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Unified Description of Fermi and Non-Fermi Liquid Behavior in a Conserving Slave Boson
Approximation for Strongly Correlated Impurity Models
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We show that the presence of Fermi or non-Fermi liquid behavior in the SUsNd 3 SUsMd Anderson
impurity models may be read off the infrared threshold exponents governing the spinon and holon
dynamics in a slave boson representation of these models. We construct a conservingT -matrix
approximation which recovers the exact exponents with good numerical accuracy. Our approximation
includes both coherent spin flip scattering and charge fluctuation processes. For the single-channel case
the tendency to form bound states drastically modifies the low energy behavior. For the multichannel
case in the Kondo limit the bound state contributions are unimportant. [S0031-9007(97)03563-1]

PACS numbers: 71.27.+a, 71.10.Fd, 75.20.Hr
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Impurity models with internal degrees of freedom a
strong local correlations coupled to a fermionic bath ha
been of considerable interest recently [1–5]. The pro
type is the Anderson impurity model, involving a localize
electron level (calledd level in the following) hybridiz-
ing with one or several conduction bands [6]. The stro
Coulomb repulsionU (U ! `) between electrons in the
localized state effectively restricts thed-level occupancy to
nd # 1. The ensuing projection of Hilbert space onto t
physical subspace without multiple occupancy is a pro
lem of fundamental importance in the theory of strong
correlated Fermi systems in general. As a conseque
the Anderson model displays many of the salient featu
of strongly correlated systems, including the formation
local magnetic moments and a competition between n
Fermi liquid behavior caused by an incipient orthogon
ity catastrophe, to which the system scales initially, an
Fermi liquid (FL) fixed point, which is realized at energie
below a characteristic scale, the Kondo temperatureTK , if
the local moment can be completely screened by the c
duction electron spin system. This model can, therefo
serve as a test case for the regime of strong correlat
and at the same time for developing new methods wh
may later be applied to lattice problems as well.

In terms of pseudofermion and slave boson operatorsfs ,
bm (s ­ 1, . . . , N, m ­ 1, . . . , M) [7–9] the M-channel
Anderson model is defined by the Hamiltonian

H ­ H0 1 Ed

X
s

fy
sfs 1 V

X
$k,s,m

scy
$k,s,m

by
mfs 1 H.c.d ,

(1)
where H0 ­

P
$k,s,ms´$k 2 mdcy

$ksm
c$ksm. ´$k is the con-

duction band energy,c
y
$ksm

creates a conduction electro
in bandm with spin projections and momentum$k, and
Ed denotes the energy of theN-fold degenerate locald
level at position $R ­ 0. V is the hybridization matrix
element andm the chemical potential. A physical elec
tron in the local level is created by the electron ope
tor dy

s ­
P

m fy
sbm, where the condition of no double

occupancy is effected by the local operator constraintQ ­
0031-9007y97y79(2)y261(4)$10.00
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P

m by
mbm ­ 1. The effective coupling con-

stant in the constrained Hilbert space is given byG ­
pV 2Ns0d, with Ns0d the conduction electron density o
states at the Fermi level. In the Kondo limitsnd ! ld
the Anderson model [Eq. (1)] can be mapped onto
SUsNd 3 SUsMd Coqblin-Schrieffer model. The latte
has been studied extensively by the Bethe ansatz me
[10], conformal field theory (CFT) [2], and self-consiste
slave boson theory [5].

In this Letter we focus on the auxiliary particl
Green’s functionsGfsst1 2 t2d ­ 2kT h fsst1dfy

sst2djl,
Gbmst1 2 t2d ­ 2kT hbmst1dby

mst2djl. The angular
brackets denote the statistical average in the grand ca
ical ensemble, ks. . .dl ­ trhs. . .dexpf2bsH 2 lQdgjy
trhexpf2bsH 2 lQdgj. The exact projection onto
the subspaceQ ­ 1 is achieved by differentiating
with respect to the fugacityexps2bld and taking the
limit l ! ` [7,8,11]. This procedure ensures that t
projected propagators obey Wick’s theorem, and s
energiesSf,b,csivnd may be defined byGf,b,csivnd ­
hfGo

f,b,csivndg21 2 Sf,b,csivndj21, where Go
fssivnd ­

sivn 2 Ed 2 ld21, Go
bmsivnd ­ sivn 2 ld21, and

Go
cmssivnd ­

P
$ksivn 2 ´$kd21. Thed electron Green’s

function may be expressed in terms ofSc as dis-
cussed in Ref. [11]. The projected spectral functio
Axsvd ­ ImGxsv 2 i0d exhibit divergent threshold
behavior atv ­ 0 with a proper choice of the zero of th
auxiliary particle energy [11]:Axsvd ~ v2ax , x ­ f, b.

For the single-channel model with spin degeneracyN,
which is known to have a FL ground state, the exact ex
nentsaf,b have been determined [12] by Wilson’s nume
cal renormalization group (NRG) approach for the cas
N ­ 1, 2, M ­ 1. They may also be deduced for arb
trary N by the following argument [13]: (i) In the spin
screened FL state (v, T , TK) the impurity is seen by the
conduction electrons as a pure potential scattering cen
(ii) The infrared (IR) threshold behavior ofGf,b is then en-
tirely due to the orthogonality catastrophe of the overlap
the Fermi sea without the impurity level and the fully in
teracting conduction electron sea affected by the poten
© 1997 The American Physical Society 261
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scattering phase shiftsds . The corresponding exponen
is given bya ­ 1 2

P
ssdsypd2. (iii) The phase shifts

follow from the Friedel sum ruleDns ­ dsyp, where
Dns is the change in the number of conduction electro
at the impurity caused by the interaction with the imp
rity. (iv) For the boson spectral function the initial stat
is the empty impurity, which for each spin species fills u
with Dns ­ ndyN conduction electrons in the final state
until the correct impurity level occupationnd is reached.
It follows that

ab ­ 1 2 n2
dyN . (2)

For the spectral function of fermions with spins the
initial state is defined by a full impurity level with spin
s with the remainingN 2 1 impurity levels empty. The
corresponding change of conduction electron number
the final state with occupationnd is Dns ­ ndyN 2 1 and
Dns0 ­ ndyN, s0 fi s, and hence

af ­ s2nd 2 n2
ddyN . (3)

We emphasize that the expressions Eqs. (2) and (3) for
exponents have been confirmed using the Bethe ansatz
lution and boundary CFT [14]. In the Kondo limit (nd ­
1), af ­ 1yN , in disagreement with a result derived from
a self-consistent parquet analysis [15]. Note that co
plete spin screening is crucial for this derivation of th
exponents in terms of scattering phase shifts to be appl
ble: For the multichannel model (M . 1), which exhibits
a non-FL ground state, the exponents in the Kondo lim
are known from CFT [2] to beaf ­ MysN 1 Md, ab ­
NysN 1 Md, while the above argument would yield th
wrong resultaf ­ 1 2 M 1 s2nd 2 n2

dyMdyN, ab ­
1 2 n2

dysNMd. Therefore,the IR threshold exponents o
the auxiliary particles are indicators, i.e., a necessary an
sufficient condition, for FL or non-FL behavior, respec
tively. There is evidence [16] thataf has also observable
relevance in that it governs the physical electron spec
function at intermediate frequenciesv * TK .

We now turn to an approximation scheme [17] whic
is capable of recovering the above (exact) IR dynami
As a minimal requirement, the constraintQ ­ 1 has to
be fulfilled in any approximate theory. The constrain
is closely related to the invariance of the system und
a simultaneous local (in time) gauge transformatio
fsstd ! expfiQstdgfsstd, bmstd ! expfiQstdgbmstd.
The Lagrange multiplierl assumes the role of a loca
gauge field and transforms asl ! l 2 i≠Qy≠t. Any
approximation scheme respecting the gauge symmetry
preserve the chargeQ in time. We shall call approxi-
mations of this type conserving. Symmetry conservin
approximations of the self-energiesSb,f,c and the ir-
reducible verticesGxy may be generated by functiona
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differentiation from a functionalF of closed skeleton
diagrams asSxst1 2 t2d ­ dFydGxst1 2 t2d, Gxy ­
d2FydGxdGy, andx, y ­ f, b, c.

We will be interested in the limit of weak hybridization
such that the dimensionless parameterVNs0d ø 1. Thus,
let us first discuss the lowest order approximation, wh
is of second order inV . The conserving approximation
scheme requires the self-energies to be determined
consistently, which amounts to an infinite resummation
perturbation theory even if only the second order skele
diagram forF is kept. The resulting scheme is know
as the “noncrossing approximation” (NCA) [18–20
It should be a qualitatively correct approximation, pr
vided the perturbation series forF converges, i.e.,if there
are no additional collective effects causing singulariti
The NCA leads to very good results in the absence (i
in the multichannel case) or sufficiently far away fro
a FL fixed point: A comparison of NCA results for th
auxiliary particle andd-electron spectral functionsAf ,
Ab , Ad , and exact results obtained for the single-chan
case using the NRG method shows [11] that (i) the NC
auxiliary particle spectral functions are even quanti
tively correct at energiesv above the Kondo scaleTK ­
DsMGypDdsMyNdexpf2pjEdjysNGdg, where D is the
high energy cutoff, but (ii) their low energy behavio
(v , TK ) is incorrect. The latter appears to be due
a lack of vertex corrections. Within NCA the exponen
of the above-mentioned threshold power laws may be
termined analytically asaNCA

f ­ MysN 1 Md, a
NCA
b ­

NysN 1 Md [5,20]. For the caseM ­ 1, these values
disagree strongly with the exact results discussed ab
In the multichannel case (M . 1), on the other hand,
the NCA exponents agree with the exponents found
the fundamental fields and their correlation functio
in CFT [2] in the Kondo limit. This suggests that th
NCA describes the low energy properties correctly in t
non-FL regime of the SUsNd 3 SUsMd Anderson model
for nd ­ 1 and that the generic behavior of the model
that of a non-FL.

It may be shown by power counting arguments th
there are no corrections to the NCA exponents in a
finite order of perturbation theory [5]. However, addition
collective effects, e.g., the formation of the Kondo sing
state, lead to FL behavior. Thus, it is natural to sea
for singularities in the pseudofermion-conduction electr
scattering channel. In particular, we consider the cl
of diagrams which, at any given order ofV 2, represents
processes with the maximum number of spin flips. T
summation of the corresponding ladder diagrams can
performed by solving the integral equation for thec-f T
matrix [Fig. 1(a)],
ratures
T
scfd
ss,s0s0sivn, iv0

n, iVd ­ 2 V 2Gbsivn 1 iv0
n 2 iVddss0ds0s 1 V 2T

X
v00

n

Gbsivn 1 iv00
n 2 iVdGfssiv00

n d

3 Gcss2iv00
n 1 iVdT scfd

ss,s0s0siv00
n , iv0

n, iVd . (4)

Inserting NCA Green’s functions for the intermediate state propagators of Eq. (4), we find numerically at low tempe
a pole ofT scfd in the singlet channel as a function of the center-of-mass (COM) frequencyV in the Kondo regime
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FIG. 1. (a) Diagrammatic representation of the conduct
electron-pseudofermionT matrix T scfd. (b) Pseudofermion
and (c) slave boson self-energiesSfs , Sb. The terms
corresponding to T scbd are obtained by interchangin
f $ by.

(nd $ 0.7) [17,21]. This signals the tendency to form
singlet bound state atV ­ Vcf . 2TK . In the empty
orbital regime (nd ! 0) the behavior of the system i
governed by charge fluctuations. The dominating c
tributions in this low density region may be expected
result from conduction electron-boson scattering. The c
responding scattering amplitudeT scbd is obtained from
Eq. (4) by interchanging pseudofermions and antiboso
again leading to a pole, atVcb , 0. In the mixed valence
regime (nd . 0.5), the poles in bothT scfd andT scbd are of
equal importance.

In order to guarantee gauge invariance, self-consiste
has to be imposed. The self-energiesSf , Sb calculated
from T scfd andT scbd then follow from a generating func
tionalF [17] and are depicted in Figs. 1(b) and 1(c). Th
are given as nonlinear and nonlocal (in time) function
of the Green’s functions. The Green’s functions in tu
are expressed in terms of the self-energies, closing the
of self-consistent equations [conservingT -matrix approxi-
mation (CTMA)]. Note that the contribution toF contain-
ing one boson rung corresponds to NCA. The diagr
with two rungs is excluded since it is not a skeleton. T
sum of theF diagrams with up to four rungs constitute
a largeN expansion correct up toOs1yN2d and is iden-
tical to the diagram class used in Ref. [22]. We emp
size that the CTMA, i.e., theself-consistentsummation of
the infinite series of all diagrams shown in Fig. 1 is jus
fied on physical as well as formal grounds: At any lo
order of F it includes (1) the maximum number of sp
flip as well as charge fluctuation processes; (2) all le
ing and subleading IR singular contributions, because
terms not included cancel pairwise in the IR regime [2
The threshold property of the auxiliary spectral functio
implies that the exactT matricesT scfd andT scbd have no
spectral weight at negative COM frequenciesV, in con-
trast to the poles appearing in the “perturbative” eval
tion, i.e., inserting NCA propagators as discussed a
Eq. (4). Consequently, these poles are shifted toV ­ 0
by self-consistency, where they merge with the contin
ous spectral weight present forV . 0, thus renormalizing
the threshold exponents of the auxiliary spectral functio
as seen below. This is an expression of the fact that
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Kondo singlet is not a two-particle bound state but rath
a collective many-particle state.

After analytical continuation to the real frequency ax
we have solved the CTMA numerically by iteration. In th
Kondo regime (nd $ 0.7) of the N ­ 2, M ­ 1 model,
we have obtained reliable results down to temperatures
the order of1022TK (note thatTK ! 0 in the Kondo limit).
In the mixed valence and empty impurity regimes, signi
cantly lower temperatures may be reached, compared
the low temperature scale of the model. As is shown
Fig. 2(a), the spectral functions obtained are in good agr
ment with the results of NRG (zero temperature result
given the uncertainties in the NRG at higher frequenci
Typical behavior in the Kondo regime [Fig. 2(a)] is recov
ered: a broadened peak inAb atv . jEdj, representing the
hybridizingd level and a structure inAf atv . TK . Both
functions display power law behavior at frequencies bel
TK , which at finiteT is cut off at the scalev . T . The ex-
ponents extracted from the frequency rangeT , v , TK

of our finite T results compare well with the exact re
sult also shown (see insets of Fig. 2). A similar analy
has been performed for a number of parameter sets s
ning the complete range ofd-level occupation numbersnd .
The extracted power law exponents are shown in Fig

FIG. 2. Pseudofermion and slave boson spectral functionsAf
and Ab in the Kondo regime (N ­ 2; Ed ­ 20.05, G ­ 0.01
in units of the half-bandwidth), for (a) the single-chann
(M ­ 1) and (b) the multichannel (M ­ 2) case. In (a) the
symbols represent the results of NRG for the same param
set, T ­ 0. The slopes of the dashed lines indicate the ex
threshold exponents as given by Eqs. (2) and (3) forM ­ 1
and by CFT forM ­ 2. Deviations from the power laws a
low frequenciesv shift towardsv ­ 0 as T ! 0, i.e., are
finite T effects. Insets show magnified power law regions.
263
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FIG. 3. CTMA results (symbols with error bars) for the
threshold exponentsaf andab of Af andAb, N ­ 2, M ­ 1.
Solid lines: exact [Eqs. (2) and (3)], dashed lines: NCA resul

together with error bars estimated from the finite frequen
ranges over which the fit was made. The comparative
large error bars in the mixed valence regime arise beca
here spin flip and charge fluctuation processes are of eq
importance, inhibiting the convergence of the nume
cal procedure. In this light, the agreement with the exa
results is very good. This is evidence thatthe CTMA re-
covers the signature of FL behavior present in the exa
auxiliary particle dynamics of the single-channel Ande
son model. As a consequence of the conserving schem
the FL behavior should be reproduced in physical prop
ties as well, when derived from the same generating fun
tional F. These evaluations are in progress.

In the multichannel case withM . 1, N ­ M, it fol-
lows from the symmetry of the model under the transfo
mationfs ! by

s , bm ! fy
m, Ed ! 2Ed thataf,bsndd ­

ab,f s1 2 ndd. For nd ­ 1, af,b are known from CFT
(see above). It follows that NCA yields the exact exp
nents both in the Kondo and in the empty impurity limit
of the multichannel model. At present, it is not know
whether this is the case for arbitrarynd. Using NCA
Green’s functions as discussed above, we find again a p
in the spin singlet channel of theT matrix of pseudo-
fermions (fs, s ­ ", #) and conduction electrons of flavo
m (csm) for nd , 1. However, the weight of the pole
vanishes fornd ! 1, and a numerical solution of the self
consistent CTMA equations forM ­ N ­ 2, nd ­ 0.877
indeed yields exponentsaf . 0.44, ab . 0.49, very close
to the exact value of1y2 for nd ­ 1 [Fig. 2(b)]. This is
consistent with the fact that there should not be a bou
state contribution in the overscreened case.

In this Letter we have considered the dynamics of t
auxiliary particles for thesN, Md generalized Anderson
impurity model with particular emphasis on the realiz
tion of FL behavior. We have shown that the occurren
of FL behavior can be deduced from the IR thresho
exponents of the auxiliary particle spectral functions.
conserving self-consistent approximation incorporating
infinite number of coherent spin flip and charge transf
264
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processes (CTMA) leads to singular contributions whic
renormalize the threshold exponents by self-consistenc
There cannot be a renormalization of the exponents
any finite order self-consistent summation. A numerica
evaluation of the CTMA yields good agreement with th
known exact values in the single-channel case, indica
ing that CTMA recovers the FL behavior. By contrast, in
the multichannel case the singular contributions are ine
fective in the limitnd ! 1 of the two-channel Anderson
model, i.e., the non-FL state persists and the expone
known from CFT are recovered.
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