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We have computed an estimate of the angular power spectrum of the cosmic microwave backgro
induced by cosmic strings on angular scales*150, using a numerical simulation of a cosmic string
network and have decomposed this pattern into scalar, vector, and tensor parts. The anisotropies
vector modes dominate except on very small angular scales, and we find no evidence for strong aco
oscillations in the scalar anisotropy. The anisotropies generated after recombination are even more
portant than in adiabatic models. The total anisotropy on small scales is inconsistent with current m
surements. The calculation has a number of uncertainties, the largest of which is due to finite temp
range. [S0031-9007(97)04228-2]

PACS numbers: 98.70.Vc, 98.80.Cq
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The spectrum of cosmic microwave background (CMB
anisotropy on the angular scales somewhat smaller th
that subtended by the horizon at last scattering provide
powerful probe of the nature of inhomogeneities and ma
ter in our universe [1]. On these scales hydrodynamic
effects can leave characteristic signatures of adiabatic
isocurvature perturbations [2], active or passive perturb
tions [3], an open or closed universe, or even a high
low Hubble constant. Cosmic strings are topological d
fects which may have formed in the very early Univers
and may be responsible for the formation of large sca
structure observed in the Universe today [4]. While co
mic string induced perturbations are clearly both isocurv
ture and active the interplay between these two propert
allows a range of possible behavior for the degree sca
anisotropy [5]. One method for determining the signatu
for cosmic strings is via simulation, i.e., by numerically
evolving a network of cosmic strings in a simulated un
verse and computing the pattern of anisotropy they wou
produce. We present the results of just such a calculat
in this Letter. While we have not explored the full rang
of cosmological parameters, or included all the effects o
network dynamics, our results are suggestive of what
and is not important for small scale anisotropies from th
cosmic string model.

Methodology.—Cosmic strings only interact gravita-
tionally with the rest of the matter and produce only sma
metric perturbations. Thus we may ignore back-reactio
of the metric perturbations on the strings and solve for th
evolution of the string network in an unperturbed cosmo
ogy. This “stiff-source” approximation allows us to do
the string simulation and later compute the perturbatio
to the matter. It also allows us to reuse the same stri
simulation to compute the perturbations in cosmologie
with different matter content. Here we have reused o
0031-9007y97y79(14)y2624(4)$10.00
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of the simulations that was used in Allenet al. [6]. While
that simulation took the size of the simulation box to b
twice the present day horizon, we may use the assumpt
of self-similar evolution of the string network (“scaling”)
to rescale the box to a smaller size while simultaneous
decreasing both the starting and ending time of the sim
lation. The equations of motion of the strings will still be
satisfied so long as the cosmological expansion remain
power law, which in this case isa ~ t

2

3 , corresponding to
a flat Friedmann-Robertson-Walker matter dominated un
verse. These simulations should not be used for epoc
too close to matter-radiation equality, which means that
we want to study the effects close to recombination w
should really only consider a large Hubble constant whic
puts recombination long after matter-radiation equality
Here we useH0 ­ 80, but even with this Hubble constant
the effects of the matter-radiation transition are liable t
be significant, and below we discuss what these effec
are liable to be. Throughout we take the baryon fractio
Vb ­ 0.02 to be consistent with the predictions of nucle
osynthesis.

The cosmic string simulation is in a cubical box whos
comoving size we denote byL. The initial time step,
when the comoving horizon (; conformal time) is given
by hi ­ 0.05L, after which the string network rapidly re-
laxed to its scaling configuration by the timeh ­ 0.055L.
The simulation ends athf ­ 0.5L. During this period the
Universe has grown by a factor of 100. In order to us
this simulation to compute small-scale anisotropies pr
duced near recombination one must make the measu
ment of the anisotropies long after the end of the strin
simulation. One may do this by rescaling the simula
tion to end just after recombination, but continuing to
propagate the brightness pattern unperturbed through
periodic box until today. Thisfree-streamingprocedure
© 1997 The American Physical Society
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will lead to a brightness pattern which is quasiperiodic o
the sky, the size of the periodic patches being the an
subtended by lengthL when placed at the distance of th
surface of last scattering. We expect that the statisti
properties of the pattern in each of these patches will
nearly the same as for a similar sized patch in an infin
nonperiodic universe.

Since the metric perturbations are small we may u
the linearized Einstein equations for the metric and t
linearized Boltzmann equation for the anisotropies. Th
makes the equations for the temperature anisotropy lin
in the stress energy of the strings,Qmn. The dynamics of
the strings is described by nonlinear equations, and le
to the non-Gaussian distribution forQmn, but theresponse
of the photons to the strings is linear. The solution of th
linear equations may be written as a homogeneous
inhomogeneous part

DT
T

sn̂, xobs, hobsd ­

√
DT
T

!I

1
Z

dh0
Z

d3x0

3 Dmnsn̂, x, x0, h, h0d
3 Qmnsx0n̂0d , (1)

wheres DT
T dI depends on the initial condition for the cos

mological fluids (cold, dark matter, baryons, photons, a
neutrinos) which is often referred to ascompensation. We
have compensated the strings with adiabatic perturbati
in the other matter so as to make the total density initia
uniform, just as in Ref. [6]. Clearly this is not exactly th
correct prescription except on superhorizon scales. N
ertheless we find thats DT

T dI is small in comparison
with the second term (this is consistent with the resu
of Ref. [7]). We think this is likely to remain true with
different prescriptions for compensation.

The way we have used Eq. (1) is somewhat differe
than has typically been done in the past. Rather than c
centrating on a fewxobs we will effectively compute the
entire brightness pattern throughout the simulation bo
This function of the 5D phase spacesn̂, xobsd would re-
quire an unpractical amount of computer memory. O
can reduce the memory requirement by Fourier deco
posing thex dependence and then, for eachk mode, ex-
panding then̂ dependence in spherical harmonics,Ysl,md,
using a spherical polar coordinate system with the po
in the direction ofk. The beauty of this decomposition
is that them ­ 0 terms correspond to scalar modes, th
m ­ 61 terms to vector modes, and them ­ 62 to ten-
sor modes [8]. Modes withjmj . 2 are zero since they
are not coupled to the gravitational field (in linear the
ory) and may be ignored. From the mode coefficien
Dsl,mdskd, one may construct the volume average of th
Cl ’s measured by all the observers in the box:

Cl ­ Cl
S

1 Cl
V

1 Cl
T , (2)
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Cl
S

­
1

s2l 1 1d L3

X
k

jDsl,0dj
2 ,

Cl
V

­
1

s2l 1 1d L3

√X
k

jDsl,11dj
2 1 jDsl,21dj

2

!
, (3)

Cl
T ­

1
s2l 1 1d L3

√X
k

jDsl,12dj
2 1 jDsl,22dj

2

!
.

There are no cross terms between different terms beca
all of the modes are orthogonal [9]. Applying this
decomposition to the right-hand side of Eq. (1) induces
scalar-vector-tensor decomposition ofDmn andQmn. We
may perform the decomposition ofQmn numerically. The
corresponding components ofDmn are solutions of the
linearized Einstein-Boltzmann equation which we hav
computed numerically using standard techniques [10].

Tests.—Our calculation has three parts: the strin
simulation, the numerical calculation of the Green fun
tions, and the computation of the brightness perturbatio
which merges the two preceding parts. A number of te
have been made on the simulation [6,7,11], which we
not discuss here.

The Green functions have been tested in two way
First, the code which computes the scalar and ten
Green functions [10] has been used to determine the
gular power spectrum for a model with adiabatic pertu
bations only. These calculations agree to within a perce
with standard results. Although the vector Green fun
tions cannot be tested in this way, there is an analytic a
proximation in terms of spherical Bessel functions, whic
holds after recombination. For this case, there is exc
lent agreement between the analytic and numerical resu
Similarly, the scalar Green functions have been tested
large scales by comparing with analytic approximation
again we find excellent agreement.

To test the full pipeline of merging the Green function
with the stress energies, we calculated the anisotropies
a matter dominated universe with one domain wall [12
The Cl ’s in this case can be calculated analytically. Th
numerical results are in very good agreement with t
exact results.

The greatest limitation of our ability to accurately
compute the small angle CMB anisotropy is the lack
dynamic range of the cosmic string simulation. Althoug
the simulation runs over a range of 10 in conformal tim
this is insufficient to accurately follow the evolution o
modes from well outside to inside the horizon, where th
begin to oscillate. Our results indicate that modes w
inside the horizon make a significant contribution to th
anisotropy. As an example, whenh , 6yk, the traceless
part of jQmnj2 is half its maximum value.

Because of the limited spatial resolution of the cosm
string simulation, a limited number of Fourier mode
of the source stress energy are available. To determ
whether this would prevent us from seeing “Dopple
peaks,” we used the same number of modes over the sa
2625
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range of time for a model with adiabatic initial conditions
for which the exact results are known. Qualitativ
agreement was obtained, as the peak structure and loca
were clearly evident. Hence, we do not expect that t
limited spatial resolution should prevent us from resolvin
features in the angular power spectrum. Finite grid effe
lead to an artificial drop of only,10% in the amplitude
of the angular power spectrum for the largestl values
obtained from a simulation volume.

Finally, we have used the same simulation to calcula
anisotropies generated at different times. However,
do not expect there to be strong correlations in either
source stress energy or the anisotropy on time interv
longer than the run time of the string simulation. Henc
we do not expect the recycling of the numerical simulatio
to have a strong effect on our results.

Results.—We obtain the final angular power spectrum
Cl, by combining the results from different rescaling
of the results of the cosmic string numerical simulatio
As discussed earlier, we exploit the scaling properti
of the string network to make up for the finite tempor
dynamic range of the simulation. For multipole momen
in the range 2 , l , 20 (large angles) we use one
box, covering the redshift range0 , z , 100. For
100 , l , 800 (small angles) we use two different boxe
corresponding to700 , z , 17 000 and60 , z , 700.

Our results are shown in Figs. 1 and 2. On larg
angular scales, we see that the dominant source of
anisotropy is due to vector perturbations. This is a
important result, as it means theCOBE normalization of
the mass per unit length is determined mainly by t
amplitude of the vector, not scalar, spectrum.

We may use the large angle results as a test of
techniques, by comparing with the results of Ref. [6
which used the same simulation. They foundlsl 1

1dCl , 350sGmd2 at large angles, so our results are

FIG. 1. Angular power spectrum at large and small sca
for the cosmic string simulation. Tensors do not contribu
appreciably. On small scales only the contribution from ea
times sz . 700d can be calculated reliably over the full rang
of angular scales.
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factor of ,2.8 smaller. However, we are in accord with
the shape of the spectrum and the determination t
the majority of the large angle anisotropy is generat
at redshiftsz & 20 (as in Fig. 3 of Ref. [6]). When
normalizing toCOBE [13], we find m6 ; Gm 3 106 ­
1.7, a factor ,

p
2.8 higher than that of Ref. [6]. This

result is comparable withm6 ­ 1.5s60.5d [14], 1.7s60.7d
[15], and 2 [16]. Thus, our large angle normalization fal
in the middle of the range spanned by other calculation

On small angular scales Fig. 1 shows the contributi
to the scalarCl ’s from early timessz . 700d. There is
a gradual rise in the spectrum froml ­ 100 till a very
broad plateau forl * 200. The increase is less than
factor of 2 so may not be significant.

Calculating the contribution from the vector mode
and from the late time contributions to the scalar mod
presents a problem. In each case, the box size m
be chosen to be very large in order to get to very la
times. The smallest scales (l * 300) therefore become
unreliable. In Fig. 2, we show the results for100 ,

l , 300. The most striking feature here is that both th
vector contribution and the late time scalar contributio
are larger than the early time scalars. The net resul
that the mild acoustic peak in the scalar spectrum becom
hidden. The total spectrum therefore is quite flat. (It
unclear if the slight drop in the total is significant.) Whil
these qualitative features appear to be robust, we beli
that in future work they will be subject to quantitativ
changes which will tend to boost power on small-angu
scales.

FIG. 2. Angular power spectrum at small scales for th
cosmic string simulation. The three different contributions a
the early time scalars, late time scalars, and vectors. These
incoherently to give the total spectrum.
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Discussion.—We have calculated the anisotropies in
the CMB and the perturbations to matter induced b
a network of cosmic strings in the matter era. Thi
calculation usesall the components of the stress-energ
tensor and exact Green functions for all modes. Th
greatest source of uncertainty in our results is due to t
limited spatial resolution and run time of the numerica
simulation.

On large scales, we find that the vector perturbation
are very important for the CMB anisotropy from cos
mic strings. Our results for anisotropies at small scale
are too low to be consistent with current measuremen
Future work will determine the effects of a radiation
matter transition in the cosmic string simulation, in which
the long string density and rms velocity relaxes from
the radiation- to matter-era scaling values, inclusion o
a “wiggly” equation of state for the cosmic strings, or a
lower value of the Hubble parameter and a larger value
the baryon density can boost the small-scale power s
ficiently. Since vectors dominate, even if any of thes
effects do raise the early time scalar spectrum by
much as a factor of 2, the total power would only go
up by 20%. Even if a primary Doppler peak were to
become a more prominent feature, this work sugges
that secondary Doppler peaks are not anticipated in co
mic string models. Finally let us mention that quali
tatively similar results have also been found for globa
defects [17].
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