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Unified Description of Fermi and Non-Fermi Liquid Behavior in a Conserving Slave Boson
Approximation for Strongly Correlated Impurity Models
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We show that the presence of Fermi or non-Fermi liquid behavior in th@/$X SU(M) Anderson
impurity models may be read off the infrared threshold exponents governing the spinon and holon
dynamics in a slave boson representation of these models. We construct a congemmiaimix
approximation which recovers the exact exponents with good numerical accuracy. Our approximation
includes both coherent spin flip scattering and charge fluctuation processes. For the single-channel case
the tendency to form bound states drastically modifies the low energy behavior. For the multichannel
case in the Kondo limit the bound state contributions are unimportant. [S0031-9007(97)03563-1]

PACS numbers: 71.27.+a, 71.10.Fd, 75.20.Hr
Impurity models with internal degrees of freedom andy ,, fif, + >, blb, = 1. The effective coupling con-

strong local correlations coupled to a fermionic bath havestant in the constrained Hilbert space is given by=
been of considerable interest recently [L-5]. The protosV2N(0), with N(0) the conduction electron density of
type is the Anderson impurity model, involving a localized states at the Fermi level. In the Kondo linfit; — A)
electron level (called! level in the following) hybridiz- the Anderson model [Eqg. (1)] can be mapped onto the
ing with one or several conduction bands [6]. The strondgSU(N) X SU(M) Cogblin-Schrieffer model. The latter
Coulomb repulsior/ (U — =) between electrons in the has been studied extensively by the Bethe ansatz method
localized state effectively restricts tHdevel occupancy to [10], conformal field theory (CFT) [2], and self-consistent
ng = 1. The ensuing projection of Hilbert space onto theslave boson theory [5].
physical subspace without multiple occupancy is a prob- In this Letter we focus on the auxiliary particle
lem of fundamental importance in the theory of stronglyGreen’s functiongG s, (r; — 72) = —(T{f(,(rl)fj;(n)}},
correlated Fermi systems in general. As a consequence,,(r; — ;) = —{(T{b,,(71)b},(m2)}). The angular
the Anderson model displays many of the salient featurebrackets denote the statistical average in the grand canon-
of strongly correlated systems, including the formation ofical ensemble, ((...)) = tr{(.. Jexp[—B(H — AQ)]}/
local magnetic moments and a competition between nora{exp[—B8(H — AQ)]}. The exact projection onto
Fermi liquid behavior caused by an incipient orthogonalthe subspaceQ =1 is achieved by differentiating
ity catastrophe, to which the system scales initially, and avith respect to the fugacitgxp(—BA) and taking the
Fermi liquid (FL) fixed point, which is realized at energies limit A — « [7,8,11]. This procedure ensures that the
below a characteristic scale, the Kondo temperaligeif ~ projected propagators obey Wick's theorem, and self-
the local moment can be completely screened by the corenergies>.;, .(iw,) may be defined byG,, (iw,) =
duction electron spin system. This model can, thereforel{G7,, . (iw,)]™" — 2/ c(iw,)} !, where Gf,(iw,) =
serve as a test case for the regime of strong correlationsw, — E; — A)~', Gp,(iw,) = (iw, — A)~!, and
and at the same time for developing new methods whicl?, (iw,) = > ;(iw, — e;)~!. Thed electron Green’s
may later be applied to lattice problems as well. function may be expressed in terms &, as dis-

In terms of pseudofermion and slave boson operglprs cussed in Ref. [11]. The projected spectral functions
by (0 =1,...,N,m =1,...,M) [7T-9] the M-channel A,(w) = ImG,(w — i0) exhibit divergent threshold

Anderson model is defined by the Hamiltonian behavior atw = 0 with a proper choice of the zero of the
_ + t 4 auxiliary particle energy [11J4,(w) « o %, x = f,b.
H = Ho + Eq gfvff’ + VQZ (Ck,a,mbmf" +H.c), For the single-channel model with spin degeneragy

k,o,m

1) which is known to have a FL ground state, the exact expo-
nentsa;, have been determined [12] by Wilson’s numeri-

) " i cal renormalization group (NRG) approach for the cases
duction band energy;;  creates a conductloneelectron N =1,2, M = 1. They may also be deduced for arbi-
in bandm with spin projectiono and momentunk, and  trary N by the following argument [13]: (i) In the spin
E, denotes the energy of thé-fold degenerate local  screened FL states, T < Tx) the impurity is seen by the
level at positionR = 0. V is the hybridization matrix conduction electrons as a pure potential scattering center.
element andu the chemical potential. A physical elec- (ii) The infrared (IR) threshold behavior 6f; ;, is then en-
tron in the local level is created by the electron operadirely due to the orthogonality catastrophe of the overlap of
tor dt =3, fib,, where the condition of no double the Fermi sea without the impurity level and the fully in-
occupancy is effected by the local operator constri@int  teracting conduction electron sea affected by the potential

t .
where Hy = X, (1 — m)c;, Cipm- &i is the con-
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scattering phase shift8,. The corresponding exponent differentiation from a functionakb of closed skeleton
is given bya =1 — > (8,/m). (iii) The phase shifts diagrams asX,(r; — ) = 6®/8G. (1) — m), [y =
follow from the Friedel sum ruleAn, = 8,/7, where 62<I>/6Gx6Gy, andx,y = f,b,c.
An, is the change in the number of conduction electrons We will be interested in the limit of weak hybridization,
at the impurity caused by the interaction with the impu-such that the dimensionless paramétsi(0) < 1. Thus,
rity. (iv) For the boson spectral function the initial state let us first discuss the lowest order approximation, which
is the empty impurity, which for each spin species fills upis of second order ir. The conserving approximation
with An, = n,;/N conduction electrons in the final state, scheme requires the self-energies to be determined self-
until the correct impurity level occupationy is reached. consistently, which amounts to an infinite resummation of
It follows that perturbation theory even if only the second order skeleton
a, =1-n3/N. (2) diagram for® is kept. The resulting scheme is known
as the “noncrossing approximation” (NCA) [18-20].
It should be a qualitatively correct approximation, pro-
vided the perturbation series fdr converges, i.eif there
re no additional collective effects causing singularities.
he NCA leads to very good results in the absence (i.e.,
Ang = ny/N, o # o, and hence in the.multich_annel case) or sufficiently far away from
5 a FL fixed point: A comparison of NCA results for the
ar = (2na = ng)/N . (3) auxiliary particle andd-electron spectral functiond,
We emphasize that the expressions Egs. (2) and (3) for thg,, A,, and exact results obtained for the single-channel
exponents have been confirmed using the Bethe ansatz sgase using the NRG method shows [11] that (i) the NCA
lution and boundary CFT [14]. In the Kondo limit{ =  auxiliary particle spectral functions are even quantita-
1), @y = 1/N, in disagreement with a result derived from tively correct at energies above the Kondo scalfy =
a self-consistent parquet analysis [15]. Note that comp (M T /7D)M/Nexp[—x|E4|/(NT)], where D is the
plete spin screening is crucial for this derivation of thehigh energy cutoff, but (i) their low energy behavior
exponents in terms of scattering phase shifts to be applicz < Tx) is incorrect. The latter appears to be due to
ble: For the multichannel model > 1), which exhibits 3 |ack of vertex corrections. Within NCA the exponents
a non-FL ground state, the exponents in the Kondo limilof the above-mentioned threshold power laws may be de-

For the spectral function of fermions with spimn the
initial state is defined by a full impurity level with spin
o with the remainingV — 1 impurity levels empty. The
corresponding change of conduction electron number i
the final state with occupatiory isAn, = ny;/N — 1and

are known from CFT [2] to bery = M/(N + M), a, =  termined analytically asf* = M/(N + M), ap* =
N/(N + M), while the above argument would yield the v /(v + M) [5,20]. For the case/ = 1, these values
wrong resultay =1 — M + (2ng — ng/M)/N, a» =  disagree strongly with the exact results discussed above.

1 — nf,/(NM). Thereforethe IR threshold exponents of In the multichannel caseM > 1), on the other hand,
the auxiliary particles are indicators, i.e., a necessary andthe NCA exponents agree with the exponents found for
sufficient condition, for FL or non-FL behavior, respec- the fundamental fields and their correlation functions
tively. There is evidence [16] thai; has also observable in CFT [2] in the Kondo limit. This suggests that the
relevance in that it governs the physical electron spectrdiCA describes the low energy properties correctly in the
function at intermediate frequencies= T. non-FL regime of the SW) X SUM) Anderson model
We now turn to an approximation scheme [17] whichfor n; = 1 and that the generic behavior of the model is
is capable of recovering the above (exact) IR dynamicsthat of a non-FL.
As a minimal requirement, the constraig@t= 1 has to It may be shown by power counting arguments that
be fulfilled in any approximate theory. The constraintthere are no corrections to the NCA exponents in any
is closely related to the invariance of the system undefinite order of perturbation theory [5]. However, additional
a simultaneous local (in time) gauge transformationcollective effects, e.g., the formation of the Kondo singlet
fo(r) = expli®(7)]fo(7), bn(r) — expli®(7)]b,,(7). state, lead to FL behavior. Thus, it is natural to search
The Lagrange multiplierA assumes the role of a local for singularities in the pseudofermion-conduction electron
gauge field and transforms as— A — i9®/dr. Any  scattering channel. In particular, we consider the class
approximation scheme respecting the gauge symmetry withf diagrams which, at any given order &f, represents
preserve the charg@ in time. We shall call approxi- processes with the maximum number of spin flips. The
mations of this type conserving. Symmetry conservingsummation of the corresponding ladder diagrams can be
approximations of the self-energi€s, ;. and the ir- performed by solving the integral equation for the T
reducible verticesl'y, may be generated by functione}l matrix [Fig. 1(a)],

T iwn i), iQ) = — V2Gy(iw, + 0 — iQ)8,8ys + VT Gylio, + io! — iQ)Grylio!!)

n’
X Geg(—iw" + iQTS ) (i0,iw!,iQ). (4)

Inserting NCA Green'’s functions for the intermediate state propagators of Eq. (4), we find numerically at low temperatures
a pole of (/) in the singlet channel as a function of the center-of-mass (COM) frequ@niy the Kondo regime

I
w/l
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Kondo singlet is not a two-particle bound state but rather
a collective many-patrticle state.

After analytical continuation to the real frequency axis
we have solved the CTMA numerically by iteration. Inthe
Kondo regime £, = 0.7) of the N = 2, M = 1 model,
we have obtained reliable results down to temperatures of
the order ofl0~2Tk (note thatTx — 0 in the Kondo limit).

In the mixed valence and empty impurity regimes, signifi-
cantly lower temperatures may be reached, compared to
FIG. 1. (a) Diagrammatic representation of the conductionthe low temperature scale of the model. As is shown in
electron-pseudofermior matrix 7. (b) Pseudofermion Fig. 2(a), the spectral functions obtained are in good agree-
and (c) slave boson self-energies;,, X,. The terms ment with the results of NRG (zero temperature results),
corresponding - to T'*") are obtained by interchanging given the uncertainties in the NRG at higher frequencies.
f=bt Typical behavior in the Kondo regime [Fig. 2(a)] is recov-
ered: a broadened peakdp atw = |E,|, representing the
(nq = 0.7) [17,21]. This signals the tendency to form a hybridizingd level and a structure in; atw = Tx. Both
singlet bound state &2 = ., = —Tk. In the empty functions display power law behavior at frequencies below
orbital regime f; — 0) the behavior of the system is T, which atfiniteT is cut off at the scale = T. The ex-
governed by charge fluctuations. The dominating conponents extracted from the frequency rafigel w < Tk
tributions in this low density region may be expected toof our finite T results compare well with the exact re-
result from conduction electron-boson scattering. The corsult also shown (see insets of Fig. 2). A similar analysis
responding scattering amplitudg®) is obtained from has been performed for a number of parameter sets span-
Eqg. (4) by interchanging pseudofermions and antibosonsing the complete range a@flevel occupation numbers;.
again leading to a pole, &., < 0. Inthe mixed valence The extracted power law exponents are shown in Fig. 3,
regime @, = 0.5), the poles in botl /) and7(?) are of
equal importance.

In order to guarantee gauge invariance, self-consistency 6.0 oo
has to be imposed. The self-energies, %, calculated 3 50 _,_/QQQQQQE
from 7(¢/) and 7?) then follow from a generating func- < o | As
tionalfI) [17]and are depicted in Figs. 1_(b)_and 1(c). _They > lag
are given as nonlinear and nonlocal (in time) functionals O 30 F
of the Green’s functions. The Green’s functions in turn K20t A
are expressed in terms of the self-energies, closing the set < B
of self-consistent equations [conservifignatrix approxi- 5, 1o r °)_"3_91) 8
mation (CTMA)]. Note that the contribution & contain- S oo | NP

ing one boson rung corresponds to NCA. The diagram T/,TK=(?'02

with two rungs is excluded since it is not a skeleton. The S~ A

sum of thed diagrams with up to four rungs constitutes :(35'0 -——\

a largeN expansion correct up t@(1/N?) and is iden- 5.0 |

tical to the diagram class used in Ref. [22]. We empha- O

size that the CTMA, i.e., theelf-consistensummation of -

theinfinite series of all diagrams shown in Fig. 1 is justi- :(.53.0 _\
L b) M=2

fied on physical as well as formal grounds: At any loop

o
O40

N—
52,0

order of ® it includes (1) the maximum number of spin @ ng=0.877

flip as well as charge fluctuation processes; (2) all lead- 210 T/Tk=0.01

ing and subleading IR singular contributions, because all 0.0 P

terms not included cancel pairwise in the IR regime [23]. -30-20-1.0 0.0 1.0 20 30 40 5.0
The threshold property of the auxiliary spectral functions log1o(w/Tk)

implies that the exact’ matricesT ) and T(“*) have no . .

. : : FIG. 2. Pseudofermion and slave boson spectral functigns
spectral weight at negative COM frequenci@s in con- and A, in the Kondo regime = 2; E;, = —0.05, I' = 0.01
trast to the poles appearing in the “perturbative” evaluain units of the half-bandwidth), for (a) the single-channel
tion, i.e., inserting NCA propagators as discussed aftegM = 1) and (b) the multichannelM = 2) case. In (a) the
Eg. (4). Consequently, these poles are shiftefte= 0 symbols represent the results of NRG for the same parameter
by self-consistency, where they merge with the continuset 7 = 0. The slopes of. the dashed lines indicate the exact

. .. threshold exponents as given by Egs. (2) and (3) Mor= 1

ous spectral weight present it > Q,_thus renormallzmg and by CFT forM = 2. Deviations from the power laws at
the threshold exponents of the auxiliary spectral functionsow frequenciesw shift towardsw = 0 as 7 — 0, i.e., are
as seen below. This is an expression of the fact that thinite T effects. Insets show magnified power law regions.
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1.0 . ' - processes (CTMA) leads to singular contributions which
b renormalize the threshold exponents by self-consistency.
0.8 | . There cannot be a renormalization of the exponents in
opNA % any finite order self-consistent summation. A numerical
_________ I evaluation of the CTMA yields good agreement with the
known exact values in the single-channel case, indicat-
NCA | ing that CTMA recovers the FL behavior. By contrast, in
_______________ the multichannel case the singular contributions are inef-
Ol fective in the limitn; — 1 of the two-channel Anderson
02 r T model, i.e., the non-FL state persists and the exponents
known from CFT are recovered.
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Solid lines: exact [Egs. (2) and (3)], dashed lines: NCA results.
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