisotropies generated after recombination are even more im-
portant than in adiabatic models. The total anisotropy on small scales is inconsistent with current mea-
surements. The calculation has a number of uncertainties, the largest of which is due to finite temporal
range. [S0031-9007(97)04228-2]

PACS numbers: 98.70.Vc, 98.80.Cq

The spectrum of cosmic microwave background (CMB)of the simulations that was used in Allenal. [6]. While
anisotropy on the angular scales somewhat smaller thahat simulation took the size of the simulation box to be
that subtended by the horizon at last scattering provides tavice the present day horizon, we may use the assumption
powerful probe of the nature of inhomogeneities and matef self-similar evolution of the string network (“scaling”)
ter in our universe [1]. On these scales hydrodynamicalo rescale the box to a smaller size while simultaneously
effects can leave characteristic signatures of adiabatic @tecreasing both the starting and ending time of the simu-
isocurvature perturbations [2], active or passive perturbakation. The equations of motion of the strings will still be
tions [3], an open or closed universe, or even a high osatisfied so long as the cosmological expansion remains a
low Hubble constant. Cosmic strings are topological depower law, which in this case is « té, corresponding to
fects which may have formed in the very early Universea flat Friedmann-Robertson-Walker matter dominated uni-
and may be responsible for the formation of large scal&erse. These simulations should not be used for epochs
structure observed in the Universe today [4]. While costoo close to matter-radiation equality, which means that if
mic string induced perturbations are clearly both isocurvawe want to study the effects close to recombination we
ture and active the interplay between these two propertieshould really only consider a large Hubble constant which
allows a range of possible behavior for the degree scalputs recombination long after matter-radiation equality.
anisotropy [5]. One method for determining the signatureHere we useéd, = 80, but even with this Hubble constant
for cosmic strings is via simulation, i.e., by numerically the effects of the matter-radiation transition are liable to
evolving a network of cosmic strings in a simulated uni-be significant, and below we discuss what these effects
verse and computing the pattern of anisotropy they wouldre liable to be. Throughout we take the baryon fraction
produce. We present the results of just such a calculatiof, = 0.02 to be consistent with the predictions of nucle-
in this Letter. While we have not explored the full range osynthesis.
of cosmological parameters, or included all the effects on The cosmic string simulation is in a cubical box whose
network dynamics, our results are suggestive of what isomoving size we denote bg. The initial time step,
and is not important for small scale anisotropies from thevhen the comoving horizon< conformal time) is given
cosmic string model. by n; = 0.05L, after which the string network rapidly re-

Methodology—Cosmic strings only interact gravita- laxed to its scaling configuration by the tirge= 0.055L.
tionally with the rest of the matter and produce only smallThe simulation ends ajs = 0.5L. During this period the
metric perturbations. Thus we may ignore back-reactiordniverse has grown by a factor of 100. In order to use
of the metric perturbations on the strings and solve for theéhis simulation to compute small-scale anisotropies pro-
evolution of the string network in an unperturbed cosmol-duced near recombination one must make the measure-
ogy. This “stiff-source” approximation allows us to do ment of the anisotropies long after the end of the string
the string simulation and later compute the perturbationsimulation. One may do this by rescaling the simula-
to the matter. It also allows us to reuse the same stringon to end just after recombination, but continuing to
simulation to compute the perturbations in cosmologiepropagate the brightness pattern unperturbed through the
with different matter content. Here we have reused ongeriodic box until today. Thidree-streamingprocedure
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will lead to a brightness pattern which is quasiperiodic on —[S _ 1 Z
the sky, the size of the periodic patches being the angle (21 + 1) L3 4
subtended by length when placed at the distance of the 1
surface of last scattering. We expect that the statistical EV = (Z IA(,,H)IZ + IA(Z,_1)|2>, 3)
properties of the pattern in each of these patches will be QL+ DL\
nearly the same as for a similar sized patch in an infinite __ 1 ) )
nonperiodic universe. G = m Z 1A +l” + 1A¢-2I" |-

Since the metric perturbations are small we may use k
the linearized Einstein equations for the metric and thélhere are no cross terms between different terms because
linearized Boltzmann equation for the anisotropies. Thisll of the modes are orthogonal [9]. Applying this
makes the equations for the temperature anisotropy linealecomposition to the right-hand side of Eq. (1) induces a
in the stress energy of the string$,,,. The dynamics of scalar-vector-tensor decompositionof” and®,,. We
the strings is described by nonlinear equations, and leadaay perform the decomposition @f,, numerically. The
to the non-Gaussian distribution fér,,, but theresponse  corresponding components @&f#” are solutions of the
of the photons to the strings is linear. The solution of thdinearized Einstein-Boltzmann equation which we have
linear equations may be written as a homogeneous antbmputed numerically using standard techniques [10].

[Agol?,

inhomogeneous part Tests—Our calculation has three parts: the string
I simulation, the numerical calculation of the Green func-
AT (A, X ) = AT + jd /] PENy tions, and the computation of the brightness perturbation,
7 obs: Tobs T K which merges the two preceding parts. A number of tests
X D" (A, x,x', 1, 1) have been made on the simulation [6,7,11], which we do

not discuss here.

The Green functions have been tested in two ways.
First, the code which computes the scalar and tensor
mological fluids (cold, dark matter, baryons, photons, anoGreen functions [10] has been used o de’germl_ne the an-

gular power spectrum for a model with adiabatic pertur-

neutrinos) which is often referred to esmpensation We i v, Th lculati t0 withi ¢
have compensated the strings with adiabatic perturbatior%"?‘ lons only. Ihese calcuiations agree fo within a percen
with standard results. Although the vector Green func-

in the other matter so as to make the total density initiallyt. t be tested in thi there | IVt
uniform, just as in Ref. [6]. Clearly this is not exactly the lons cannot be tested in this way, there IS an analytic ap-

correct prescription except on superhorizon scales. Ne oroximation in terms of spherical Bessel functions, which
. AT\] . . olds after recombination. For this case, there is excel-
ertheless we find that=-)" is small in comparison

ith th dt s | istent with th it lent agreement between the analytic and numerical results.
wi € second term ( IS IS consistent wil e resu %imilarly, the scalar Green functions have been tested on
of Ref. [7]). We think this is likely to remain true with

X S ) large scales by comparing with analytic approximations;
different prescriptions for compensation. g y paring y PP

The way we have used Eq. (1) is somewhat differenf’jlgaln we find excellent agreement.

. ) To test the full pipeline of merging the Green functions
than ha_ls typically been done_ln the past. Rather than CONGith the stress energies, we calculated the anisotropies in
centrating on a fewk,,s we will effectively compute the

entire brightness pattern throughout the simulation box matter dominated universe with one domain wall [12].
. . The C;’s in this case can be calculated analytically. The
This function of the 5D phase spa®, x,,s) would re- ! y y

. X numerical results are in very good agreement with the
quire an unpractical amount of computer memory. One,, act results

can redtltJ]ce ;he mgmory ret(qju;;lemept byd;(r)#”der decom- The greatest limitation of our ability to accurately
posing thex dependence and then, for € 0de, ex- compute the small angle CMB anisotropy is the lack of

panding the dependence in spherical harmonieg,, dynamic range of the cosmic string simulation. Although

gsing a_sphgrical polar coordinate system with th?.pOI?he simulation runs over a range of 10 in conformal time,
in the direction ofk. The beauty of this decomposition this is insufficient to accurately follow the evolution of

is that them = 0 terms correspond to scalar modes, themodes from well outside to inside the horizon, where they
m = *1 terms to vector modes, and the= =*2 to ten-

des 181, Mod ithn| > 2 . h begin to oscillate. Our results indicate that modes well
sor modes [8]. Modes wi 1| = 2 are zero since ey ,qi4e the horizon make a significant contribution to the
are not coupled to the gravitational field (in linear the-

ory) and may be ignored. From the mode coefficientsamSOtrOpy' As an example, when ~ 6/k, the traceless

art ofl@,wl2 is half its maximum value.
A({’m)(k)' one may construct the vqlume average of thep Because of the limited spatial resolution of the cosmic
C,’s measured by all the observers in the box:

string simulation, a limited number of Fourier modes
C = aS n EV n ET, ) of the source stress energy are available. . To “determlne

whether this would prevent us from seeing “Doppler
where peaks,” we used the same number of modes over the same

X 0,,xh'), 1)

Where(ATT)I depends on the initial condition for the cos-
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range of time for a model with adiabatic initial conditions, factor of ~2.8 smaller. However, we are in accord with
for which the exact results are known. Qualitativethe shape of the spectrum and the determination that
agreement was obtained, as the peak structure and locatitime majority of the large angle anisotropy is generated
were clearly evident. Hence, we do not expect that thet redshiftsz < 20 (as in Fig. 3 of Ref. [6]). When
limited spatial resolution should prevent us from resolvingnormalizing tocoBe [13], we find ug = Gu X 10° =
features in the angular power spectrum. Finite grid effectd.7, a factor ~+/2.8 higher than that of Ref. [6]. This
lead to an artificial drop of only-10% in the amplitude result is comparable witjrs = 1.5(%0.5) [14], 1.7(*+0.7)
of the angular power spectrum for the largéstalues [15], and 2 [16]. Thus, our large angle normalization falls
obtained from a simulation volume. in the middle of the range spanned by other calculations.
Finally, we have used the same simulation to calculate On small angular scales Fig. 1 shows the contribution
anisotropies generated at different times. However, wéo the scalarC;’s from early times(z > 700). There is
do not expect there to be strong correlations in either tha gradual rise in the spectrum froin= 100 till a very
source stress energy or the anisotropy on time intervalsroad plateau fof = 200. The increase is less than a
longer than the run time of the string simulation. Hence factor of 2 so may not be significant.
we do not expect the recycling of the numerical simulation Calculating the contribution from the vector modes
to have a strong effect on our results. and from the late time contributions to the scalar modes
Results—We obtain the final angular power spectrum, presents a problem. In each case, the box size must
C;, by combining the results from different rescalingsbe chosen to be very large in order to get to very late
of the results of the cosmic string numerical simulation.times. The smallest scale$ £ 300) therefore become
As discussed earlier, we exploit the scaling propertiesinreliable. In Fig. 2, we show the results fo60 <
of the string network to make up for the finite temporall < 300. The most striking feature here is that both the
dynamic range of the simulation. For multipole momentsvector contribution and the late time scalar contribution
in the range2 <[ <20 (large angles) we use one are larger than the early time scalars. The net result is
box, covering the redshift rang® < z < 100. For thatthe mild acoustic peak in the scalar spectrum becomes
100 < I < 800 (small angles) we use two different boxes hidden. The total spectrum therefore is quite flat. (It is
corresponding td00 < z < 17000 and60 < z < 700. unclear if the slight drop in the total is significant.) While
Our results are shown in Figs. 1 and 2. On largethese qualitative features appear to be robust, we believe
angular scales, we see that the dominant source of theat in future work they will be subject to quantitative
anisotropy is due to vector perturbations. This is anchanges which will tend to boost power on small-angular
important result, as it means ttwmBE normalization of scales.
the mass per unit length is determined mainly by the
amplitude of the vector, not scalar, spectrum.
We may use the large angle results as a test of our <00
techniques, by comparing with the results of Ref. [6],
which used the same simulation. They found +
1)C; ~ 350(Gu)? at large angles, so our results are a
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FIG. 1. Angular power spectrum at large and small scales

for the cosmic string simulation. Tensors do not contributeFIG. 2. Angular power spectrum at small scales for the
appreciably. On small scales only the contribution from earlycosmic string simulation. The three different contributions are
times (z > 700) can be calculated reliably over the full range the early time scalars, late time scalars, and vectors. These add
of angular scales. incoherently to give the total spectrum.
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